MATLAB Parallel Computing

MATLAB Parallel Computing

» Introduction
John Burkardt (ARC/ICAM) & Gene Cliff (AOE/ICAM) @ Local Parallel Computing
Virginia Tech @ The MD Example
---------- o PRIME_ZNUMBER Example
Introduction to Parallel MATLAB at Virginia Tech o Remote Computing
http://people.sc.fsu.edu/~burkardt/presentations/parallel_matlab_2010
__________ o KNAPSACK Example
o SPMD Parallelism

ARC: Advanced Research Computing
AOQE: Department of Aerospace and Ocean Engineering
ICAM: Interdisciplinary Center for Applied Mathematics

fmincon Example
Codistributed Arrays
A 2D Heat Equation
o Conclusion

WVirginiaTech WVirginiaTech

08 February 2010

INTRO: MATLAB Adds Parallelism INTRO: Local Parallelism

The MathWork.s ha.s.recognized .that parallel computing is MATLAB has developed a Parallel Computing Toolbox which is
necessary for scientific computation. required for all parallel applications.

The underlying MATLAB core and algorithms are being extended The Toolbox allows a user to run a job in parallel on a desktop
to work with parallelism. machine, using up to 8 "workers” (additional copies of MATLAB)

An explicit set of commands has been added to allow the user to to assist the main copy.

request parallel execution or to control distributed memory. If the desktop machine has multiple processors, the workers will

New protocols and servers allow multiple copies of MATLAB to activate them, and the computation should run more quickly.

carry out the user's requests, to transfer data and to communicate. This use of MATLAB is very similar to the shared memory parallel
computing enabled by OpenMP; however, MATLAB requires much

MATLAB's parallelism can be enjoyed by novices and exploited by :
less guidance from the user.

experts.
WVirginiaTech WVirginiaTech

INTRO: Local and Remote MATLAB Workers INTRO: Remote Parallelism

—— Desktop System —

Parallel Computing Toolbox

Local Workers

MATLAB has developed a Distributed Computing Server or DCS.

Assuming the user's code runs properly under the local parallel
model, then it will also run under DCS with no further changes.

With the DCS, the user can start a job on the desktop that gets
assistance from workers on a remote cluster.

Simulink, Blocksets,
and Other Toolboxes
MATLAB

WVirginiaTech WVirginiaTech
Burkardt/CT___MATLAB Paralsl Computing

INTRO: Local and Remote MATLAB Workers INTRO: SPMD for Distributed Data

—— Desktop System — Computer Cluster

Parallel Computing Toolbox MATLAB Distributed Computing Server

Local Workers Workers

IRES
<*

AN

Simulink, Blocksets,
and Other Toolboxes

MATLAB

Burkardt /CIiff MATLAB Parallel Computing

INTRO: BATCH for Remote Jobs INTRO: PMODE: Interactive Parallel Mode

MATLAB also includes a batch command that allows you to write
a script to run a job (parallel or not, remote or local) as a separate
process.

This means you can use your laptop or desktop copy of MATLAB
to set up and submit a script for running a remote job. You can
exit the local copy of MATLAB, turn off your laptop or do other
work, and later check on the remote job status and retrieve your
results.

Many computer clusters that have parallel MATLAB installed
require users to submit their jobs only in batch mode. Currently,
Virginia Tech permits interactive access to the cluster as well, but
may soon also go to batch-only access.

WVirginiaTech

INTRO: ITHACA MATLAB Parallel Computing

Virginia Tech has installed the ITHACA cluster of 84 nodes. Each
node is a separate computer with 2 quadcore processors.

This means each node can run 8 MATLAB workers.

At Virginia Tech, 8 nodes with 8 cores are dedicated to the parallel
MATLAB cluster, so theoretically you can run a job with 64
workers.

You should not routinely ask for all 64 workers. Currently, one
node is down, so there are only 56. Moreover, if one job ties up all
the workers, no one else can run. So we encourage the use of 24 or
32 workers at a time instead.

WVirginiaTech

s=g=lalech

If a cluster is available, the shared memory model makes less sense
than a distributed memory model.

In such a computation, very large arrays can be defined and
manipulated. Each computer does not have a copy of the same
array, but instead a distinct portion of the array. In this way, the
user has access to a memory space equal to the sum of the
memories of all the participating computers.

MATLAB provides the spmd command (“Single Program, Multiple
Data") to allow a user to declare such distributed arrays, and
provides a range of operators that are appropriate for carrying out
computations on such arrays.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

A typical parallel MATLAB user working interactively still sees the
familiar MATLAB command window, which we may think of as
being associated with the “master” copy of MATLAB.

However, MATLAB also allows a user to open a parallel command
window. This is known as pmode.

Commands given in pmode are executed simultaneously on all the
workers. Within pmode, the user has access to distributed arrays,
parallel functions, and message-passing functions that are not
visible or accessible in the normal command window.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

o Introduction

Local Parallel Computing
The MD Example

PRIME_NUMBER Example

Remote Computing

KNAPSACK Example

SPMD Parallelism

fmincon Example

Codistributed Arrays

A 2D Heat Equation

@ Conclusion

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

LOCAL: Local Parallel Computing LOCAL: What Do You Need?

If your desktop or laptop computer is fairly recent, it may have
more than one processor; the processors may have multiple cores.
@ Your machine must have multiple cores:

e On a PC: Go to Start, choose Settings, then Control Panel,
. . . then System.
multithreading to involve more Cores')' e On a Mac: From the Apple Menu, choose About this Mac,
then More Info....

Executing MATLAB in the regular way only engages one core.
(although some MATLAB linear algebra routines already use

The Parallel Computing Toolbox runs up to 8 cooperating copies

of MATLAB, using the extra cores on your machine. @ Your MATLAB must be version 2008a or later:
o To check MATLAB's version, go to the HELP menu, and
You'll need: choose About Matlab.
@ the right version of MATLAB,; © Your MATLAB needs the Parallel Computing Toolbox:
o the Parallel Computing Toolbox; o To list all your toolboxes, type the MATLAB command ver.
o a MATLAB M-file that uses new parallel keywords.
WVirginiaTech WVirginiaTech

LOCAL: Running A Program LOCAL: Running A Program Interactively

Suppose you have a MATLAB M-file modified to compute in
parallel (we'll explain that later!). To run an M file called, say, md_parallel.m in parallel on your

machine, type:
To do local parallel programming, start MATLAB the regular way.
matlabpool open local 4
md_parallel
matlabpool close

This copy of MATLAB will be called the client copy; the extra
copies created later are known as workers or sometimes as /abs.
Running in parallel requires three steps: . .) . .

ginp 9 P The word local is choosing the local configuration, that is, the
Q request a number of (local) workers; cores assigned to be workers will be on the local machine.
@ issue the normal command to run the program. The client

MATLAB will call on the workers for help as needed: The value "4" is the number of workers you are asking for. It can

be up to 8 on a local machine. It does not have to match the
number of cores you have.

