function i4_choose ( n, k ) c*********************************************************************72 c cc I4_CHOOSE computes the binomial coefficient C(N,K). c c Discussion: c c The value is calculated in such a way as to avoid overflow and c roundoff. The calculation is done in integer arithmetic. c c The formula used is: c c C(N,K) = N! / ( K! * (N-K)! ) c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 02 June 2007 c c Author: c c John Burkardt c c Reference: c c ML Wolfson, HV Wright, c Algorithm 160: c Combinatorial of M Things Taken N at a Time, c Communications of the ACM, c Volume 6, Number 4, April 1963, page 161. c c Parameters: c c Input, integer N, K, are the values of N and K. c c Output, integer I4_CHOOSE, the number of combinations of N c things taken K at a time. c implicit none integer i integer i4_choose integer k integer mn integer mx integer n integer value mn = min ( k, n - k ) if ( mn .lt. 0 ) then value = 0 else if ( mn .eq. 0 ) then value = 1 else mx = max ( k, n - k ) value = mx + 1 do i = 2, mn value = ( value * ( mx + i ) ) / i end do end if i4_choose = value return end function i4_fall ( x, n ) c*********************************************************************72 c cc I4_FALL computes the falling factorial function [X]_N. c c Discussion: c c Note that the number of "injections" or 1-to-1 mappings from c a set of N elements to a set of M elements is [M]_N. c c The number of permutations of N objects out of M is [M]_N. c c Moreover, the Stirling numbers of the first kind can be used c to convert a falling factorial into a polynomial, as follows: c c [X]_N = S^0_N + S^1_N * X + S^2_N * X^2 + ... + S^N_N X^N. c c The formula used is: c c [X]_N = X * ( X - 1 ) * ( X - 2 ) * ... * ( X - N + 1 ). c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 21 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer X, the argument of the falling factorial function. c c Input, integer N, the order of the falling factorial function. c If N = 0, FALL = 1, if N = 1, FALL = X. Note that if N is c negative, a "rising" factorial will be computed. c c Output, integer I4_FALL, the value of the falling c factorial function. c implicit none integer arg integer i integer i4_fall integer n integer value integer x value = 1 arg = x if ( 0 .lt. n ) then do i = 1, n value = value * arg arg = arg - 1 end do else if ( n .lt. 0 ) then do i = -1, n, -1 value = value * arg arg = arg + 1 end do end if i4_fall = value return end subroutine i4vec_concatenate ( n1, a, n2, b, c ) c*********************************************************************72 c cc I4VEC_CONCATENATE concatenates two I4VEC's. c c Discussion: c c An I4VEC is a vector of I4 values. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer N1, the number of entries in the first vector. c c Input, integer A(N1), the first vector. c c Input, integer N2, the number of entries in the second vector. c c Input, integer B(N2), the second vector. c c Output, integer C(N1+N2), the concatenation of A and B. c implicit none integer n1 integer n2 integer a(n1) integer b(n2) integer c(n1+n2) integer i do i = 1, n1 c(i) = a(i) end do do i = 1, n2 c(n1+i) = b(i) end do return end subroutine i4vec_permute ( n, p, a ) c*********************************************************************72 c cc I4VEC_PERMUTE permutes an I4VEC in place. c c Discussion: c c An I4VEC is a vector of I4's. c c This routine permutes an array of integer "objects", but the same c logic can be used to permute an array of objects of any arithmetic c type, or an array of objects of any complexity. The only temporary c storage required is enough to store a single object. The number c of data movements made is N + the number of cycles of order 2 or more, c which is never more than N + N/2. c c Example: c c Input: c c N = 5 c P = ( 2, 4, 5, 1, 3 ) c A = ( 1, 2, 3, 4, 5 ) c c Output: c c A = ( 2, 4, 5, 1, 3 ). c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 18 July 2010 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of objects. c c