subroutine monomial_value ( m, n, e, x, v ) c*****************************************************************************80 c cc MONOMIAL_VALUE evaluates a monomial. c c Discussion: c c This routine evaluates a monomial of the form c c product ( 1 <= i <= m ) x(i)^e(i) c c The combination 0.0^0 is encountered is treated as 1.0. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 20 April 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer N, the number of evaluation points. c c Input, integer E(M), the exponents. c c Input, double precision X(M,N), the point coordinates. c c Output, double precision V(N), the monomial values. c implicit none integer m integer n integer e(m) integer i integer j double precision v(n) double precision x(m,n) do j = 1, n v(j) = 1.0D+00 end do do i = 1, m if ( 0 .ne. e(i) ) then do j = 1, n v(j) = v(j) * x(i,j) ** e(i) end do end if end do return end subroutine r8mat_transpose_print ( m, n, a, title ) c*********************************************************************72 c cc R8MAT_TRANSPOSE_PRINT prints an R8MAT, transposed. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, double precision A(M,N), an M by N matrix to be printed. c c Input, character*(*) TITLE, a title. c implicit none integer m integer n double precision a(m,n) character*(*) title call r8mat_transpose_print_some ( m, n, a, 1, 1, m, n, title ) return end subroutine r8mat_transpose_print_some ( m, n, a, ilo, jlo, ihi, & jhi, title ) c*********************************************************************72 c cc R8MAT_TRANSPOSE_PRINT_SOME prints some of an R8MAT transposed. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Input, double precision A(M,N), an M by N matrix to be printed. c c Input, integer ILO, JLO, the first row and column to print. c c Input, integer IHI, JHI, the last row and column to print. c c Input, character * ( * ) TITLE, a title. c implicit none integer incx parameter ( incx = 5 ) integer m integer n double precision a(m,n) character * ( 14 ) ctemp(incx) integer i integer i2 integer i2hi integer i2lo integer ihi integer ilo integer inc integer j integer j2hi integer j2lo integer jhi integer jlo character * ( * ) title write ( *, '(a)' ) ' ' write ( *, '(a)' ) trim ( title ) if ( m .le. 0 .or. n .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' (None)' return end if do i2lo = max ( ilo, 1 ), min ( ihi, m ), incx i2hi = i2lo + incx - 1 i2hi = min ( i2hi, m ) i2hi = min ( i2hi, ihi ) inc = i2hi + 1 - i2lo write ( *, '(a)' ) ' ' do i = i2lo, i2hi i2 = i + 1 - i2lo write ( ctemp(i2), '(i8,6x)') i end do write ( *, '('' Row'',5a14)' ) ctemp(1:inc) write ( *, '(a)' ) ' Col' j2lo = max ( jlo, 1 ) j2hi = min ( jhi, n ) do j = j2lo, j2hi do i2 = 1, inc i = i2lo - 1 + i2 write ( ctemp(i2), '(g14.6)' ) a(i,j) end do write ( *, '(2x,i8,a,5a14)' ) j, ':', ( ctemp(i), i = 1, inc ) end do end do return end function r8vec_sum ( n, v1 ) c*********************************************************************72 c cc R8VEC_SUM sums the entries of an R8VEC. c c Discussion: c c An R8VEC is a vector of R8's. c c In FORTRAN90, the system routine SUM should be called c directly. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 July 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the dimension of the vectors. c c Input, double precision V1(N), the vector. c c Output, double precision R8VEC_SUM, the sum of the entries. c implicit none integer n integer i double precision r8vec_sum double precision v1(n) double precision value value = 0.0D+00 do i = 1, n value = value + v1(i) end do r8vec_sum = value return end subroutine r8vec_uniform_01 ( n, seed, r ) c*********************************************************************72 c cc R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. c c Discussion: c c An R8VEC is a vector of R8's. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 17 July 2006 c c Author: c c John Burkardt c c Reference: c c Paul Bratley, Bennett Fox, Linus Schrage, c A Guide to Simulation, c Springer Verlag, pages 201-202, 1983. c c Bennett Fox, c Algorithm 647: c Implementation and Relative Efficiency of Quasirandom c Sequence Generators, c ACM Transactions on Mathematical Software, c Volume 12, Number 4, pages 362-376, 1986. c c Peter Lewis, Allen Goodman, James Miller, c A Pseudo-Random Number Generator for the System/360, c IBM Systems Journal, c Volume 8, pages 136-143, 1969. c c Parameters: c c Input, integer N, the number of entries in the vector. c c Input/output, integer SEED, the "seed" value, which should NOT be 0. c On output, SEED has been updated. c c Output, double precision R(N), the vector of pseudorandom values. c implicit none integer n integer i integer i4_huge parameter ( i4_huge = 2147483647 ) integer k integer seed double precision r(n) do i = 1, n k = seed / 127773 seed = 16807 * ( seed - k * 127773 ) - k * 2836 if ( seed .lt. 0 ) then seed = seed + i4_huge end if r(i) = dble ( seed ) * 4.656612875D-10 end do return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end subroutine wedge01_integral ( e, value ) c*********************************************************************72 c cc WEDGE01_INTEGRAL returns the integral of a monomial in the unit wedge in 3D. c c Discussion: c c This routine returns the integral of c c product ( 1 <= I <= 3 ) X(I)^E(I) c c over the unit wedge. c c The integration region is: c c 0 <= X c 0 <= Y c X + Y <= 1 c -1 <= Z <= 1. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 17 August 2014 c c Author: c c John Burkardt c c Reference: c c Arthur Stroud, c Approximate Calculation of Multiple Integrals, c Prentice Hall, 1971, c ISBN: 0130438936, c LC: QA311.S85. c c Parameters: c c Input, integer E(3), the exponents. c c Output, double precision VALUE, the integral of the monomial. c implicit none integer e(3) integer i integer k double precision value value = 1.0D+00 k = e(1) do i = 1, e(2) k = k + 1 value = value * dble ( i ) / dble ( k ) end do k = k + 1 value = value / dble ( k ) k = k + 1 value = value / dble ( k ) c c Now account for integration in Z. c if ( e(3) .eq. - 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'WEDGE01_INTEGRAL - Fatal error!' write ( *, '(a)' ) ' E(3) = -1 is not a legal input.' stop 1 else if ( mod ( e(3), 2 ) .eq. 1 ) then value = 0.0D+00 else value = value * 2.0D+00 / dble ( e(3) + 1 ) end if return end subroutine wedge01_sample ( n, seed, x ) c*********************************************************************72 c cc WEDGE01_SAMPLE samples points uniformly from the unit wedge in 3D. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 17 August 2014 c c Author: c c John Burkardt c c Reference: c c Reuven Rubinstein, c Monte Carlo Optimization, Simulation, and Sensitivity c of Queueing Networks, c Krieger, 1992, c ISBN: 0894647644, c LC: QA298.R79. c c Parameters: c c Input, integer N, the number of points. c c Input/output, integer SEED, a seed for the random c number generator. c c Output, double precision X(3,N), the points. c implicit none integer m parameter ( m = 3 ) integer n double precision e(4) double precision e_sum integer i integer j integer seed double precision x(m,n) do j = 1, n call r8vec_uniform_01 ( 4, seed, e ) do i = 1, 3 e(i) = - log ( e(i) ) end do e_sum = e(1) + e(2) + e(3) x(1,j) = e(1) / e_sum x(2,j) = e(2) / e_sum x(3,j) = 2.0D+00 * e(4) - 1.0D+00 end do return end function wedge01_volume ( ) c*********************************************************************72 c cc WEDGE01_VOLUME returns the volume of the unit wedge in 3D. c c Discussion: c c The unit wedge is: c c 0 <= X c 0 <= Y c X + Y <= 1 c -1 <= Z <= 1. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 17 August 2014 c c Author: c c John Burkardt c c Parameters: c c Output, double precision WEDGE01_VOLUME, the volume of the unit wedge. c implicit none double precision wedge01_volume wedge01_volume = 1.0D+00 return end