WVirginiaTech WVirginiaTech

O release the workers.

LOCAL: Running A Program LOCAL: Timing A Program

If all is well, the program runs the same as before... but faster. To time a program, you can use tic and toc:

Output will still appear in the command window in the same way, matlabpool open local 4
and the data will all be available to you.
What has happened is simply that some of the computations were téc 1101
carried out by other cores in a way that was hidden from you. r: -parazie
oc
The program may seem like it ran faster, but it's important to
measure the time exactly. matlabpool close

tic starts the clock, toc stops the clock and prints the time.

WVirginiaTech WVirginiaTech

LOCAL: Timing A Program LOCAL: Parallel Starts at 2 Labs

To measure the speedup of a program, you can try different To run a parallel job with 0 labs means to run it sequentially.
numbers of workers:

To run a parallel job with 1 lab means the client sends all the data

for labs = 0 : 4 to the single lab and waits while the 1 lab does the job.

if (0 < labs) matlabpool (’open’, ’local’, labs) Only when we get to 2 labs do we have any hope of a speedup.
tic Since it takes some time to set up the parallel execution and
md_parallel transfer data, we still won't see a speedup if the job is too small.
toc
if (0 < labs) matlabpool (’close’) Since the machines in .thIS class’room only have 2 processors, this
end means our demonstrations won't get much speedup today!
])) (For local parallel computing, it is possible to run 1 client and 2
Because labs is a variable, we must use the fu.nct|on form of workers on 2 cores. For remote computing, we would need 3
matlabpool() with parentheses and quoted strings. o cores, with one dedicated to the client.) o
WVirginiaTech WVirginiaTech

MATLAB Parallel Computing MD: The Molecular Dynamics Example

@ Introduction

o Local Parallel Computing The MD program runs a simple molecular dynamics simulation.

o The M D Example The |prtot()jlem size N counts the number of molecules being
simulated.

o PRIME_NUMBER Example

Remote Computing

KNAPSACK Example
SPMD Parallelism There are many for loops in the program, but it is a mistake to try
to parallelize everything!

The program takes a long time to run, and it would be very useful
to speed it up.

o fmincon Example
o Codistributed Arrays MATLAB has a profile command that can report where the CPU
o A 2D Heat Equation time was spent - which is where we should try to parallelize.
o Conclusion
WVirginiaTech WVirginiaTech

MD: Run MATLAB's Profiler MD: Profile Results

Function Name Calls Total Time Self Time* Total Time Plot

>> profile on (dark band = self time)
>> md md 1 4158475 0096s
>> profile viewer compute 11 4154595 410703 s EE——
repmat 11000 4.755s 4755 |
Step Potential Kinetic (P+K-E0) /EO timestamp 202675 0.108s
Energy Energy Energy Error datestr 2 0.130s 00408
timefun/private/formatdate = 2 0.084 s 0084 s
1 498108.113974 0.000000 0.000000e+00 i o loomss Jooiss
2 498108.113974 0.000009 1.794265e-11 datevee 2 [ooms |00T7s
now. 2 0.013s 0001s
9 498108.111972 0.002011 1.794078e-11 — ¢ omzs ootz
10 498108.111400 0.002583 1.793996e-11 feicasdaclom 7[00 [0
initialize 1 0005 0.005 s
etime 2 0.002 s 0.002s
;z[ilt:;;e = :;2 ;égggg Z: zzzjz @VlrglnlaTech ;fc"p (;(:.:::: :rl; ﬁ'u"r?ﬁ;f"' in a function excluding the time spent in its child functions. Self time also includes overhead re:

Burkardt /CIiff MATLAB Parallel Computing Burkardt /CIiff MATLAB Parallel Computing

function [f, pot, kin] = compute (np, nd,

f = zeros(nd, np);

pot = 0.0;

pi2 = pi / 2.0;

for i =1 : np
Ri = pos — repmat (pos(:, i), 1, np);
D= sqrt (sum (Ri."2));
Ri = Ri(:, (D> 0.0));

D

=D(D> 0.0

H

pos,

D2=D .x (D<= pi2) + pi2 = (D> pi2);

pot = pot + 0.5 % sum (sin (D2)."2);

F(o, i) = Ri % (sin(2%D2) ./ D);

end

kin = 0.5 * mass » sum (diag (vel' x vel));

retu
end

MD: Speedup MD: Speedup

rn

vel , mass)

% array of vectors to i’
% array of distances

% save only pos values
6 truncate the potential.
6 accumulate pot. energy
% force on particle i’

% kinetic energy

WVirginiaTech

By inserting a PARFOR in COMPUTE, here is our speedup:

MATLAB Parallel Computing PRIME: The Prime Number Example

35

¢

v ¢ 1000 particles
¢ ¥ 2000 particles
— Linear
5 10 15 20 25 30 35
Number of workers

Introduction

Local Parallel Computing
The MD Example

PRIME NUMBER Example

Remote Computing
KNAPSACK Example
SPMD Parallelism
fmincon Example
Codistributed Arrays
A 2D Heat Equation

Conclusion

w virginiaTech

WVirginiaTech

In this compute function, the important quantity is the force vector
f. For each particle i, the force is computed by determining the
distance to all other particles, squaring, truncating, and taking the
sine.

The important thing to notice is that the computation for each
particle can be done independently. That means we could compute
each value on a separate worker, at the same time.

The MATLAB command parfor can replace for in this situation. It
will distribute the iterations of the loop across the available
workers.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

This simple example demonstrates a case in which parallel
execution of a MATLAB program gives a huge improvement in
performance.

There is some overhead in starting up the parallel process, and in
transferring data to and from the workers each time a parfor loop
is encountered. So we should not simply try to replace every for
loop with parfor.

That's why, in this example, we first searched for the function that
was using most of the execution time.

The parfor command is the simplest way to make a parallel
program, but we will see some alternatives as well.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

For our next example, we want a simple computation involving a
loop which we can set up to run for a long time.

We'll choose a program that determines how many prime numbers
there are between 1 and N.