Input, integer P(N), the permutation. P(I) = J means c that the I-th element of the output array should be the J-th c element of the input array. c c Input/output, integer A(N), the array to be permuted. c implicit none integer n integer a(n) integer a_temp integer i integer ierror integer iget integer iput integer istart integer p(n) call perm_check1 ( n, p ) c c Search for the next element of the permutation that has not been used. c do istart = 1, n if ( p(istart) .lt. 0 ) then go to 20 else if ( p(istart) .eq. istart ) then p(istart) = - p(istart) go to 20 else a_temp = a(istart) iget = istart c c Copy the new value into the vacated entry. c 10 continue iput = iget iget = p(iget) p(iput) = - p(iput) if ( iget .lt. 1 .or. n .lt. iget ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'I4VEC_PERMUTE - Fatal error!' write ( *, '(a)' ) ' An index is out of range.' write ( *, '(a,i8,a,i8)' ) ' P(', iput, ') = ', iget stop 1 end if if ( iget .eq. istart ) then a(iput) = a_temp go to 20 end if a(iput) = a(iget) go to 10 end if 20 continue end do c c Restore the signs of the entries. c do i = 1, n p(i) = - p(i) end do return end subroutine i4vec_sort_heap_index_a ( n, a, indx ) c*********************************************************************72 c cc I4VEC_SORT_HEAP_INDEX_A does an indexed heap ascending sort of an I4VEC. c c Discussion: c c An I4VEC is a vector of I4's. c c The sorting is not actually carried out. Rather an index array is c created which defines the sorting. This array may be used to sort c or index the array, or to sort or index related arrays keyed on the c original array. c c Once the index array is computed, the sorting can be carried out c "implicitly: c c A(INDX(1:N)) is sorted, c c or explicitly, by the call c c call i4vec_permute ( n, indx, a ) c c after which A(1:N) is sorted. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 05 July 2009 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of entries in the array. c c Input, integer A(N), an array to be index-sorted. c c Output, integer INDX(N), the sort index. The c I-th element of the sorted array is A(INDX(I)). c implicit none integer n integer a(n) integer aval integer i integer indx(n) integer indxt integer ir integer j integer l if ( n .lt. 1 ) then return end if do i = 1, n indx(i) = i end do if ( n .eq. 1 ) then return end if l = n / 2 + 1 ir = n 10 continue if ( 1 .lt. l ) then l = l - 1 indxt = indx(l) aval = a(indxt) else indxt = indx(ir) aval = a(indxt) indx(ir) = indx(1) ir = ir - 1 if ( ir .eq. 1 ) then indx(1) = indxt go to 30 end if end if i = l j = l + l 20 continue if ( j .le. ir ) then if ( j .lt. ir ) then if ( a(indx(j)) .lt. a(indx(j+1)) ) then j = j + 1 end if end if if ( aval .lt. a(indx(j)) ) then indx(i) = indx(j) i = j j = j + j else j = ir + 1 end if go to 20 end if indx(i) = indxt go to 10 30 continue return end function i4vec_sum ( n, a ) c*********************************************************************72 c cc I4VEC_SUM returns the sum of the entries of an I4VEC. c c Discussion: c c An I4VEC is a vector of I4's. c c In FORTRAN90, this facility is offered by the built in c SUM function: c c I4VEC_SUM ( N, A ) = SUM ( A(1:N) ) c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 03 January 2007 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of entries in the array. c c Input, integer A(N), the array. c c Output, integer I4VEC_SUM, the sum of the entries. c implicit none integer n integer a(n) integer i integer i4vec_sum i4vec_sum = 0 do i = 1, n i4vec_sum = i4vec_sum + a(i) end do return end subroutine mono_next_grlex ( m, x ) c*********************************************************************72 c cc MONO_NEXT_GRLEX returns the next monomial in grlex order. c c Discussion: c c Example: c c M = 3 c c # X(1) X(2) X(3) Degree c +------------------------ c 1 | 0 0 0 0 c | c 2 | 0 0 1 1 c 3 | 0 1 0 1 c 4 | 1 0 0 1 c | c 5 | 0 0 2 2 c 6 | 0 1 1 2 c 7 | 0 2 0 2 c 8 | 1 0 1 2 c 9 | 1 1 0 2 c 10 | 2 0 0 2 c | c 11 | 0 0 3 3 c 12 | 0 1 2 3 c 13 | 0 