program main c*********************************************************************72 c cc MAIN is the main program for ELLIPSE_MONTE_CARLO_PRB. c c Discussion: c c ELLIPSE_MONTE_CARLO_PRB tests the ELLIPSE_MONTE_CARLO library. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 08 November 2016 c c Author: c c John Burkardt c implicit none call timestamp ( ) write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ELLIPSE_MONTE_CARLO_PRB' write ( *, '(a)' ) ' FORTRAN77 version' write ( *, '(a)' ) ' Test the ELLIPSE_MONTE_CARLO library.' call ellipse_area1_test ( ) call ellipse_area2_test ( ) call test01 ( ) c c Terminate. c write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'ELLIPSE_MONTE_CARLO_PRB' write ( *, '(a)' ) ' Normal end of execution.' write ( *, '(a)' ) ' ' call timestamp ( ) stop end subroutine ellipse_area1_test ( ) c*********************************************************************72 c cc ELLIPSE_AREA1_TEST tests ELLIPSE_AREA1. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 08 November 2016 c c Author: c c John Burkardt c implicit none double precision a(2,2) double precision area double precision ellipse_area1 double precision r write ( *, '(a)' ) '' write ( *, '(a)' ) 'ELLIPSE_AREA1_TEST' write ( *, '(a)' ) ' FORTRAN77 version' write ( *, '(a)' ) & ' ELLIPSE_AREA1 computes the area of an ellipse.' r = 10.0D+00 a(1,1) = 5.0D+00 a(2,1) = 1.0D+00 a(1,2) = 1.0D+00 a(2,2) = 2.0D+00 area = ellipse_area1 ( a, r ) write ( *, '(a)' ) '' write ( *, '(a,g14.6)' ) ' R = ', r call r8mat_print ( 2, 2, a, & ' Matrix A in ellipse definition x*A*x=r^2' ) write ( *, '(a,g14.6)' ) ' Area = ', area c c Terminate. c write ( *, '(a)' ) '' write ( *, '(a)' ) 'ELLIPSE_AREA1_TEST' write ( *, '(a)' ) ' Normal end of execution.' return end subroutine ellipse_area2_test ( ) c*********************************************************************72 c cc ELLIPSE_AREA2_TEST tests ELLIPSE_AREA2. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 08 November 2016 c c Author: c c John Burkardt c implicit none double precision a double precision area double precision b double precision c double precision d double precision ellipse_area2 write ( *, '(a)' ) '' write ( *, '(a)' ) 'ELLIPSE_AREA2_TEST' write ( *, '(a)' ) ' FORTRAN77 version' write ( *, '(a)' ) & ' ELLIPSE_AREA2 computes the area of an ellipse.' a = 5.0D+00 b = 2.0D+00 c = 2.0D+00 d = 10.0D+00 area = ellipse_area2 ( a, b, c, d ) write ( *, '(a)' ) '' write ( *, '(a,g14.6,a,g14.6,a,g14.6,a,g14.6)' ) & ' Ellipse: ', a, ' * x^2 + ', b, & ' * xy + ', c, ' * y^2 = ', d write ( *, '(a,g14.6)' ) ' Area = ', area c c Terminate. c write ( *, '(a)' ) '' write ( *, '(a)' ) 'ELLIPSE_AREA2_TEST' write ( *, '(a)' ) ' Normal end of execution.' return end subroutine test01 ( ) c*********************************************************************72 c cc TEST01 uses ELLIPSE01_SAMPLE with an increasing number of points. c c Licensing: c c This code is distributed under the GNU LGPL license. c c Modified: c c 19 April 2014 c c Author: c c John Burkardt c implicit none integer n_max parameter ( n_max = 65536 ) double precision a(2,2) double precision disk01_area integer e(2) integer e_test(2,7) double precision ellipse_area1 double precision error double precision exact integer j integer n double precision r parameter ( r = 2.0D+00 ) double precision r8vec_sum double precision result(7) integer seed double precision value(n_max) double precision x(2,n_max) save a save e_test data a / & 9.0, 1.0, & 1.0, 4.0 / data e_test / & 0, 0, & 1, 0, & 0, 1, & 2, 0, & 1, 1, & 0, 2, & 3, 0 / write ( *, '(a)' ) ' ' write ( *, '(a)' ) 'TEST01' write ( *, '(a)' ) ' Use ELLIPSE01_SAMPLE to estimate integrals' write ( *, '(a)' ) ' in the ellipse x'' * A * x <= r^2.' seed = 123456789 write ( *, '(a)' ) ' ' write ( *, '(a)' ) & ' N 1 X Y ' // & ' X^2 XY Y^2 ' // & ' X^3' write ( *, '(a)' ) ' ' n = 1 10 continue if ( n .le. 65536 ) then call ellipse_sample ( n, a, r, seed, x ) do j = 1, 7 e(1) = e_test(1,j) e(2) = e_test(2,j) call monomial_value ( 2, n, e, x, value ) result(j) = ellipse_area1 ( a, r ) * r8vec_sum ( n, value ) & / dble ( n ) end do write ( *, '(2x,i8,7(2x,g14.6))' ) n, result(1:7) n = 2 * n go to 10 end if return end