If we want the program to run longer, we increase the variable N.
Doubling N makes the run time increase by a factor of 4.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

PRIME: Program Text PRIME: We can run this in parallel

function total = prime_number (n)

%% PRIMELNUMBER returns the number of primes between 1 and N.

We can parallelize the loop whose index is i, replacing for by

total = 0;
for i =2 n parfor. The computations for different values of i are independent.
prime = 1; There is one variable that is not independent of the loops, namely
o oo TG 0 total. This is simply computing a running sum (a reduction
prime = 0; variable), and we only care about the final result. MATLAB is
s smart enough to be able to handle this summation in parallel.
total = total + prime; To make the program parallel, we replace for by parfor. That's all!
end
return
end
WVirginiaTech WVirginiaTech

PRIME: Execution Commands PRIME: Timing

PRIME_NUMBER_PARALLEL_RUN

matlabpool ('open’, 'local', 4)

Run PRIME_NUMBER_PARALLEL with O, 2, and 4 labs.
n = 50;
M mes < prime-number paratlel (0); N 1+0 1+1 1+2 1+4
fprintf (1, '__%8d..%8d\n', n, primes);
n=nx 10;
end 50 0.067 0.179 0.176 0.278
matlabpool (close) 500 0.008 0.023 0.027 0.032
5000 0.100 0.142 0.097 0.061
50000 7.694 9.811 5.351 2.719
500000 609.764 826.534 432.233 222.284
WVirginiaTech WVirginiaTech

PRIME: Timing Comments PRIME: Using the BATCH Command

Instead of running a program from the MATLAB command line,

There are many thoughts that come to mind from these results!

we can use the batch command, and have it execute “elsewhere”.

Why does 500 take less time than 507 (It doesn't, really).

Elsewhere might simply be on other workers; later we will see that

How can "1+41" take longer than "1+40"?
(It does, but it's probably not as bad as it looks!)

we could also run the job on a remote cluster, such as ITHACA.

We have to run a script, not a function (we can't give it input!).

This data suggests two conclusions:

Parallelism doesn't pay until your problem is big enough; at 500,000.

So we might run our prime_number_parallel function with n fixed

AND The matlabpool command now needs 1 extra worker to be the
client. On our desktop PC's, we only have 2 cores, so we won't

Parallelism doesn't pay until you have a decent number of workers.

WVirginiaTech

gain anything in speed.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing Burkardt /CIiff MATLAB Parallel Computing

PRIME: A parallel script version PRIME: Using the BATCH Command

n = 500000;
%function total = prime_number (n) jOb = batch (’prime_nu.mber_script’ s
%% PRIMELNUMBER returns the number of primes between 1 and N. ’Configuration’ s ’Jocal’ s e <-- Run it 1ocally'
total = 0; ’matlabpool’, 2) <-- Two workers.
parfor i =2 : n
prime = 1; wait (job); <-- One way to find out when job is done.
parfor j =2 : sqrt (i)
it (mod (i,))=0)) .
prime = 0; load (job); <-- Load the output variables from
break
end the job into the MATLAB workspace.
end
I = | rime; .
fotal = roral prime total <-- We can examine the value of TOTAL.
end
hend destroy (job); <-- Clean up
WVirginiaTech WVirginiaTech

PRIME: Using the BATCH Command PRIME: Remote Usage

The BATCH command can run your job elsewhere!

Using the wait command is easy, but it locks up your MATLAB

session. job = batch (’prime_number_script’,
) 3 1) 74) .
Using batch, you can submit multiple jobs: configuration’, ’ithaca_2009b’, ... <-- Run remotely
’matlabpool’, 32) <-- Use 32 workers.
jobl = batch (...)
job2 = batch (...) get (job, ’State’); <-- ’finished’ if job is dome,

. . and doesn’t lock your session.
Using get, you can check on any job's status:

get (jobl, ’state’) load (job); <-- Loads all output from the job.

Using load, you can examine just a single output variable from a total <-- We can examine the value of TOTAL.
finished job if you list its name:
destroy (job); <-- Clean up

WVirginiaTech WVirginiaTech

total = load (job2, ’total’)

MATLAB Parallel Computing REMOTE: Enabling Remote Computing

@ Introduction MATLAB can run your programs on a remote machine.

o Local Parallel Computing From your desktop, you can submit jobs and review results.

o The MD Example Setting this up takes some work:

o PRIME_NUMBER Example @ Update your MATLAB to R2009(a/b) with PCT;

- Remote Computing @ Copy some functions into your toolbox/local directory;

o KNAPSACK Example © Copy and customize a new configuration file;

o SPMD Parallelism © Create a MATLAB work directory on your PC;

o fmincon Example © Get an account on lthaca;

o Codistributed Arrays @ Create a MATLAB work directory on lthaca;

o A 2D Heat Equation @ Enable passwordfree logins.

o Conclusion The file matlab_remote_submission.pdf discusses these steps.
WVirginiaTech WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing Burkardt /CIiff MATLAB Parallel Computing

REMOTE: Communication PRIME: The BATCH Command

It's important to have some idea of how this communication works.

Your desktop batch command prompts MATLAB to copy the
script file (and any file dependencies) and send them up to Ithaca's

MATLAB work directory.

On Ithaca, a command is sent to the queueing system, requesting
access to the appropriate number of nodes, to run your script with

Ithaca's copy of MATLAB.

Output from the script is copied into lthaca's MATLAB work
directory and then copied back to your PC work directory.

You don't actually have to be running MATLAB on your PC while

the job is running on Ithaca.

Burkardt /CIiff MATLAB Parallel Computing

REMOTE: The Job State REMOTE: The Job State

WVirginiaTech

When you submit a job to run remotely, a file is created in the
local MATLAB work directory, containing a string that is the job's
current state. From your local MATLAB, the command

get (job, ’State’)

will print out the current value (by simply printing this file's

contents).

Thus, instead of using the wait(job) command, you can simply
check the job's state from time to time to see if it is 'finished’, and

otherwise go on talking to MATLAB.

Burkardt /CIiff MATLAB Parallel Computing

REMOTE: The Configuration File

WVirginiaTech

The configuration file tells MATLAB the names of work directories,
the number of workers on the remote system, and so on.

If you want to set up access to Ithaca, you will get a partially filled
out configuration file. You complete it by filling in names of

directories for job data on:
o your PC: C:\matlab_jobdata

@ or your Mac: /Users/burkardt/matlab_jobdata
o Ithaca: /home/burkardt/matlab_jobdata

These names are arbitrary, but the named directories must exist or

be created before MATLAB can use them.