2 1 3 c 14 | 0 3 0 3 c 15 | 1 0 2 3 c 16 | 1 1 1 3 c 17 | 1 2 0 3 c 18 | 2 0 1 3 c 19 | 2 1 0 3 c 20 | 3 0 0 3 c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 10 September 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input/output, integer X(M), the current monomial. c The first element is X = [ 0, 0, ..., 0, 0 ]. c implicit none integer m integer i integer i4vec_sum integer im1 integer j integer t integer x(m) c c Ensure that 1 <= M. c if ( m .lt. 1 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'COMP_NEXT_GRLEX - Fatal error!' write ( *, '(a)' ) ' M .lt. 1' stop 1 end if c c Ensure that 0 <= X(I). c do i = 1, m if ( x(i) .lt. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'COMP_NEXT_GRLEX - Fatal error!' write ( *, '(a)' ) ' X(I) .lt. 0' stop 1 end if end do c c Find I, the index of the rightmost nonzero entry of X. c i = 0 do j = m, 1, -1 if ( 0 .lt. x(j) ) then i = j go to 10 end if end do 10 continue c c set T = X(I) c set X(I) to zero, c increase X(I-1) by 1, c increment X(M) by T-1. c if ( i .eq. 0 ) then x(m) = 1 return else if ( i .eq. 1 ) then t = x(1) + 1 im1 = m else if ( 1 .lt. i ) then t = x(i) im1 = i - 1 end if x(i) = 0 x(im1) = x(im1) + 1 x(m) = x(m) + t - 1 return end subroutine mono_rank_grlex ( m, x, rank ) c*********************************************************************72 c cc MONO_RANK_GRLEX computes the graded lexicographic rank of a monomial. c c Discussion: c c The graded lexicographic ordering is used, over all monomials of c dimension D, with degree NM = 0, then 1, then 2, ... c c For example, if M = 3, the ranking begins: c c Rank Sum 1 2 3 c ---- --- -- -- -- c 1 0 0 0 0 c c 2 1 0 0 1 c 3 1 0 1 0 c 4 1 1 0 1 c c 5 2 0 0 2 c 6 2 0 1 1 c 7 2 0 2 0 c 8 2 1 0 1 c 9 2 1 1 0 c 10 2 2 0 0 c c 11 3 0 0 3 c 12 3 0 1 2 c 13 3 0 2 1 c 14 3 0 3 0 c 15 3 1 0 2 c 16 3 1 1 1 c 17 3 1 2 0 c 18 3 2 0 1 c 19 3 2 1 0 c 20 3 3 0 0 c c 21 4 0 0 4 c .. .. .. .. .. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 10 September 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c 1 <= M. c c Input, integer X(M), the composition. c For each 1 <= I <= M, we have 0 <= X(I). c c Output, integer RANK, the rank of the composition. c implicit none integer m integer i integer i4_choose integer i4vec_sum integer j integer ks integer n integer nm integer ns integer rank integer tim1 integer x(m) integer xs(m-1) c c Ensure that 1 <= M. c if ( m .lt. 1 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'MONO_RANK_GRLEX - Fatal error!' write ( *, '(a)' ) ' M .lt. 1' stop 1 end if c c Ensure that 0 <= X(I). c do i = 1, m if ( x(i) .lt. 0 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'MONO_RANK_GRLEX - Fatal error!' write ( *, '(a)' ) ' X(I) .lt. 0' stop 1 end if end do c c NM = sum ( X ) c nm = i4vec_sum ( m, x ) c c Convert to KSUBSET format. c ns = nm + m - 1 ks = m - 1 xs(1) = x(1) + 1 do i = 2, ks xs(i) = xs(i-1) + x(i) + 1 end do c c Compute the rank. c rank = 1 do i = 1, ks if ( i == 1 ) then tim1 = 0 else tim1 = xs(i-1) end if if ( tim1 + 1 .le. xs(i) - 1 ) then do j = tim1 + 1, xs(i) - 1 rank = rank + i4_choose ( ns - j, ks - i ) end do end if end do do n = 0, nm - 1 rank = rank + i4_choose ( n + m - 1, n ) end do return end subroutine mono_total_next_grlex ( m, n, x ) c*********************************************************************72 c cc MONO_TOTAL_NEXT_GRLEX: grlex next monomial with total degree equal to N. c c Discussion: c c We consider all monomials in a M dimensional space, with total degree N. c c For example: c c M = 3 c N = 3 c c # X(1) X(2) X(3) Degree c +------------------------ c 1 | 0 0 3 3 c 2 | 0 1 2 3 c 3 | 0 2 1 3 c 4 | 0 3 0 3 c 5 | 1 0 2 3 c 6 | 1 1 1 3 c 7 | 1 2 0 3 c 8 | 2 0 1 3 c 9 | 2 1 0 3 c 10 | 3 0 0 3 c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 08 December 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer N, the degree. c 0 <= N. c c Input/output, integer X(M), the current monomial. c To start the sequence, set X = [ 0, 0, ..., 0, N ]. c The last value in the sequence