program main c*********************************************************************72 c cc MAIN is the main program for PRODUCT_RULE. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 15 February 2014 c c Author: c c John Burkardt c implicit none integer dim_max parameter ( dim_max = 20 ) integer point1d_max parameter ( point1d_max = 100 ) integer point_max parameter ( point_max = 10000 ) integer arg_num integer dim integer dim_num integer dim_num_1d integer i integer iarg integer iargc integer ierror integer ios integer j integer last character * ( 255 ) list_filename integer list_num integer list_unit logical more integer point_num integer point_num_1d integer point_num_1d2 character * ( 255 ) quad_1d_filename character * ( 255 ) quad_filename character * ( 255 ) quad_r_filename character * ( 255 ) quad_r_1d_filename character * ( 255 ) quad_w_filename character * ( 255 ) quad_w_1d_filename character * ( 255 ) quad_x_filename character * ( 255 ) quad_x_1d_filename double precision r(dim_max,2) double precision r_1d(2) character * ( 255 ) string double precision w(point_max) double precision w_1d(point1d_max) double precision x(dim_max,point_max) double precision x_1d(point1d_max) call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE' write ( *, '(a)' ) ' FORTRAN77 version' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Create a multidimensional product rule as' write ( *, '(a)' ) ' a product of distinct 1D integration rules.' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' FORTRAN77 limitations:' write ( *, '(a,i6)' ) & ' Maximum number of dimensions = ', dim_max write ( *, '(a,i6)' ) & ' Maximum order of 1D rule = ', point1d_max write ( *, '(a,i6)' ) & ' Maximum order of final rule = ', point_max c c Get the number of command line arguments. c arg_num = iargc ( ) c c Get the list file. c if ( 1 <= arg_num ) then iarg = 1 call getarg ( iarg, list_filename ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE:' write ( *, '(a)' ) ' Enter the name of the file of factors.' read ( *, '(a)' ) list_filename end if c c Get the product file prefix. c if ( 2 <= arg_num ) then iarg = 2 call getarg ( iarg, quad_filename ) else write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE:' write ( *, '(a)' ) ' Enter the prefix for the output files' write ( *, '(a)' ) ' describing the product rule.' read ( *, '(a)' ) quad_filename end if c c Count the items in the list file. c call file_row_count ( list_filename, list_num ) c c Determine the spatial dimension and number of points in the product. c dim_num = list_num call product_rule_size ( list_filename, list_num, point_num ) c c Initialize the product items. c call r8mat_zero ( dim_num, point_num, x ) do i = 1, point_num w(i) = 1.0D+00 end do call r8mat_zero ( dim_num, 2, r ) call get_unit ( list_unit ) open ( unit = list_unit, file = list_filename, status = 'old', & iostat = ios ) if ( ios .ne. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' Failure opening list file.' stop end if c c Read the factor information and apply it. c do dim = 1, dim_num read ( list_unit, '(a)' ) quad_1d_filename quad_x_1d_filename = trim ( quad_1d_filename ) // '_x.txt' quad_w_1d_filename = trim ( quad_1d_filename ) // '_w.txt' quad_r_1d_filename = trim ( quad_1d_filename ) // '_r.txt' c c Read the X file. c call r8mat_header_read ( quad_x_1d_filename, dim_num_1d, & point_num_1d ) if ( dim_num_1d .ne. 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature abscissa file should' write ( *, '(a)' ) ' have exactly one value on each line.' stop end if write ( *, '(a)' ) ' ' write ( *, '(a,i8)' ) & ' Number of points in 1D rule = ', point_num_1d call r8mat_data_read ( quad_x_1d_filename, dim_num_1d, & point_num_1d, x_1d ) c c Read the W file. c call r8mat_header_read ( quad_w_1d_filename, dim_num_1d, & point_num_1d2 ) if ( dim_num_1d .ne. 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature weight file should' write ( *, '(a)' ) ' have exactly one value on each line.' stop end if if ( point_num_1d2 .ne. point_num_1d ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature weight file should' write ( *, '(a)' ) ' have exactly the same number of lines' write ( *, '(a)' ) ' as the abscissa file.' stop end if call r8mat_data_read ( quad_w_1d_filename, dim_num_1d, & point_num_1d, w_1d ) c c Read the R file. c call r8mat_header_read ( quad_r_1d_filename, dim_num_1d, & point_num_1d2 ) if ( dim_num_1d .ne. 