Burkardt /CIiff MATLAB Parallel Computing

WVirginiaTech

job_id = batch (
’script_to_run’,
’configuration’, ’local’ or ’ithaca_2009b’,
’FileDependencies’, ’file’ or {’filel’,’file2’},
’PathDependencies’, ’path’ or {’pathl’,’path2’},
’matlabpool’, number of workers (can be zero!))

Note that you do not include the file extension when naming the
script to run, or the files in the FileDependencies.

See page 13-2 of the PCT User's Guide for more information.
This slide is NOT in your handouts.

WVirginiaTech

Typical values of the job state variable include:
o ’'pending’: not yet submitted to the queue
@ 'queued’: submitted to the queue

@ ’running’: running

o ’finished’: ran successfully

"failed’: did not run or failed during run

o ’destroyed’: you discarded this information

WVirginiaTech

REMOTE: Example Configuration File

Configuration name ithaca_2009b

Description

Scheduler _Jobs _Tasks

Scheduler type (Type) generic

Root directory of MATLAB installation for workers .
(ClusterMatlabRoot) Japps| packages /matlab-R2009b B

Number of workers available to scheduler

(ClusterSize) 2

v Job datais stored u: B/scratch_space

Function called when submitting parallel jobs g edu 0
(ParallelSubmitFcn) 3 .

Function called when submitting distributed jobs f Ceda 9
(SubmitFen) d :

Cluster nodes' S (ClusterOsType)

Function called when destroying a job
(DestroyJobFen)

Function called when destroying a task.

(@pbsDestroyJob
aTech

(;:{j;:sn!::;e(i whan geting the ob stats GobsCedobiae

Burkardt /CIiff MATLAB Parallel Computing

MATLAB Parallel Computing KNAPSACK: Distributed Computing

@ Introduction

In the examples of parallel programming that we have seen, the

@ Local Parallel Computing parallelism really does mean "parallel”, that is, at the same time.
@ The MD Example In a parfor computation, the master process starts with all the data
o PRIME_.NUMBER Example and the program, the workers always start and end together, and

o Remote Computing the results from each worker are collected by the master program.

o K NAPSAC K Example Thfe term distributed fomputmg descrl.bes a “looser’ compu.tatlon
] which may be broken into completely independent parts which
SPMD Parallelism don’'t communicate, don't run at the same time, and don't run in
o fmincon Example any particular order.

o Codistributed Arrz.ays We will look at an example, called the knapsack problem, which
@ A 2D Heat Equation demonstrates this method of computing.
o Conclusion
WVirginiaTech WVirginiaTech

KNAPSACK: Problem Definition KNAPSACK: Encoding

A solution of the problem is a subset of w. A subset of a set of n
elements can be represented by a binary string of length n.
Therefore every binary string from 0 to 27 — 1 is also a code for a
subset that is a possible solution.

Suppose we have a knapsack with a limited capacity, and a
number of objects of varying weights. We want to find a subset of
the objects which exactly meets the capacity of the knapsack.

(This is sometimes called the greedy burglar’s problem!) For weights w={15,11,10,8,3}, target t=24, we have:

Symbolically, we are given a target value t, and n weights w. We Code | Binary Code Subset | Weight

seek k indices s, a subset of the weights, so that (1) 8888(1) {H g

k 2 00010 {2} 8

t= ws(i)) 3 00011 {21} 11

i—1 4 00100 {3} 10

5 00101 {3,1} 13

We don't know if a given problem has 0, 1, or many solutions. 6 00110 {3.2} 18
WVirginiaTech 31 11111 | {5,43.2,1} 47 WVirginiaTech

KNAPSACK: Algorithm KNAPSACK: MATLAB Program

function [code, subset] = knapsack (w, t)

Although more sophisticated methods are available, a simple
search scheme can be used. We simply examine code over the

n = length (w);
range 0 to 2" — 1, compute the corresponding subset, add up the

for code = 0 : 27°n-1

selected weights, and compare to t. % Convert CODE into vector of indices in W.
For instance, the code of 22 = binary 10110 = subset {5,3,2} and subset = find (bitget (code, 1:n));
hence a weight of 15+10+8=33, which is too high. % Did we match the target sum?
if (sum (w(subset)) ==t)
Notice that the process of checking one possibility is completely return
independent of checking any other. end
One program could check them all, or we could subdivide the end
range, and check the subranges in any order and at any time.
return
end

WVirginiaTech WVirginiaTech

KNAPSACK: Distributed Version KNAPSACK: Distributed MATLAB Program

Suppose we break the problem into distinct subranges to check.

MATLAB's distributed computing option calls the original problem
the job. Checking a subrange is one task of the job. Each task
calls the same MATLAB function with different arguments.

MATLAB lets us “submit” the job; a task is assigned to a worker
that is available. These tasks can run locally or remotely,
simultaneously or sequentially or at substantially different times.
Because each tasks runs when it can, and they don’'t communicate,
overhead and scheduling delays are avoided.

The job completes when all tasks are run.

WVirginiaTech

KNAPSACK: Distributed MATLAB Program KNAPSACK: Define the Job and its Tasks

The program can work on the whole problem or a given subrange,
depending on the values in range.

The MATLAB function bitget returns a vector of 0's and 1's for
positions 1 to n in code.

The function find returns the locations of the 1's, which is how we
get our list of weights to try for this subset.

WVirginiaTech

KNAPSACK: Define the Job and its Tasks KNAPSACK: Define the Job and its Tasks

The createJob command is like the batch command, except it

doesn’t say what we're going to do, or request a specific number of

workers.

job_id = createJob (
’configuration’, ’local’ or ’ithaca_2009b’,
’FileDependencies’, ’file’ or {’filel’,’file2’},
’PathDependencies’, ’path’ or {’pathl’,’path2’})

See page 13-52 of the PCT User's Guide.
This slide is NOT in your handouts.

WVirginiaTech

function [code, subset] = knapdist (w, t, range)

n = length (w);
for code = range(l) : range(2)
% Convert CODE into vector of indices in W.
subset = find (bitget (code, 1:n));
% Did we match the target sum?
if (sum (w(subset)) ==t)
return

end
end

return
end

WVirginiaTech

job = createJob (’configuration’, ’local’,
’FileDependencies’,
{ ’knapdist.m’, ’knapweights.mat’ });

i2 = -1;

for task =1 : 4

il = i2 + 1;

i2 = floor ((2°n -1) * task / 4);

createTask (job, @knapdist, 2, { w, t, [i1, i2] });
end

WVirginiaTech

The createTask command defines the tasks that make up the job.
In particular, it names the MATLAB function that will be called,
the number of output arguments it has, and the values of the input
arguments.

task_id = createTask (

job_id, ... <-- ID of the job
@function, . <-- MATLAB function to be called
numarg, ... <-- Number of output arguments

[argl,arg2,...]) <-- Input arguments

See page 13-59 of the PCT User's Guide.
This slide is NOT in your handouts.

