program main c*********************************************************************72 c cc MAIN is the main program for STRING_SIMULATION. c c Discussion: c c This program solves the 1D wave equation of the form: c c Utt = c^2 Uxx c c over the spatial interval (X1,X2) and time interval (T1,T2), c with initial conditions: c c U(T1,X) = U_T1(X), c Ut(T1,X) = UT_T1(X), c c and boundary conditions of Dirichlet type: c c U(T,X1) = U_X1(T), c U(T,X2) = U_X2(T). c c The value C represents the propagation speed of waves. c c The program uses the finite difference method, and marches c forward in time, solving for all the values of U at the next c time step by using the values known at the previous two time steps. c c Central differences may be used to approximate both the time c and space derivatives in the original differential equation. c c Thus, assuming we have available the approximated values of U c at the current and previous times, we may write a discretized c version of the wave equation as follows: c c Uxx(T,X) = ( U(T, X+dX) - 2 U(T,X) + U(T, X-dX) ) / dX^2 c Utt(T,X) = ( U(T+dt,X ) - 2 U(T,X) + U(T-dt,X ) ) / dT^2 c c If we multiply the first term by C^2 and solve for the single c unknown value U(T+dt,X), we have: c c U(T+dT,X) = ( C^2 * dT^2 / dX^2 ) * U(T, X+dX) c + 2 * ( 1 - C^2 * dT^2 / dX^2 ) * U(T, X ) c + ( C^2 * dT^2 / dX^2 ) * U(T, X-dX) c - U(T-dT,X ) c c (Equation to advance from time T to time T+dT, except for FIRST step) c c However, on the very first step, we only have the values of U c for the initial time, but not for the previous time step. c In that case, we use the initial condition information for dUdT c which can be approximated by a central difference that involves c U(T+dT,X) and U(T-dT,X): c c dU/dT(T,X) = ( U(T+dT,X) - U(T-dT,X) ) / ( 2 * dT ) c c and so we can estimate U(T-dT,X) as c c U(T-dT,X) = U(T+dT,X) - 2 * dT * dU/dT(T,X) c c If we replace the "missing" value of U(T-dT,X) by the known values c on the right hand side, we now have U(T+dT,X) on both sides of the c equation, so we have to rearrange to get the formula we use c for just the first time step: c c U(T+dT,X) = 1/2 * ( C^2 * dT^2 / dX^2 ) * U(T, X+dX) c + ( 1 - C^2 * dT^2 / dX^2 ) * U(T, X ) c + 1/2 * ( C^2 * dT^2 / dX^2 ) * U(T, X-dX) c + dT * dU/dT(T, X ) c c (Equation to advance from time T to time T+dT for FIRST step.) c c It should be clear now that the quantity ALPHA = C * DT / DX will affect c the stability of the calculation. If it is greater than 1, then c the middle coefficient 1-C^2 DT^2 / DX^2 is negative, and the c sum of the magnitudes of the three coefficients becomes unbounded. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 25 December 2012 c c Author: c c John Burkardt c c Local Parameters: c c Local, double precision ALPHA, the CFL stability parameter. c c Local, double precision C, the wave speed. c c Local, double precision DT, the time step. c c Local, double precision DX, the spatial step. c c Local, integer M, the number of time steps. c c Local, integer N, the number of spatial intervals. c c Local, double precision T1, T2, the initial and final times. c c Local, double precision U(M+1,N+1), the computed solution. c c Local, double precision X1, X2, the left and right spatial endpoints. c implicit none integer m parameter ( m = 30 ) integer n parameter ( n = 40 ) double precision alpha double precision c integer command_unit integer data_unit double precision dt double precision dx double precision f double precision g integer i integer j double precision k double precision t double precision t1 double precision t2 double precision u(0:m,0:n) double precision x double precision x1 double precision x2 c = 0.25D+00 t1 = 0.0D+00 t2 = 3.0D+00 x1 = 0.0D+00 x2 = 1.0D+00 call timestamp ( ) write ( *, '(a)' ) '' write ( *, '(a)' ) 'STRING_SIMULATION:' write ( *, '(a)' ) ' FORTRAN77 version' write ( *, '(a)' ) & ' Simulate the behavior of a vibrating string.' dx = ( x2 - x1 ) / real ( n, kind = 8 ) dt = ( t2 - t1 ) / real ( m, kind = 8 ) alpha = ( c * dt / dx ) ** 2 write ( *, '(a,g14.6)' ) ' ALPHA = ( C * dT / dX )^2 = ', alpha c c Warn the user if ALPHA will cause an unstable computation. c if ( 1.0D+00 .lt. alpha ) then write ( *, '(a)' ) '' write ( *, '(a)' ) ' Warning!' write ( *, '(a)' ) ' ALPHA is greater than 1.' write ( *, '(a)' ) ' The computation is unstable.' end if c c Time step 0: c Use the initial condition for U. c u(0,0) = 0.0D+00 do j = 1, n - 1 x = dble ( j ) * dx u(0,j) = f ( x ) end do u(0,n) = 0.0D+00 c c Time step 1: c Use the initial condition for dUdT. c u(1,0) = 0.0D+00 do j = 1, n - 1 x = dble ( j ) * dx u(1,j) = & ( alpha / 2.0D+00 ) * u(0,j-1) & + ( 1.0D+00 - alpha ) * u(0,j) & + ( alpha / 2.0D+00 ) * u(0,j+1) & + dt * g ( x ) end do u(1,n) = 0.0D+00 c c Time steps 2 through M: c do i = 2, m u(i,0) = 0.0D+00 do j = 1, n - 1 u(i,j) = & alpha * u(i-1,j-1) & + 2.0D+00 * ( 1.0D+00 - alpha ) * u(i-1,j) & + alpha * u(i-1,j+1) & - u(i-2,j) end do u(i,n) = 0.0D+00 end do c c Write data file. c call get_unit ( data_unit ) open ( unit = data_unit, file = 'string_data.txt', status = 'replace' ) do i = 0, m t = dble ( i ) * dt do j = 0, n x = dble ( j ) * dx write ( data_unit, '(f10.4,2x,f10.4,2x,f10.4))' ) x, t, u(i,j) end do write ( data_unit, '(a)' ) '' end do close ( unit = data_unit ) write ( *, '(a)' ) '' write ( *, '(a)' ) & ' Plot data written to the file "string_data.txt".' c c Write gnuplot command file. c call get_unit ( command_unit ) open ( unit = command_unit, file = 'string_commands.txt' ) write ( command_unit, '(a)' ) 'set term png' write ( command_unit, '(a)' ) 'set output "string.png"' write ( command_unit, '(a)' ) 'set grid' write ( command_unit, '(a)' ) 'set style data lines' write ( command_unit, '(a)' ) 'unset key' write ( command_unit, '(a)' ) 'set xlabel "<---X--->"' write ( command_unit, '(a)' ) 'set ylabel "<---Time--->"' write ( command_unit, '(a,i4,a)' ) & 'splot "string_data.txt" using 1:2:3 with lines' write ( command_unit, '(a)' ) 'quit' close ( unit = command_unit ) write ( *, '(a)' ) & ' Gnuplot command_unit written to the file "string_commands.txt".' c c Terminate. c write ( *, '(a)' ) '' write ( *, '(a)' ) 'STRING_SIMULATION:' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) '' call timestamp ( ) stop end function f ( x ) c*********************************************************************72 c cc F supplies the initial condition. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 01 December 2012 c c Author: c c John Burkardt c c Parameters: c c Input, double precision X, the location. c c Output, double precision F, the value of the solution at time 0 and location X. c implicit none double precision f double precision x if ( 0.25D+00 <= x .and. x <= 0.50D+00 ) then f = ( x - 0.25D+00 ) * ( 0.50D+00 - x ) else f = 0.0D+00 end if return end function g ( x ) c*********************************************************************72 c cc G supplies the initial derivative. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 01 December 2012 c c Author: c c John Burkardt c c Parameters: c c Input, double precision X, the location. c c Output, double precision G, the value of the time derivative of the solution c at time 0 and location X. c implicit none double precision g double precision x g = 0.0D+00 return end subroutine get_unit ( iunit ) c*********************************************************************72 c cc GET_UNIT returns a free FORTRAN unit number. c c Discussion: c c A "free" FORTRAN unit number is a value between 1 and 99 which c is not currently associated with an I/O device. A free FORTRAN unit c number is needed in order to open a file with the OPEN command. c c If IUNIT = 0, then no free FORTRAN unit could be found, although c all 99 units were checked (except for units 5, 6 and 9, which c are commonly reserved for console I/O). c c Otherwise, IUNIT is a value between 1 and 99, representing a c free FORTRAN unit. Note that GET_UNIT assumes that units 5 and 6 c are special, and will never return those values. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 02 September 2013 c c Author: c c John Burkardt c c Parameters: c c Output, integer IUNIT, the free unit number. c implicit none integer i integer iunit logical value iunit = 0 do i = 1, 99 if ( i .ne. 5 .and. i .ne. 6 .and. i .ne. 9 ) then inquire ( unit = i, opened = value, err = 10 ) if ( .not. value ) then iunit = i return end if end if 10 continue end do return end subroutine timestamp ( ) c*********************************************************************72 c cc TIMESTAMP prints out the current YMDHMS date as a timestamp. c c Discussion: c c This FORTRAN77 version is made available for cases where the c FORTRAN90 version cannot be used. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 12 January 2007 c c Author: c c John Burkardt c c Parameters: c c None c implicit none character * ( 8 ) ampm integer d character * ( 8 ) date integer h integer m integer mm character * ( 9 ) month(12) integer n integer s character * ( 10 ) time integer y save month data month / & 'January ', 'February ', 'March ', 'April ', & 'May ', 'June ', 'July ', 'August ', & 'September', 'October ', 'November ', 'December ' / call date_and_time ( date, time ) read ( date, '(i4,i2,i2)' ) y, m, d read ( time, '(i2,i2,i2,1x,i3)' ) h, n, s, mm if ( h .lt. 12 ) then ampm = 'AM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Noon' else ampm = 'PM' end if else h = h - 12 if ( h .lt. 12 ) then ampm = 'PM' else if ( h .eq. 12 ) then if ( n .eq. 0 .and. s .eq. 0 ) then ampm = 'Midnight' else ampm = 'AM' end if end if end if write ( *, & '(i2,1x,a,1x,i4,2x,i2,a1,i2.2,a1,i2.2,a1,i3.3,1x,a)' ) & d, month(m), y, h, ':', n, ':', s, '.', mm, ampm return end