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature region file should' write ( *, '(a)' ) ' have exactly one value on each line.' stop end if if ( point_num_1d2 .ne. 2 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE - Fatal error!' write ( *, '(a)' ) ' The 1D quadrature region file should' write ( *, '(a)' ) ' have exactly two lines.' stop end if call r8mat_data_read ( quad_r_1d_filename, 1, 2, r_1d ) c c Update the X, W, and R of the product rule. c We have to call R8MAT_ROW_SET here because in FORTRAN77 it's c not so easy to simply allocate an array of exactly the right size, c and so we have to be careful about how we put numbers into arrays. c call r8vec_direct_product ( dim, point_num_1d, x_1d, dim_num, & point_num, x ) call r8vec_direct_product2 ( dim, point_num_1d, w_1d, dim_num, & point_num, w ) call r8mat_row_set ( dim, r_1d, dim_num, 2, r ) end do close ( unit = list_unit ) c c Write the product rule. c quad_x_filename = trim ( quad_filename ) // '_x.txt' quad_w_filename = trim ( quad_filename ) // '_w.txt' quad_r_filename = trim ( quad_filename ) // '_r.txt' write ( *, '(a)' ) ' ' write ( *, '(a)' ) ' Creating product quadrature rule X file = "' & // trim ( quad_x_filename ) // '".' call r8mat_write ( quad_x_filename, dim_num, point_num, x ) write ( *, '(a)' ) ' Creating product quadrature rule W file = "' & // trim ( quad_w_filename ) // '".' call r8mat_write ( quad_w_filename, 1, point_num, w ) write ( *, '(a)' ) ' Creating product quadrature rule R file = "' & // trim ( quad_r_filename ) // '".' call r8mat_write ( quad_r_filename, dim_num, 2, r ) c c Terminate. c write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULES:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ch_cap ( ch ) c*********************************************************************72 c cc CH_CAP capitalizes a single character. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input/output, character CH, the character to capitalize. c implicit none character ch integer itemp itemp = ichar ( ch ) if ( 97 .le. itemp .and. itemp .le. 122 ) then ch = char ( itemp - 32 ) end if return end subroutine ch_count_chvec_add ( n, chvec, count ) c*********************************************************************72 c cc CH_COUNT_CHVEC_ADD adds a character vector to a character count. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 15 January 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of entries in the vector. c c Input, character CHVEC(N), a vector of characters. c c Input/output, integer COUNT(0:255), the character counts. c implicit none integer n integer count(0:255) character chvec(n) integer i integer j do i = 1, n j = ichar ( chvec(i) ) count(j) = count(j) + 1 end do return end function ch_eqi ( c1, c2 ) c*********************************************************************72 c cc CH_EQI is a case insensitive comparison of two characters for equality. c c Example: c c CH_EQI ( 'A', 'a' ) is TRUE. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input, character C1, C2, the characters to compare. c c Output, logical CH_EQI, the result of the comparison. c implicit none character c1 character c1_cap character c2 character c2_cap logical ch_eqi c1_cap = c1 c2_cap = c2 call ch_cap ( c1_cap ) call ch_cap ( c2_cap ) if ( c1_cap == c2_cap ) then ch_eqi = .true. else ch_eqi = .false. end if return end subroutine ch_to_digit ( c, digit ) c*********************************************************************72 c cc CH_TO_DIGIT returns the integer value of a base 10 digit. c c Example: c c C DIGIT c --- ----- c '0' 0 c '1' 1 c ... ... c '9' 9 c ' ' 0 c 'X' -1 c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 04 August 1999 c c Author: c c John Burkardt c c Parameters: c c Input, character C, the decimal digit, '0' through '9' or blank c are legal. c c Output, integer DIGIT, the corresponding integer value. If C was c 'illegal', then DIGIT is -1. c implicit none character c integer digit if ( lge ( c, '0' ) .and. lle ( c, '9' ) ) then digit = ichar ( c ) - 48 else if ( c .eq. ' ' ) then digit = 0 else digit = -1 end if return end subroutine file_column_count ( input_filename, column_num ) c*********************************************************************72 c cc FILE_COLUMN_COUNT counts the number of columns in the first line of a file. c c Discussion: c c The file is assumed to be a simple text file. c c Most lines of the file is presumed to consist of COLUMN_NUM words, c separated by spaces. There may also be some blank lines, and some c comment lines, c which have a "#" in column 1. c c The routine tries to find the first non-comment non-blank line and c counts the number of words in that line. c c If all lines are blanks or comments, it goes back and tries to analyze c a comment line. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the file. c c Output, integer COLUMN_NUM, the number of columns in the file. c implicit none integer column_num logical got_one character * ( * ) input_filename integer input_unit character * ( 255 ) line c c Open the file. c call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old', form = 'formatted', access = 'sequential' ) c c Read one line, but skip blank lines and comment lines. c got_one = .false. 10 continue read ( input_unit, '(a)', err = 20 ) line if ( len_trim ( line ) .eq. 0 ) then go to 10 end if if ( line(1:1) .eq. '#' ) then go to 10 end if got_one = .true. go to 20 go to 10 20 continue if ( .not. got_one ) then rewind ( input_unit ) 30 continue read ( input_unit, '(a)', err = 40 ) line if ( len_trim ( line ) .eq. 0 ) then go to 30 end if got_one = .true. go to 40 go to 30 40 continue end if close ( unit = input_unit ) if ( .not. got_one ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'FILE_COLUMN_COUNT - Warning.' write ( *, '(a)' ) ' The file does not contain any data.' column_num = -1 return end if call s_word_count ( line, column_num ) return end subroutine file_row_count ( input_filename, row_num ) c*********************************************************************72 c cc FILE_ROW_COUNT counts the number of row records in a file. c c Discussion: c c It does not count lines that are blank, or that begin with a c comment symbol '#'. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Output, integer ROW_NUM, the number of rows found. c implicit none integer bad_num integer comment_num integer ierror character * ( * ) input_filename integer input_status integer input_unit character * ( 255 ) line integer record_num integer row_num call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old' ) comment_num = 0 row_num = 0 record_num = 0 bad_num = 0 10 continue read ( input_unit, '(a)', err = 20, end = 20 ) line record_num = record_num + 1 if ( line(1:1) .eq. '#' ) then comment_num = comment_num + 1 go to 10 end if if ( len_trim ( line ) .eq. 0 ) then comment_num = comment_num + 1 go to 10 end if row_num = row_num + 1 go to 10 20 continue close ( unit = input_unit ) return end subroutine get_unit ( iunit ) c*********************************************************************72 c cc GET_UNIT returns a free FORTRAN unit number. c c Discussion: c c A "free" FORTRAN unit number is a value between 1 and 99 which c is not currently associated with an I/O device. A free FORTRAN unit c number is needed in order to open a file with the OPEN command. c c If IUNIT = 0, then no free FORTRAN unit could be found, although c all 99 units were checked (except for units 5, 6 and 9, which c are commonly reserved for console I/O). c c Otherwise, IUNIT is a value between 1 and 99, representing a c free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 c are special, and will never return those values. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 02 September 2013 c c Author: c c John Burkardt c c Parameters: c c Output, integer IUNIT, the free unit number. c implicit none integer i integer iunit logical value iunit = 0 do i = 1, 99 if ( i .ne. 5 .and. i .ne. 6 .and. i .ne. 9 ) then inquire ( unit = i, opened = value, err = 10 ) if ( .not. value ) then iunit = i return end if end if 10 continue end do return end subroutine product_rule_size ( list_filename, list_num, & point_num ) c*********************************************************************72 c cc PRODUCT_RULE_SIZE returns the size of a product rule of distinct factors. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 10 May 2007 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) LIST_FILENAME, a file containing a list c of prefixes defining quadrature rules. c c Input, integer LIST_NUM, the number of prefixes in the file. c c Output, integer POINT_NUM, the number of points in the product rule. c implicit none integer dim_num_1d integer ios integer list character * ( * ) list_filename integer list_num integer list_unit integer point_num integer point_num_1d character * ( 80 ) quad_1d_filename character * ( 80 ) quad_x_1d_filename point_num = 1 call get_unit ( list_unit ) open ( unit = list_unit, file = list_filename, status = 'old', & iostat = ios ) if ( ios .ne. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PRODUCT_RULE_SIZE - Fatal error!' write ( *, '(a)' ) ' Nonzero value of IOS while opening list fi &le.' stop end if do list = 1, list_num read ( list_unit, '(a)' ) quad_1d_filename quad_x_1d_filename = trim ( quad_1d_filename ) // '_x.txt' call r8mat_header_read ( quad_x_1d_filename, dim_num_1d, point_n &um_1d ) point_num = point_num * point_num_1d end do close ( unit = list_unit ) return end subroutine r8mat_data_read ( input_filename, m, n, table ) c*********************************************************************72 c cc R8MAT_DATA_READ reads data from an R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c The file may contain more than N points, but this routine will c return after reading N of them. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points. c c Output, double precision TABLE(M,N), the data. c implicit none integer m integer n integer i integer ierror character * ( * ) input_filename integer input_status integer input_unit integer j character * ( 255 ) line double precision table(m,n) double precision x(m) ierror = 0 call get_unit ( input_unit ) open ( unit = input_unit, file = input_filename, & status = 'old' ) j = 0 10 continue if ( j .lt. n ) then read ( input_unit, '(a)' ) line if ( line(1:1) .eq. '#' .or. len_trim ( line ) .eq. 0 ) then go to 10 end if call s_to_r8vec ( line, m, x, ierror ) if ( ierror .ne. 0 ) then go to 10 end if j = j + 1 do i = 1, m table(i,j) = x(i) end do go to 10 end if close ( unit = input_unit ) return end subroutine r8mat_header_read ( input_filename, m, n ) c*********************************************************************72 c cc R8MAT_HEADER_READ reads the header from an R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) INPUT_FILENAME, the name of the input file. c c Output, integer M, spatial dimension. c c Output, integer N, the number of points. c implicit none character * ( * ) input_filename integer m integer n call file_column_count ( input_filename, m ) if ( m .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was an I/O problem while trying' write ( *, '(a)' ) ' to count the number of data columns in' write ( *, '(a,a,a)' ) & ' the file "', trim ( input_filename ), '".' stop 1 end if call file_row_count ( input_filename, n ) if ( n .le. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8MAT_HEADER_READ - Fatal error!' write ( *, '(a)' ) ' There was an I/O problem while trying' write ( *, '(a)' ) ' to count the number of data rows in' write ( *, '(a,a,a)' ) & ' the file "', trim ( input_filename ), '".' stop 1 end if return end subroutine r8mat_row_set ( i, r, m, n, a ) c*********************************************************************72 c cc R8MAT_ROW_SET copies a vector into a row of an R8MAT. c c Discussion: c c Because I try to avoid using "leading dimensions", which allow c a user to set aside too much space for an array, but then c still put things in the right place, I need to use a routine c like this when I occasionally have to deal with arrays that c are not "tight". c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 15 February 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer I, the row index. c c Input, double precision R(N), the vector. c c Input, integer M, N, the number of rows and columns of the matrix. c c Input/output, double precision A(M,N), the matrix to be updated. c implicit none integer m integer n double precision a(m,n) integer i integer j double precision r(n) do j = 1, n a(i,j) = r(j) end do return end subroutine r8mat_write ( output_filename, m, n, table ) c*********************************************************************72 c cc R8MAT_WRITE writes a R8MAT file. c c Discussion: c c An R8MAT is an array of R8's. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 October 2009 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) OUTPUT_FILENAME, the output file name. c c Input, integer M, the spatial dimension. c c Input, integer N, the number of points. c c Input, double precision TABLE(M,N), the data. c implicit none integer m integer n integer j character * ( * ) output_filename integer output_unit character * ( 30 ) string double precision table(m,n) c c Open the file. c call get_unit ( output_unit ) open ( unit = output_unit, file = output_filename, & status = 'replace' ) c c Create the format string. c if ( 0 .lt. m .and. 0 .lt. n ) then write ( string, '(a1,i8,a1,i8,a1,i8,a1)' ) & '(', m, 'g', 24, '.', 16, ')' c c Write the data. c do j = 1, n write ( output_unit, string ) table(1:m,j) end do end if c c Close the file. c close ( unit = output_unit ) return end subroutine r8mat_zero ( m, n, a ) c*********************************************************************72 c cc R8MAT_ZERO zeroes an R8MAT. c c Discussion: c c An R8MAT is an array of R8 values. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 18 July 2010 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, N, the number of rows and columns. c c Output, double precision A(M,N), the matrix of zeroes. c implicit none integer m integer n double precision a(m,n) integer i integer j do j = 1, n do i = 1, m a(i,j) = 0.0D+00 end do end do return end subroutine r8vec_direct_product ( factor_index, factor_order, & factor_value, factor_num, point_num, x ) c*********************************************************************72 c cc R8VEC_DIRECT_PRODUCT creates a direct product of R8VEC's. c c Discussion: c c An R8VEC is a vector of R8's. c c To explain what is going on here, suppose we had to construct c a multidimensional quadrature rule as the product of K rules c for 1D quadrature. c c The product rule will be represented as a list of points and weights. c c The J-th item in the product rule will be associated with c item J1 of 1D rule 1, c item J2 of 1D rule 2, c ..., c item JK of 1D rule K. c c In particular, c X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) c and c W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) c c So we can construct the quadrature rule if we can properly c distribute the information in the 1D quadrature rules. c c This routine carries out that task for the abscissas X. c c Another way to do this would be to compute, one by one, the c set of all possible indices (J1,J2,...,JK), and then index c the appropriate information. An advantage of the method shown c here is that you can process the K-th set of information and c then discard it. c c Example: c c Rule 1: c Order = 4 c X(1:4) = ( 1, 2, 3, 4 ) c c Rule 2: c Order = 3 c X(1:3) = ( 10, 20, 30 ) c c Rule 3: c Order = 2 c X(1:2) = ( 100, 200 ) c c Product Rule: c Order = 24 c X(1:24) = c ( 1, 10, 100 ) c ( 2, 10, 100 ) c ( 3, 10, 100 ) c ( 4, 10, 100 ) c ( 1, 20, 100 ) c ( 2, 20, 100 ) c ( 3, 20, 100 ) c ( 4, 20, 100 ) c ( 1, 30, 100 ) c ( 2, 30, 100 ) c ( 3, 30, 100 ) c ( 4, 30, 100 ) c ( 1, 10, 200 ) c ( 2, 10, 200 ) c ( 3, 10, 200 ) c ( 4, 10, 200 ) c ( 1, 20, 200 ) c ( 2, 20, 200 ) c ( 3, 20, 200 ) c ( 4, 20, 200 ) c ( 1, 30, 200 ) c ( 2, 30, 200 ) c ( 3, 30, 200 ) c ( 4, 30, 200 ) c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 27 August 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer FACTOR_INDEX, the index of the factor being processed. c The first factor processed must be factor 1! c c Input, integer FACTOR_ORDER, the order of the factor. c c Input, double precision FACTOR_VALUE(FACTOR_ORDER), the factor values c for factor FACTOR_INDEX. c c Input, integer FACTOR_NUM, the number of factors. c c Input, integer POINT_NUM, the number of elements in the direct product. c c Input/output, double precision X(FACTOR_NUM,POINT_NUM), the elements of the c direct product, which are built up gradually. Before the first call, c X might be set to 0. After each factor has been input, X should c have the correct value. c c Local Parameters: c c Local, integer START, the first location of a block of values to set. c c Local, integer CONTIG, the number of consecutive values to set. c c Local, integer SKIP, the distance from the current value of START c to the next location of a block of values to set. c c Local, integer REP, the number of blocks of values