WVirginiaTech

KNAPSACK: Submit the Job KNAPSACK: BATCH versus CREATEJOB

The batch command can be thought of as a simplified version of
createJob + createTask + submit.

With the following commands, we submit the job, and then pause
our interactive MATLAB session until the job is finished.

It assumes you only have 1 task and that the task is defined by a

We then retrieve the output arguments from each task, in a cell : ') | -
script with no input arguments, and it's ready to submit.

array we call results.

Otherwise, both commands are doing the same thing, finding out

submit (job); <-- Sends the job . e
what you want to and where it should be executed, assigning it a

wait (job); <-- Waits for completion. logical identif q di h K he righ hi
results = getAllOutputArguments (job) ogical identifier, and sending the work to the right machine.
destroy (job); <-- Clean up For the distributed KNAPSACK job, of course, we needed the
extra flexibility of the createJob command.
WVirginiaTech WVirginiaTech

KNAPSACK: Examine the results KNAPSACK: Running Jobs Remotely

Because your job involved multiple tasks, the output must be
returned to you in a cell array. To see output result 2 from task 3,
you refer to results{3,2}.

If you have set up your machine so that the local copy of MATLAB

can talk to remote copies, then this same distributed job can be

for task =1 : 4 run on a remote machine, such as the Virginia Tech ithaca cluster.
if (isempty (results{task,1}))

fprintf (1, ’Task %d found no solutions.\n’, task) All you have to do is change the configuration argument when you

define the job:

else
disp (’Weights:’); job = createJob (’configuration’, ’ithaca_2009b’,
disp (results{task,1}); ’FileDependencies’,
disp (’Weight Values:’); { ’knapdist.m’, ’knapweights.mat’ });
disp (results{task,2});
end
end
WVirginiaTech WVirginiaTech

MATLAB Parallel Computing SPMD: Single Program, Multiple Data

The parfor command is easy to use, but it only lets us do
parallelism in terms of loops. The only choice we make is whether

@ Introduction

o Local Parallel Computing a loop is to run in parallel. We can't determine how the loop

@ The MD Example iterations are divided up, we can't be sure which lab runs which

o PRIME_NUMBER Example iteration, we can't examine the work of any individual lab.

@ Remote Computing Distributed programming allows us to run different programs, or
o KNAPSACK Example the same program with different inputs, but they can't talk to each
o SPM D Para"ellsm other, that is, communicate or share results.

o fmincon Example The SPMD command is like working with a very simplified version
o Codistributed Arrays of MPI. 'I.'here.ils a client process and.workers, but now the Workers
A 2D H E . are given identifiers. Each worker decides what to do based on its
° éat quation ID. Each worker can communicate with the client. Any two

@ Conclusion workers can communicate through the client.

WVirginiaTech WVirginiaTech

SPMD: The SPMD Command SPMD: Each worker has an ID

Let's assume we've issued a matlabpool command, and have a
client (that is, the “main” copy of MATLAB) and a number of
workers or labs.

The first thing to notice about a program using SPMD is that
certain blocks of code are delimited:

fprintf (1, Set up the integration limits:\n’);

spmd
a = (labindex - 1) / numlabs;
b = labindex / numlabs;
end

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

SPMD: Use the ID to assign work SPMD: One Name Must Reference Several Values

Now let's go back to our program fragment. But first we must
explain that we are trying to approximate an integral over the
interval [0,1]. Using SPMD, we are going to have each lab pick a
portion of that interval to work on, and we'll sum the result at the
end. Now let's look more closely at the statements:

fprintf (1, Set up the integration limits:\n’);

spmd
= (labindex - 1) / numlabs;
b = labindex / numlabs;
end

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

SPMD: Dealing with Composite Variables SPMD: The Solution in 4 Parts

So we could print all the values of a and b in two ways:

spmd
= (labindex - 1) / numlabs;
b = labindex / numlabs;
fprintf (1, > A =7%f, B=Y%f\n’, a, b);
end

or
spmd

= (labindex - 1) / numlabs;

b = labindex / numlabs;
end

for i = 1 : numlabs
fprintf (1, ° A = %f, B = %f\n’, a{i}, b{i});
end WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

The spmd delimiter marks a section of code which is to be carried
out by each lab, and not by the client.

The fact that the MATLAB program can be marked up into
instructions for the client and instructions for the workers explains
the single program part of SPMD.

But how do multiple workers do different things if they see the
same instructions? Luckily, each worker is assigned a unique
identifier, the value of the variable labindex.

The worker also gets the value of numlabs, the total number of
workers. This information is enough to ensure that each worker
can be assigned different tasks. This explains the multiple data
part of SPMD!
WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

Each worker will compute different values of a and b. These values
are stored locally on that worker's memory.

The client can access the values of these variables, but it must
specify the particular lab from whom it wants to check the value,
using “curly brackets”: a{i}.

The variables stored on the workers are called composite variables,
they are somewhat similar to MATLAB's cell arrays.

It's important to respect the rules for composite variable names. In
particular, if a is used on the workers, then the name a is also
“reserved” on the client program (although there it's an indexed
variable). The client should not try to use the name a for other
variables!

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

Assuming we've defined our limits of integration, we now want
to carry out the trapezoid rule for integration:

spmd
= linspace (a, b, n);
fx =f (x);
quad_part = (fx(1) + 2 * sum(fx(2:n-1)) + fx(n))
/2 /(n-1);

fprintf (1, > Partial approx %f\n’, quad_part);
end

with result:
2 Partial approx 0.874676
4 Partial approx 0.567588
1 Partial approx 0.979915
3 Partial approx 0.719414 @VirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