is X = [ N, 0, ..., 0, 0 ]. c implicit none integer m integer i integer i4vec_sum integer im1 integer j integer n integer t integer x(m) if ( n .lt. 0 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'MONO_TOTAL_NEXT_GRLEX - Fatal error!' write ( *, '(a)' ) ' N .lt. 0.' stop 1 end if if ( i4vec_sum ( m, x ) .ne. n ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'MONO_TOTAL_NEXT_GRLEX - Fatal error!' write ( *, '(a)' ) ' Input X does not sum to N.' stop 1 end if if ( n .eq. 0 ) then return end if if ( x(1) .eq. n ) then x(1) = 0 x(m) = n else call mono_next_grlex ( m, x ) end if return end subroutine mono_unrank_grlex ( m, rank, x ) c*********************************************************************72 c cc MONO_UNRANK_GRLEX computes the monomial of given grlex rank. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 14 January 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c 1 <= D. c c Input, integer RANK, the rank of the monomial. c 1 <= RANK. c c Output, integer X(M), the composition of the given rank. c For each I, 0 <= X(I) <= NM, and c sum ( 1 <= I <= M ) X(I) = NM. c implicit none integer m integer i integer i4_choose integer j integer ks integer nksub integer nm integer ns integer r integer rank integer rank1 integer rank2 integer x(m) integer xs(m-1) c c Ensure that 1 <= M. c if ( m .lt. 1 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'MONO_UNRANK_GRLEX - Fatal error!' write ( *, '(a)' ) ' M .lt. 1' stop 1 end if c c Ensure that 1 <= RANK. c if ( rank .lt. 1 ) then write ( *, '(a)' ) '' write ( *, '(a)' ) 'MONO_UNRANK_GRLEX - Fatal error!' write ( *, '(a)' ) ' RANK .lt. 1' stop 1 end if c c Special case M == 1. c if ( m .eq. 1 ) then x(1) = rank - 1 return end if c c Determine the appropriate value of NM. c Do this by adding up the number of compositions of sum 0, 1, 2, c ..., without exceeding RANK. Moreover, RANK - this sum essentially c gives you the rank of the composition within the set of compositions c of sum NM. And that's the number you need in order to do the c unranking. c rank1 = 1 nm = -1 10 continue nm = nm + 1 r = i4_choose ( nm + m - 1, nm ) if ( rank .lt. rank1 + r ) then go to 20 end if rank1 = rank1 + r go to 10 20 continue rank2 = rank - rank1 c c Convert to KSUBSET format. c Apology: an unranking algorithm was available for KSUBSETS, c but not immediately for compositions. One day we will come back c and simplify all this. c ks = m - 1 ns = nm + m - 1 nksub = i4_choose ( ns, ks ) j = 1 do i = 1, ks r = i4_choose ( ns - j, ks - i ) 30 continue if ( r <= rank2 .and. 0 .lt. r ) then rank2 = rank2 - r j = j + 1 r = i4_choose ( ns - j, ks - i ) go to 30 end if xs(i) = j j = j + 1 end do c c Convert from KSUBSET format to COMP format. c x(1) = xs(1) - 1 do i = 2, m - 1 x(i) = xs(i) - xs(i-1) - 1 end do x(m) = ns - xs(ks) return end function mono_upto_enum ( m, n ) c*********************************************************************72 c cc MONO_UPTO_ENUM enumerates monomials in M dimensions of degree up to N. c c Discussion: c c For M = 2, we have the following values: c c N VALUE c c 0 1 c 1 3 c 2 6 c 3 10 c 4 15 c 5 21 c c In particular, VALUE(2,3) = 10 because we have the 10 monomials: c c 1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 18 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer N, the maximum degree. c c Output, integer MONO_UPTO_ENUM, the number of monomials in c M variables, of total degree N or less. c implicit none integer m integer i4_choose integer mono_upto_enum integer n integer value value = i4_choose ( n + m, n ) mono_upto_enum = value return end subroutine mono_value ( m, n, f, x, v ) c*********************************************************************72 c cc MONO_VALUE evaluates a monomial. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 10 December 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer N, the number of evaluation points. c c Input, integer F(M), the exponents of the monomial. c c Input, double precision X(M,N), the coordinates of the evaluation points. c c Output, double precision V(N), the value of the monomial at X. c implicit none integer m integer n integer f(m) integer i integer j double precision v(n) double precision x(m,n) do j = 1, n v(j) = 1.0D+00 do i = 1, m v(j) = v(j) * x(i,j) ** f(i) end do end do return end subroutine perm_check0 ( n, p ) c*********************************************************************72 c cc PERM_CHECK0 checks a 0-based permutation. c c Discussion: c c The routine verifies that each of the integers from 0 to c to N-1 occurs among the N entries of the permutation. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 24 October 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of entries. c c Input, integer P(N), the array to check. c implicit none integer n integer ierror integer location integer p(n) integer value do value = 0, n - 1 ierror = 1 do location = 1, n if ( p(location) .eq. value ) then ierror = 0 go to 10 end if end do 10 continue if ( ierror .ne. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PERM_CHECK0 - Fatal error!' write ( *, '(a,i4)' ) ' Permutation is missing value ', value stop 1 end if end do return end subroutine perm_check1 ( n, p ) c*********************************************************************72 c cc PERM_CHECK1 checks a 1-based permutation. c c Discussion: c c The routine verifies that each of the integers from 1 to c to N occurs among the N entries of the permutation. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 24 October 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of entries. c c Input, integer P(N), the array to check. c implicit none integer n integer ierror integer location integer p(n) integer value do value = 1, n ierror = 1 do location = 1, n if ( p(location) .eq. value ) then ierror = 0 go to 10 end if end do 10 continue if ( ierror .ne. 0 ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'PERM_CHECK1 - Fatal error!' write ( *, '(a,i4)' ) ' Permutation is missing value ', value stop 1 end if end do return end subroutine polynomial_add ( o1, c1, e1, o2, c2, e2, o, c, e ) c*********************************************************************72 c cc POLYNOMIAL_ADD adds two polynomials. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer O1, the "order" of polynomial 1. c c Input, double precision C1(O1), the coefficients of polynomial 1. c c Input, integer E1(O1), the indices of the exponents of c polynomial 1. c c Input, integer O2, the "order" of polynomial 2. c c Input, double precision C2(O2), the coefficients of polynomial 2. c c Input, integer E2(O2), the indices of the exponents of c polynomial 2. c c Output, integer O, the "order" of the polynomial sum. c c Output, double precision C(O), the coefficients of the polynomial sum. c c Output, integer E(O), the indices of the exponents of c the polynomial sum. c implicit none integer o1 integer o2 double precision c(o1+o2) double precision c1(o1) double precision c2(o2) integer e(o1+o2) integer e1(o1) integer e2(o2) integer o o = o1 + o2 call r8vec_concatenate ( o1, c1, o2, c2, c ) call i4vec_concatenate ( o1, e1, o2, e2, e ) call polynomial_sort ( o, c, e ) call polynomial_compress ( o, c, e, o, c, e ) return end subroutine polynomial_axpy ( s, o1, c1, e1, o2, c2, e2, o, c, e ) c*********************************************************************72 c cc POLYNOMIAL_AXPY adds a multiple of one polynomial to another. c c Discussion: c c P(X) = P2(X) + S * P1(X) c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 21 January 2013 c c Author: c c John Burkardt c c Parameters: c c Input, double precision S, the multiplier for the first polynomial. c c Input, integer O1, the "order" of polynomial 1. c c Input, double precision C1(O1), the coefficients of polynomial 1. c c Input, integer E1(O1), the indices of the exponents of c polynomial 1. c c Input, integer O2, the "order" of polynomial 2. c c Input, double precision C2(O2), the coefficients of polynomial 2. c c Input, integer E2(O2), the indices of the exponents of c polynomial 2. c c Output, integer