to set. c implicit none integer factor_num integer factor_order integer point_num integer contig integer factor_index double precision factor_value(factor_order) integer i integer j integer k integer rep integer skip integer start double precision x(factor_num,point_num) save contig save rep save skip data contig / 0 / data rep / 0 / data skip / 0 / if ( factor_index .eq. 1 ) then contig = 1 skip = 1 rep = point_num end if rep = rep / factor_order skip = skip * factor_order do j = 1, factor_order start = 1 + ( j - 1 ) * contig do k = 1, rep do i = start, start+contig-1 x(factor_index,i) = factor_value(j) end do start = start + skip end do end do contig = contig * factor_order return end subroutine r8vec_direct_product2 ( factor_index, factor_order, & factor_value, factor_num, point_num, w ) c*********************************************************************72 c cc R8VEC_DIRECT_PRODUCT2 creates a direct product of R8VEC's. c c Discussion: c c An R8VEC is a vector of R8's. c c To explain what is going on here, suppose we had to construct c a multidimensional quadrature rule as the product of K rules c for 1D quadrature. c c The product rule will be represented as a list of points and weights. c c The J-th item in the product rule will be associated with c item J1 of 1D rule 1, c item J2 of 1D rule 2, c ..., c item JK of 1D rule K. c c In particular, c X(J) = ( X(1,J1), X(2,J2), ..., X(K,JK)) c and c W(J) = W(1,J1) * W(2,J2) * ... * W(K,JK) c c So we can construct the quadrature rule if we can properly c distribute the information in the 1D quadrature rules. c c This routine carries out the task involving the weights W. c c Another way to do this would be to compute, one by one, the c set of all possible indices (J1,J2,...,JK), and then index c the appropriate information. An advantage of the method shown c here is that you can process the K-th set of information and c then discard it. c c Example: c c Rule 1: c Order = 4 c W(1:4) = ( 2, 3, 5, 7 ) c c Rule 2: c Order = 3 c W(1:3) = ( 11, 13, 17 ) c c Rule 3: c Order = 2 c W(1:2) = ( 19, 23 ) c c Product Rule: c Order = 24 c W(1:24) = c ( 2 * 11 * 19 ) c ( 3 * 11 * 19 ) c ( 4 * 11 * 19 ) c ( 7 * 11 * 19 ) c ( 2 * 13 * 19 ) c ( 3 * 13 * 19 ) c ( 5 * 13 * 19 ) c ( 7 * 13 * 19 ) c ( 2 * 17 * 19 ) c ( 3 * 17 * 19 ) c ( 5 * 17 * 19 ) c ( 7 * 17 * 19 ) c ( 2 * 11 * 23 ) c ( 3 * 11 * 23 ) c ( 5 * 11 * 23 ) c ( 7 * 11 * 23 ) c ( 2 * 13 * 23 ) c ( 3 * 13 * 23 ) c ( 5 * 13 * 23 ) c ( 7 * 13 * 23 ) c ( 2 * 17 * 23 ) c ( 3 * 17 * 23 ) c ( 5 * 17 * 23 ) c ( 7 * 17 * 23 ) c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 27 August 2008 c c Author: c c John Burkardt c c Parameters: c c Input, integer FACTOR_INDEX, the index of the factor being processed. c The first factor processed must be factor 1! c c Input, integer FACTOR_ORDER, the order of the factor. c c Input, double precision FACTOR_VALUE(FACTOR_ORDER), the factor values c for factor FACTOR_INDEX. c c Input, integer FACTOR_NUM, the number of factors. c c Input, integer POINT_NUM, the number of elements in the direct product. c c Input/output, double precision W(POINT_NUM), the elements of the c direct product, which are built up gradually. Before the first call, c W should be set to 1. c c Local Parameters: c c Local, integer START, the first location of a block of values to set. c c Local, integer CONTIG, the number of consecutive values to set. c c Local, integer SKIP, the distance from the current value of START c to the next location of a block of values to set. c c Local, integer REP, the number of blocks of values to set. c implicit none integer factor_num integer factor_order integer point_num integer contig integer factor_index double precision factor_value(factor_order) integer i integer j integer k integer rep integer skip integer start double precision w(point_num) save contig save rep save skip data contig / 0 / data rep / 0 / data skip / 0 / if ( factor_index .eq. 1 ) then contig = 1 skip = 1 rep = point_num end if rep = rep / factor_order skip = skip * factor_order do j = 1, factor_order start = 1 + ( j - 1 ) * contig do k = 1, rep do i = start, start+contig-1 w(i) = w(i) * factor_value(j) end do start = start + skip end do end do contig = contig * factor_order return end subroutine r8vec_zero ( n, a ) c*********************************************************************72 c cc R8VEC_ZERO zeroes out an R8VEC. c c Discussion: c c An R8VEC is a vector of R8's. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 04 July 2009 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of entries in the vector. c c Output, double precision A(N), the vector to be zeroed. c implicit none integer n double precision a(n) integer i do i = 1, n a(i) = 0.0D+00 end do return end subroutine s_to_i4 ( s, ival, ierror, length ) c*********************************************************************72 c cc S_TO_I4 reads an I4 from a string. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, a string to be examined. c c Output, integer IVAL, the integer value read from the string. c If the string is blank, then IVAL will be returned 0. c c Output, integer IERROR, an error flag. c 0, no error. c 1, an error occurred. c c Output, integer LENGTH, the number of characters of S c used to make IVAL. c implicit none character c integer i integer ierror integer isgn integer istate integer ival integer length character * ( * ) s integer s_len ierror = 0 istate = 0 isgn = 1 ival = 0 s_len = len_trim ( s ) do i = 1, s_len c = s(i:i) c c Haven't read anything. c if ( istate .eq. 0 ) then if ( c .eq. ' ' ) then else if ( c .eq. '-' ) then istate = 1 isgn = -1 else if ( c .eq. '+' ) then istate = 1 isgn = + 1 else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if c c Have read the sign, expecting digits. c else if ( istate .eq. 1 ) then if ( c .eq. ' ' ) then else if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then istate = 2 ival = ichar ( c ) - ichar ( '0' ) else ierror = 1 return end if c c Have read at least one digit, expecting more. c else if ( istate .eq. 2 ) then if ( lle ( '0', c ) .and. lle ( c, '9' ) ) then ival = 10 * ival + ichar ( c ) - ichar ( '0' ) else ival = isgn * ival length = i - 1 return end if end if end do c c If we read all the characters in the string, see if we're OK. c if ( istate .eq. 2 ) then ival = isgn * ival length = len_trim ( s ) else ierror = 1 length = 0 end if return end subroutine s_to_r8 ( s, dval, ierror, length ) c*********************************************************************72 c cc S_TO_R8 reads an R8 from a string. c c Discussion: c c The routine will read as many characters as possible until it reaches c the end of the string, or encounters a character which cannot be c part of the number. c c Legal input is: c c 1 blanks, c 2 '+' or '-' sign, c 2.5 blanks c 3 integer part, c 4 decimal point, c 5 fraction part, c 6 'E' or 'e' or 'D' or 'd', exponent marker, c 7 exponent sign, c 8 exponent integer part, c 9 exponent decimal point, c 10 exponent fraction part, c 11 blanks, c 12 final comma or semicolon, c c with most quantities optional. c c Example: c c S DVAL c c '1' 1.0 c ' 1 ' 1.0 c '1A' 1.0 c '12,34,56' 12.0 c ' 34 7' 34.0 c '-1E2ABCD' -100.0 c '-1X2ABCD' -1.0 c ' 2E-1' 0.2 c '23.45' 23.45 c '-4.2E+2' -420.0 c '17d2' 1700.0 c '-14e-2' -0.14 c 'e2' 100.0 c '-12.73e-9.23' -12.73 * 10.0^(-9.23) c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string containing the c data to be read. Reading will begin at position 1 and c terminate at the end of the string, or when no more c characters can be read to form a legal real. Blanks, c commas, or other nonnumeric data will, in particular, c cause the conversion to halt. c c Output, double precision DVAL, the value read from the string. c c Output, integer IERROR, error flag. c 0, no errors occurred. c 1, 2, 6 or 7, the input number was garbled. The c value of IERROR is the last type of input successfully c read. For instance, 1 means initial blanks, 2 means c a plus or minus sign, and so on. c c Output, integer LENGTH, the number of characters read c to form the number, including any terminating c characters such as a trailing comma or blanks. c implicit none logical ch_eqi character c double precision dval integer ierror integer ihave integer isgn integer iterm integer jbot integer jsgn integer jtop integer length integer nchar integer ndig double precision rbot double precision rexp double precision rtop character * ( * ) s nchar = len_trim ( s ) ierror = 0 dval = 0.0D+00 length = -1 isgn = 1 rtop = 0 rbot = 1 jsgn = 1 jtop = 0 jbot = 1 ihave = 1 iterm = 0 10 continue length = length + 1 if ( nchar .lt. length+1 ) then go to 20 end if c = s(length+1:length+1) c c Blank character. c if ( c .eq. ' ' ) then if ( ihave .eq. 2 ) then else if ( ihave .eq. 6 .or. ihave .eq. 7 ) then iterm = 1 else if ( 1 .lt. ihave ) then ihave = 11 end if c c Comma. c else if ( c .eq. ',' .or. c .eq. ';' ) then if ( ihave .ne. 1 ) then iterm = 1 ihave = 12 length = length + 1 end if c c Minus sign. c else if ( c .eq. '-' ) then if ( ihave .eq. 1 ) then ihave = 2 isgn = -1 else if ( ihave .eq. 6 ) then ihave = 7 jsgn = -1 else iterm = 1 end if c c Plus sign. c else if ( c .eq. '+' ) then if ( ihave .eq. 1 ) then ihave = 2 else if ( ihave .eq. 6 ) then ihave = 7 else iterm = 1 end if c c Decimal point. c else if ( c .eq. '.' ) then if ( ihave .lt. 4 ) then ihave = 4 else if ( 6 .le. ihave .and. ihave .le. 8 ) then ihave = 9 else iterm = 1 end if c c Scientific notation exponent marker. c else if ( ch_eqi ( c, 'E' ) .or. ch_eqi ( c, 'D' ) ) then if ( ihave .lt. 6 ) then ihave = 6 else iterm = 1 end if c c Digit. c else if ( ihave .lt. 11 .and. lle ( '0', c ) & .and. lle ( c, '9' ) ) then if ( ihave .le. 2 ) then ihave = 3 else if ( ihave .eq. 4 ) then ihave = 5 else if ( ihave .eq. 6 .or. ihave .eq. 7 ) then ihave = 8 else if ( ihave .eq. 9 ) then ihave = 10 end if call ch_to_digit ( c, ndig ) if ( ihave .eq. 3 ) then rtop = 10.0D+00 * rtop + dble ( ndig ) else if ( ihave .eq. 5 ) then rtop = 10.0D+00 * rtop + dble ( ndig ) rbot = 10.0D+00 * rbot else if ( ihave .eq. 8 ) then jtop = 10 * jtop + ndig else if ( ihave .eq. 10 ) then jtop = 10 * jtop + ndig jbot = 10 * jbot end if c c Anything else is regarded as a terminator. c else iterm = 1 end if c c If we haven't seen a terminator, and we haven't examined the c entire string, go get the next character. c if ( iterm .eq. 1 ) then go to 20 end if go to 10 20 continue c c If we haven't seen a terminator, and we have examined the c entire string, then we're done, and LENGTH is equal to NCHAR. c if ( iterm .ne. 1 .and. length+1 .eq. nchar ) then length = nchar end if c c Number seems to have terminated. Have we got a legal number? c Not if we terminated in states 1, 2, 6 or 7. c if ( ihave .eq. 1 .or. ihave .eq. 2 .or. & ihave .eq. 6 .or. ihave .eq. 7 ) then ierror = ihave write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'S_TO_R8 - Serious error!' write ( *, '(a)' ) ' Illegal or nonnumeric input:' write ( *, '(a,a)' ) ' ', s return end if c c Number seems OK. Form it. c if ( jtop .eq. 0 ) then rexp = 1.0D+00 else if ( jbot .eq. 1 ) then rexp = 10.0D+00 ** ( jsgn * jtop ) else rexp = 10.0D+00 ** ( dble ( jsgn * jtop ) / dble ( jbot ) ) end if end if dval = dble ( isgn ) * rexp * rtop / rbot return end subroutine s_to_r8vec ( s, n, rvec, ierror ) c*********************************************************************72 c cc S_TO_R8VEC reads an R8VEC from a string. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string to be read. c c Input, integer N, the number of values expected. c c Output, double precision RVEC(N), the values read from the string. c c Output, integer IERROR, error flag. c 0, no errors occurred. c -K, could not read data for entries -K through N. c implicit none integer n integer i integer ierror integer ilo integer lchar double precision rvec(n) character * ( * ) s i = 0 ierror = 0 ilo = 1 10 continue if ( i .lt. n ) then i = i + 1 call s_to_r8 ( s(ilo:), rvec(i), ierror, lchar ) if ( ierror .ne. 0 ) then ierror = -i go to 20 end if ilo = ilo + lchar go to 10 end if 20 continue return end subroutine s_word_count ( s, nword ) c*********************************************************************72 c cc S_WORD_COUNT counts the number of "words" in a string. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 28 April 2008 c c Author: c c John Burkardt c c Parameters: c c Input, character * ( * ) S, the string to be examined. c c Output, integer NWORD, the number of "words" in the string. c Words are presumed to be separated by one or more blanks. c implicit none logical blank integer i integer lens integer nword character * ( * ) s nword = 0 lens = len ( s ) if ( lens .le. 0 ) then return end if blank = .true. do i = 1, lens if ( s(i:i) .eq. ' ' ) then blank = .true. else if ( blank ) then nword = nword + 1 blank = .false. end if end do return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end