SPMD: Combining Partial Results SPMD: Source Code for QUAD_SPMD
)

function value = quad-spmd (n

fprintf (1, 'Compute_limits\n');

spmd
a = (labindex — 1) / numlabs;
. . b = labindex / numlabs;
We really want one answer, the sum of all these approximations. fprintf (1, '__Lab %d_works_on_[%f%f].\n', labindex, a, b);
end
One way to do this is to gather the answers back on the client: fprintf (1, 'Each_lab_estimates_part_of the_integral.\n');
spmd
if (n=1)
quad = sum (quad_part{1:4}); quadpart = (b—a) =f ((a+b)/2)
else
fprintf (1, ° Approximation %f\n’, quad); x = linspace ((a, b, n);
fx =f (x);
) quad_part = (b —a) * (fx(1) + 2 % sum (fx(2:n—1)) + fx(n)) ...
with result: VAR ERRE
en
fprintf (1, '__Approx.%f\n', quad_part);
Approximation 3.14159265 end
fprintf (1, 'Use.GPLUS_to_sum_the_parts.\n');
spmd
quad = gplus (quad_part);
if (labindex — 1)
fprintf (1, '__Approximation_=%f\n', quad)
end
. s s end . s s
WVirginiaTech WVirginiaTech
return
end

SPMD: Combining Values Directly SPMD: Reduction Operators

gplus() is implemented by the gop() command, which carries
out an operation across all the labs.
gplus(a) is really shorthand for gop (@plus, a), where plus is
the name of MATLAB's function that actually adds numbers.
Other reduction operations include:

MATLAB also provides commands to combine values directly on
the labs. The command we need is called gplus(); it computes the
sum across all the labs of the given variable, and returns the value
of that sum to each lab:

spmd
x = linspace (a, b, n); e gop(@max,a), maximum of a;
fx =f (x); e gop(@min,a), minimum of a;
quj;l_}/):(iiflj;(fx(1) + 2 * sum(£x(2:n-1)) + fx(n)) o gop(@and.a), AND of a;

e gop(@or.a), OR of a;
gop(@xor.a), XOR of a;

quad = gplus(quad_part);
if (labindex == 1)

fprintf (1, ’ Approximation %f\n’, quad); o gop(@bitand.a), bitwise AND of a;
end e gop(@bitor.a), bitwise OR of a;
end @erginia’[‘ech o gop(@bitxor.a), bitwise XOR of a. @erginia’[‘ech

SPMD: MPI-Style Messages MATLAB Parallel Computing

@ Introduction

SPMD supports some commands that allow the programmer to do

message passing, in the MPI style: Local Parallel Computing

The MD Example
PRIME_.NUMBER Example
Remote Computing

KNAPSACK Example

SPMD Parallelism

fmincon Example
Codistributed Arrays

A 2D Heat Equation

o Conclusion

WVirginiaTech WVirginiaTech

o labSend, send data directly to another lab;

o labReceive, receive data directly from another lab;

o labSendReceive, interchange data with another lab.

For details on how these commands work, start with the MATLAB
HELP facility!

For more information, refer to the documentation for the Parallel
Computing Toolbox.

fmincon and UseParallel fmincon and UseParallel

In most cases, making use of parallelism requires some re-coding,
perhaps even serious restructuring of your approach. Beginning
with Version 4.0 (R2008a) of the Optimization Toolbox we can
easily take advantage of parallelism in constructing finite-difference
estimates of the gradient of the cost functional and the Jacobian
of any nonlinear constraint functions.

Using the optimset command we simply set the flag
UseParallel to (the string) always.

In the run_opt example we seek an optimal steering history for a
boat moving in a spatially varying current. The control history is
approximated as piecewise constant on a given time-grid. The
optimization parameter is the vector of the values of the steering
angle on the intervals. The cost functional and constraints depend
on the final position of the boat in the plane.

The RUN_OPT Example The RUN_OPT Example: source material
)

function z_star = run_opt(f-name, n
% Function to run a finite dimensional optimization problem
% based on a discretization of a Mayer problem in optimal control.

% f.name points to a user—supplied function with a single input argument
% n is a discretization parameter. The finite—dimensional problem arises
% by treating the (scalar) control as piecewise constant

% The function referenced by f.name must define the elements of

% the underlying optimal control problem. See 'zermelo' as an example

%% Problem data

PAR = feval (str2func(f-name), n);
% some lines omitted
%% Algorithm set up

PT = optimset(optimset('fmincon’), ...
‘LargeScale’, "off’,

"Algorithm’, 'active—set', ...
‘Display ' ., 'iter’', ..
'UseParallel ', 'Always');

h_cost = @(z) general_cost(z, PAR);
h_cnst = @(z) general_constraint(z, PAR);

%% Run the algorithm
[z-star, f_star, exit] = ...
fmincon (h_cost, z0, [], [I. [I. []. LB, UB, h_cnst, OPT);
if exit >=0&& isfield (PAR, 'plot’)
feval (PAR. plot , z-star, PAR)
end

Cell Arrays Cell Arrays: Two ways of indexing

cell arrays are rectangular arrays, whose content can be any
MATLAB variable, including a cell array

>> A = eye(2); B = ones(2); C = rand(3,4); D = ’a string’;
> G={AB; CD}

>> G

G = [2x2 doublel [2x2 double]

[3x4 double] ’a string’
>> isa(G, ’cell’)

ans = 1

WVirginiaTech

WVirginiaTech

WVirginiaTech

The main work in evaluating these functions is the (numerical)
integration of the dynamics with a prescribed steering history.

The dynamics are given by
x(t) = —ry(t)+ cos(6(t))
y(t) = sin(6(t))

with initial condition x(0) = y(0) = 0.
The problem is to maximize x(tr) with the constraint y(tr) > yr
(tf, yr,and K are given).

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

A folder with the software and example output is in the
parallel matlab folder on your desktop. The folder looks like:

fdi_opt
:: (B Q
DEVICES 2
24 macintosh HD
24 Macintosh HD 2 — i) i
) Macintosh HD 3 general_constraint.m general_costm run_opt.m
£ ipisk
SHARED
[garibaldi.icam. -m m m
[jabicam zermelo.m zermelo_cost.m zermelo_ineq.m
| Jeff Borggaard
8 knbs3asct
B toshiba-user
= .m .m
[v-fire
lot. ¥
B e zermelo_plot.m zermelo_rhs.m output
@ Al
PLACES
I3 Deskeop '3
4 ecift 3

9 items, 865.99 GB available

MVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

A cell array may be indexed in two ways:
@ G(1) - the result of cell indexing is a cell array

@ G{1} - the result of content indexing is the contents of the
cell(s)

>> F1 = G(1, 1:2)
F1 = [2x2 double] [2x2 double]
>> isa(F1, ’cell’)

ans = 1

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

Cell Arrays: Two ways of indexing

G{1} - the result of content indexing is the cell's contents

>> F2 = G{1, 2}

F2= 1 1
1 1
>> whos
Name Size Bytes Class Attributes
A 2x2 32 double
B 2x2 32 double
C 3x4 96 double
D 1x8 16 char
F1 1x2 184 cell
F2 2x2 32 double
G 2x2 416 cell @VirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

MATLAB Parallel Computing

@ Introduction

Local Parallel Computing
The MD Example
PRIME_NUMBER Example
Remote Computing
KNAPSACK Example
SPMD Parallelism

o fmincon Example

» Codistributed Arrays
o A 2D Heat Equation

@ Conclusion

M VirginiaTech

Codistributed arrays (cont'd)

"codistributor’ is the constructor and specifies which dimension is
used to distribute the array. With no argument, we take the
default, which is '1d" or one-dimensional. By default, two
dimensional arrays are distributed by columns.

codistributor(M) returns information about the distributed
structure of the array M.