O, the "order" of the polynomial sum. c c Output, double precision C(O), the coefficients of the polynomial sum. c c Output, integer E(O), the indices of the exponents of c the polynomial sum. c implicit none integer o1 integer o2 double precision c(*) double precision c1(o1) double precision c2(o2) double precision c3(o1+o2) integer e(*) integer e1(o1) integer e2(o2) integer e3(o1+o2) integer i integer o integer o3 double precision s double precision sc1(o1) o3 = o1 + o2 do i = 1, o1 sc1(i) = s * c1(i) end do call r8vec_concatenate ( o1, sc1, o2, c2, c3 ) call i4vec_concatenate ( o1, e1, o2, e2, e3 ) call polynomial_sort ( o3, c3, e3 ) call polynomial_compress ( o3, c3, e3, o, c, e ) return end subroutine polynomial_compress ( o1, c1, e1, o2, c2, e2 ) c*********************************************************************72 c cc POLYNOMIAL_COMPRESS compresses a polynomial. c c Discussion: c c The function polynomial_sort() must be called first, or else c the E1 vector should be in ascending sorted order. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 27 October 2014 c c Author: c c John Burkardt c c Parameters: c c Input, integer O1, the "order" of the polynomial. c c Input, double precision C1(O1), the coefficients of the polynomial. c c Input, integer E1(O1), the indices of the exponents of c the polynomial. c c Output, integer O2, the "order" of the polynomial. c c Output, double precision C2(O2), the coefficients of the polynomial. c c Output, integer E2(O2), the indices of the exponents of c the polynomial. c implicit none integer o1 integer o2 double precision c1(o1) double precision c2(o2) integer e1(o1) integer e2(o2) integer get integer put double precision r8_epsilon_sqrt parameter ( r8_epsilon_sqrt = 0.1490116119384766D-07 ) c c Add coefficients associated with the same exponent. c get = 0 put = 0 10 continue if ( get .lt. o1 ) then get = get + 1 if ( 0 .eq. put ) then put = put + 1 c2(put) = c1(get) e2(put) = e1(get) else if ( e2(put) .eq. e1(get) ) then c2(put) = c2(put) + c1(get) else put = put + 1 c2(put) = c1(get) e2(put) = e1(get) end if end if go to 10 end if o2 = put c c Clear out zeros and tiny coefficients. c get = 0 put = 0 20 continue if ( get .lt. o2 ) then get = get + 1 if ( r8_epsilon_sqrt < abs ( c2(get) ) ) then put = put + 1 c2(put) = c2(get) e2(put) = e2(get) end if go to 20 end if o2 = put return end subroutine polynomial_dif ( m, o1, c1, e1, dif, o2, c2, e2 ) c*********************************************************************72 c cc POLYNOMIAL_DIF differentiates a polynomial. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 21 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer O1, the "order" of polynomial 1. c c Input, double precision C1(O1), the coefficients of polynomial 1. c c Input, integer E1(O1), the indices of the exponents of c polynomial 1. c c Input, integer DIF(M), indicates the number of c differentiations in each component. c c Output, integer O2, the "order" of the polynomial derivative. c c Output, double precision C2(O2), the coefficients of the polynomial c derivative. c c Output, integer E2(O2), the indices of the exponents of the c polynomial derivative. c implicit none integer m integer o1 double precision c1(o1) double precision c2(o1) integer dif(m) integer e1(o1) integer e2(o1) integer f1(m) integer i integer i4_fall integer j integer o2 o2 = o1 do j = 1, o1 c2(j) = c1(j) end do do j = 1, o1 call mono_unrank_grlex ( m, e1(j), f1 ) do i = 1, m c2(j) = c2(j) * i4_fall ( f1(i), dif(i) ) f1(i) = max ( f1(i) - dif(i), 0 ) end do call mono_rank_grlex ( m, f1, e2(j) ) end do o2 = o1 call polynomial_sort ( o2, c2, e2 ) call polynomial_compress ( o2, c2, e2, o2, c2, e2 ) return end subroutine polynomial_mul ( m, o1, c1, e1, o2, c2, e2, o, c, e ) c*********************************************************************72 c cc POLYNOMIAL_MUL multiplies two polynomials. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer O1, the "order" of polynomial 1. c c Input, double precision C1(O1), the coefficients of polynomial 1. c c Input, integer E1(O1), the indices of the exponents of c polynomial 1. c c Input, integer O2, the "order" of polynomial 2. c c Input, double precision C2(O2), the coefficients of polynomial 2. c c Input, integer E2(O2), the indices of the exponents of c polynomial 2. c c Output, integer O, the "order" of the polynomial product. c c Output, double precision C(O), the coefficients of the polynomial product. c c Output, integer E(O), the indices of the exponents of the c polynomial product. c implicit none integer m integer o1 integer o2 double precision c(o1*o2) double precision c1(o1) double precision c2(o2) integer e(o1*o2) integer e1(o1) integer e2(o2) integer f(m) integer f1(m) integer f2(m) integer i integer j integer k integer o o = 0 do j = 1, o2 do i = 1, o1 o = o + 1 c(o) = c1(i) * c2(j) call mono_unrank_grlex ( m, e1(i), f1 ) call mono_unrank_grlex ( m, e2(j), f2 ) do k = 1, m f(k) = f1(k) + f2(k) end do call mono_rank_grlex ( m, f, e(o) ) end do end do call polynomial_sort ( o, c, e ) call polynomial_compress ( o, c, e, o, c, e ) return end subroutine polynomial_print ( m, o, c, e, title ) c*********************************************************************72 c cc POLYNOMIAL_PRINT prints a polynomial. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer O, the "order" of the polynomial, that is, c simply the number of terms. c c Input, double precision C(O), the coefficients. c c Input, integer E(O), the indices of the exponents. c c Input, character * ( * ) TITLE, a title. c implicit none integer m integer o double precision c(o) integer e(o) integer f(m) integer i integer j character * ( * ) title write ( *, '(a)' ) trim ( title ) if ( o .eq. 0 ) then write ( *, '(a)' ) ' 0.' else do j = 1, o write ( *, '(a)', advance = 'no' ) ' ' if ( c(j) .lt. 0.0D+00 ) then write ( *, '(a)', advance = 'no' ) '- ' else write ( *, '(a)', advance = 'no' ) '+ ' end if write ( *, '(g14.6,a)', advance = 'no' ) & abs ( c(j) ), ' * x^(' call mono_unrank_grlex ( m, e(j), f ) do i = 1, m write ( *, '(i2)', advance = 'no' ) f(i) if ( i .lt. m ) then write ( *, '(a)', advance = 'no' ) ',' else write ( *, '(a)', advance = 'no' ) ')' end if end do if ( j .eq. o ) then write ( *, '(a)', advance = 'no' ) '.' end if write ( *, '(a)' ) '' end do end if return end subroutine polynomial_scale ( s, m, o, c, e ) c*********************************************************************72 c cc POLYNOMIAL_SCALE scales a polynomial. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, double precision S, the scale factor. c c Input, integer M, the spatial dimension. c c Input, integer O, the "order" of the polynomial. c c Input/output, double precision C(O), the coefficients of the polynomial. c c Input, integer E(O), the indices of the exponents of c the polynomial. c implicit none integer o double precision c(o) integer m integer e(o) integer i double precision s do i = 1, o c(i) = c(i) * s end do return end subroutine polynomial_sort ( o, c, e ) c*********************************************************************72 c cc POLYNOMIAL_SORT sorts the information in a polynomial. c c Discussion c c The coefficients C and exponents E are rearranged so that c the elements of E are in ascending order. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer O, the "order" of the polynomial. c c Input/output, double precision C(O), the coefficients of the polynomial. c c Input/output, integer E(O), the indices of the exponents of c the polynomial. c implicit none integer o double precision c(o) integer e(o) integer indx(o) call i4vec_sort_heap_index_a ( o, e, indx ) call i4vec_permute ( o, indx, e ) call r8vec_permute ( o, indx, c ) return end subroutine polynomial_value ( m, o, c, e, n, x, p ) c*********************************************************************72 c cc POLYNOMIAL_VALUE evaluates a polynomial. c c Discussion: c c The polynomial is evaluated term by term, and no attempt is made to c use an approach such as Horner's method to speed up the process. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 10 December 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer M, the spatial dimension. c c Input, integer O, the "order" of the polynomial. c c Input, double precision C(O), the coefficients of the polynomial. c c Input, integer E(O), the indices of the exponents c of the polynomial. c c Input, integer N, the number of evaluation points. c c Input, double precision X(D,NX), the coordinates of the evaluation points. c c Output, double precision P(NX), the value of the polynomial at X. c implicit none integer m integer n integer o double precision c(o) integer e(o) integer f(m) integer j integer k double precision p(n) double precision v(n) double precision x(m,n) do k = 1, n p(k) = 0.0D+00 end do do j = 1, o call mono_unrank_grlex ( m, e(j), f ) call mono_value ( m, n, f, x, v ) do k = 1, n p(k) = p(k) + c(j) * v(k) end do end do return end subroutine r8vec_concatenate ( n1, a, n2, b, c ) c*********************************************************************72 c cc R8VEC_CONCATENATE concatenates two R8VEC's. c c Discussion: c c An R8VEC is a vector of R8 values. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 22 November 2013 c c Author: c c John Burkardt c c Parameters: c c Input, integer N1, the number of entries in the first vector. c c Input, double precision A(N1), the first vector. c c Input, integer N2, the number of entries in the second vector. c c Input, double precision B(N2), the second vector. c c Output, double precision C(N1+N2), the concatenation of A and B. c implicit none integer n1 integer n2 double precision a(n1) double precision b(n2) double precision c(n1+n2) integer i do i = 1, n1 c(i) = a(i) end do do i = 1, n2 c(n1+i) = b(i) end do return end subroutine r8vec_permute ( n, p, a ) c*********************************************************************72 c cc R8VEC_PERMUTE permutes an R8VEC in place. c c Discussion: c c An R8VEC is a vector of R8's. c c This routine permutes an array of real "objects", but the same c logic can be used to permute an array of objects of any arithmetic c type, or an array of objects of any complexity. The only temporary c storage required is enough to store a single object. The number c of data movements made is N + the number of cycles of order 2 or more, c which is never more than N + N/2. c c P(I) = J means that the I-th element of the output array should be c the J-th element of the input array. P must be a legal permutation c of the integers from 1 to N, otherwise the algorithm will c fail catastrophically. c c Example: c c Input: c c N = 5 c P = ( 2, 4, 5, 1, 3 ) c A = ( 1.0, 2.0, 3.0, 4.0, 5.0 ) c c Output: c c A = ( 2.0, 4.0, 5.0, 1.0, 3.0 ). c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 18 July 2010 c c Author: c c John Burkardt c c Parameters: c c Input, integer N, the number of objects. c c Input, integer P(N), the permutation. c c Input/output, double precision A(N), the array to be permuted. c implicit none integer n double precision a(n) double precision a_temp integer ierror integer iget integer iput integer istart integer p(n) call perm_check1 ( n, p ) c c Search for the next element of the permutation that has not been used. c do istart = 1, n if ( p(istart) .lt. 0 ) then go to 20 else if ( p(istart) .eq. istart ) then p(istart) = - p(istart) go to 20 else a_temp = a(istart) iget = istart c c Copy the new value into the vacated entry. c 10 continue iput = iget iget = p(iget) p(iput) = - p(iput) if ( iget .lt. 1 .or. n .lt. iget ) then write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'R8VEC_PERMUTE - Fatal error!' write ( *, '(a)' ) ' An index is out of range.' write ( *, '(a,i8,a,i8)' ) ' P(', iput, ') = ', iget stop 1 end if if ( iget .eq. istart ) then a(iput) = a_temp go to 20 end if a(iput) = a(iget) go to 10 end if 20 continue end do c c Restore the signs of the entries. c p(1:n) = - p(1:n) return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & m, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end