If the number of columns is an integer multiple of the number of
'labs’, then the (default) distribution of columns among the labs is
obvious. Else we invoke codistributor (or other MATLAB
supplied procedure).

localPart(M) returns the part of the codistributed array on this
lab.
M VirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

SPMD mode: composite variables

SPMD mode creates a composite object on the client
composite objects are indexed in the same ways as cell arrays

>> spmd
V = eye(2) + (labindex -1);
end
>> V{1}
ans = 1
0 1
>> v{2}
ans = 2 1
1 2
>> whos
Name Size Bytes Class Attributes
\Y 1x2 373 Composite __ |
WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

Codistributed Arrays

Codistributed arrays allow the user to build (m X n) matrices so
that, for example, each 'lab’ stores/operates on a contiguous block
of columns. More general (rectangular) constructs are possible but
are not covered here.

We shall demonstrate these ideas in pmode

>> pmode start 4

Starting pmode using the parallel configuration ’local’.
Waiting for parallel job to start...

Connected to a pmode session with 4 labs.

Many of the builtin Matlab matrix constructors can be assigned
the class 'codistributed’. For example:

>> M = speye(1000, codistributor());

M VirginiaTech

Codistributed arrays (cont'd)

%%%%h run these in Matlab
>> pmode start 4
>> M = speye(1000, codistributor())
>> codistributor (M)

>> M = ones (1000, 1, codistributor())

>> codistributor (M)
VAN

M VirginiaTech

Codistributed arrays (cont'd) MATLAB Parallel Computing

@ Introduction

One can construct local arrays on the labs and assemble them into

distributed o Local Parallel Computing

a codistributed array: o The MD Example
%h%% run these in Matlab o PRIME_NUMBER Example

>> M = rand(100, 25) w; iabindex; o Remote Computing

>> Mc = codistributed(M);

>> max(max(abs(M - localPart(Mc)))) o KNAPSACK E?<amp|e

>> Mc(12,13) @ SPMD Parallelism
YYNNA o fmincon Example
Of course, in applications the construction on each lab will involve o Codistributed Arrays .
user-defined code. We will now demonstrate this idea for an ° A 2D Heat Eq uatIOrl
unsteady heat equation in two space dimensions. o Conclusion

WVirginiaTech WVirginiaTech

2DHEAT: State Equations 2DHEAT: Boundary Conditions

An example: 2D unsteady heat equation:

oT 9 oT 9 T Boundary conditions for our problem are:
(GCaf = kxa— + v kya— + F(x,y,t)
t X X y y dT(x,0) O0T(x,w) _ 0
(X,y)G{(X,y) | OSXSL* OS}’SW}C]R2«1'>07 ay - 8_)/ - ’
where: oT(L,
_ WD) iy,
o F(x,y,t) is a specified source term, Ox
i i i oT(0,y

@ o > 0 is the areal density of the material, Ky (g) =aly) (T(0,y) - B(y)) .
o C, > 0 is the thermal capacitance of the material, and X
@ ki >0 (k, > 0) is the conductivity in the x direction (the

y-direction).

WVirginiaTech WVirginiaTech

2DHEAT: Time-Discretized State Equations 2DHEAT: Time-Discretized Boundary Conditions

We use backward Euler in time and finite-elements in space to Imposing the specified boundary conditions, the boundary term
arrive at evaluates to
At el "
/ (T"+1 — T = F(x,y, tnﬂ)) v dw / (kVT™-h) Wdo =/ fy)¥(L,y) dy
Q o Cp 9 0
. . 0

At
+— [/ (kVT™1. VW) dw + / (kVT™13) Wdo| =0, f/ aly) [T"(0.y) = B()] w(0,y) dy .

o Cp Ja Joq w

A . . Details are described in the 2D_heat_ex.pdf file in the distribution
where T"(x,y) = T(nAt,x,y), and W € H() is a test function. material.
WVirginiaTech WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing Burkardt /CIiff MATLAB Parallel Computing

2DHEAT: Finite Element Grid 2DHEAT: Finite Element Equations

We use quadratic functions on triangular elements Seek an approximate solution: Tj(x,y) = Z;\’:l z7 &y(x,y) .
Impose a regular ny x n, = ((20+ 1) x (2m + 1)) grid.
Using the odd-labeled points we generate ¢ m rectangles; diagonals Z {/Q ®)(x,y) u(x,y) dw
divide these into 2 £ m triangles. J o
At n
Here's the case n, = n, =5 (8 elements, 25 grid points): +ﬁ (/Q (kV®,-Vo,) dw Jr/ a(y) ©,(0,y) ®.(0, y) dy)} % o
P w
21 o » o > : n At [
—Z O,(x,y) Pux,y) dw| z] — | —= [F(x, ¥, tn1)®, dw
5 7 T La oG Jo
'S . °" g 'S At w 0
L[rmedtyyay+ [ats)e o) dy| o
o o s alp LJo w
1 3 We can rewrite this in matrix terminology:
[] []
2 4 n+1 n
‘ / . . W VirginiaTech (M1 +M;) 2 Mi2" + F(tni1) + b MRirginiaTech

Burkardt /CIiff MATLAB Parallel Computing Burkardt /CIiff MATLAB Parallel Computing

2DHEAT: Modifying a Serial Code 2DHEAT: ASSEMB_CO Source Code (begin)

function [M1, M2, F, b, x, e_conn] = assemb_co(param)
% The FEM equation for the temp. dist at time t_{n+1} satisfies
% (M1 + M2) z°{n+1} — M1 z°n + F + b = 0

%% Initialization & geometry

So our computation requires repeatedly forming and solving e fnitialization &
systems of the form: %6 Set up codistributed structure

% column pointers and such for codistributed arrays
1 n ¢ = codcolon (1, n_equations);
(M1 + MQ) zZ"™ — M2+ F(t,,+1) +b=0. P localPart (Ve); IP_1 = IP(1); IP_end = IP(end);
dPM = distributionPartition (codistributor(Vc));
col_shft = [0 cumsum(dPM(1:end —1))];

We began with a serial code for building M1, M3, F and b.

% local sparse arrays
M1.lab = sparse(n-equations, dPM(labindex)); M2.lab = M1_lab;

Here, we briefly note the changes to build codistributed b-lab = sparse(dPM(labindex), 1); F.lab = b-lab;
VerSiOnS of these. %% Build the finite element matrices — Begin loop over elements
for n_el=1:n_elements
nodes_local = e_conn(n_el ,:);% which nodes are in this element
% subset of nodes/columns on this lab
lab_nodes_local = my_extract(nodes_local, IP_1, IP_end);
if “isempty(lab_nodes_local) % continue the calculation for this elmnt
%—— calculate local arrays — lines omitted

WVirginiaTech WVirginiaTech

2DHEAT: ASSEMB_CO Source Code (end) 2DHEAT: 5 x 5 grid on 4 labs

:A% Assemble contributions into the global system matrices (on this lab) There are 8 triangular e|ement5' and 25 nodes.
% The nodes are color-coded for the four labs.
for n_t = 1:nel_dof % local DOF — test fcn
t_glb = nodes_local(n_t); % global DOF — test fcn N
for n_u = 1:size(lab_nodes_local, 1) 2! P = Pl =
n_locj = lab_nodes_local(n-u, 1); % local DOF in current n_el
n_glbj = lab_nodes_local (n_u, 2) ... 5 7
—col_shft(labindex); % global DOF o y " .
M1_lab(t-glb , n_glbj) = M1_lab(t_glb,n_glbj) ° ° [X
+ M1.loc(n_t, n_locj); 6 8
M2_lab(t_glb , n_glbj) = M2_lab(t_glb , n_glbj) ...
+ param.dt«M2_loc(n_t, n_locj); » " s
end ° °
%) . 1 3
if t_glb >= IP_1 && t_glb <= IP_end % is node on this lab ? 6 5 10
t_loc = t_glb — col_shft(labindex); L4 L4
b_lab(t_loc 1) = b_lab(t_loc,1) — param.dtsb_loc(n_t 1); 2 4
F_lab(t_loc ,1) = F_lab(t_loc,1) — param.dtxF_loc(n_t, 1);
s 4 s

end
end % for n_t
end % if not empty
end % n_el

Note that 1ab 1 (green) requires evaluation on 4 of 8 elements,
% . ;
% Assemble the lab contributions in a codistributed format while 1ab 2 (blue) requires 7 of 8.

ML = codistributed (M1.lab, codistributor('1d’, 2));

M2 = codistributed (M2_lab, codistributor('1d’, 2)); . » N . . s N N

b — codistributed(b_lab. codistributor('1d". 1)) mVuglmaTech Clearly, our naive nodal assignment to labs leaves thé@!Vlrglanech
F = codistributed(F_lab , codistributor('ld’, 1));

computational load badly balanced.

2DHEAT: 5 x 5 grid on 4 labs 2DHEAT: RUN_ASSEMB_CO Source Code

%%%% run these in Matlab
>> pmode start 4
>> V¢ = codcolon(1l, 25)
>> dPM = distributionPartition(codistributor (Vc))
>> col_shft = [0 cumsum(dPM(1:end-1))]
>> whos

Tl

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

2DHEAT: RUN_ASSEMB_CO Source Material MATLAB Parallel Computing

A folder with the software, example output and descriptive
material is in the parallel matlab folder on your desktop. The
folder should look like:

th_codist =

| evcscracn &

oo 4 4 4

A cugencait boundaryz.m my_extractm pdatam

i
‘ <) Documen ts -
A sopictons 4) d
& e
| 63 e -
L e

4

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

Conclusion: Desktop Experiments Conclusion: Cluster Experiments

Virginia Tech has a limited number of concurrent MATLAB
licenses, which include the Parallel Computing Toolbox.

This is one way you can test parallel MATLAB on your desktop
machine.

If you don't have a multicore machine, you won't see any speedup,
but you may still be able to run some “parallel” programs.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

% Script to assemble matrices for a 2D diffusion problem

%% set path
addpath './subs_source/oned'; addpath './subs_source/twod"'

%% set parameter values and assemble arrays
param = p_data ();
[M1, M2, F, b, x, e-conn] = assemb_co(param);

%% clean—up path
rmpath './subs_source/oned’; rmpath './subs_source/twod’

%% Steady state solutions
z_tmp = —full (M2)\ full (F+b); % Temperature distribution
z_ss = gather(z_tmp, 1);

%% Plot and save a surface plot
if labindex — 1
xx = x(1:param.nodesx, 1);
yy = x(1:param.nodesx:param.nodesx+param.nodesy, 2);
figure
surf(xx, yy, reshape(z.ss, param.nodesx, param.nodesy)’');
xlabel ("\bf-x'); ylabel('\bf_y'); zlabel('\bf_T")

toaxis = axis;
print —dpng fig-ss.png
close all

end

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

@ Introduction

Local Parallel Computing
The MD Example
PRIME_NUMBER Example
Remote Computing
KNAPSACK Example
SPMD Parallelism
fmincon Example
Codistributed Arrays

A 2D Heat Equation

« Conclusion

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

If you want to work with parallel MATLAB on Ithaca, there should
soon be a way to apply for accounts online at the ARC website:

http://www.arc.vt.edu/index.php

Until then, you can get a “friendly user” account by sending mail
to John Burkardt burkardt@vt.edu.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

Conclusion: PC-to-Cluster Submission Conclusion: Documentation

If you want to use parallel MATLAB regularly, you may want to set
up a way to submit jobs from your PC to Ithaca, without logging
in directly.

This requires defining a configuration file on your PC, adding some
scripts to your MATLAB directory, and setting up a secure
connection between your PC and Ithaca. The steps for doing this
are described in the document:

http://people.sc.fsu.edu/ burkardt/pdf/...
matlab_remote_submission.pdf

We will be available to help you with this process.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

On the MathWorks directory, there is a directory for the Parallel
Computing Toolbox:

http://www.mathworks.com/products/parallel-computing/

Look under "Documentation”. This is a reference manual, not a
guide. It will tell you the details about how to use a particular
command, but not so much which commands you should use.

Under "Demos and Webinars” you may find help about how to
design the right kind of parallel program for your problem.

WVirginiaTech

Burkardt /CIiff MATLAB Parallel Computing

