Working Notes on
 a 2D Thermal Model
 with Parallel Sensitivity Calculations

E.M. Cliff (ecliff@vt.edu)
Interdisciplinary Center for Applied Mathematics
Virginia Tech
Blacksburg, VA 24061

July 24, 2009

1 Background

Mathematical models for heating/cooling of buildings typically feature large number of parameters characterizing features such as conductivity, convective coefficients, as well as geometric layout. Whereas lumped (ordinary differential equations - ODE) models are common, the treatment here will retain the distributed nature of the underlying physics (partial differential equations - PDE).

2 A Mathematical Model

We consider unsteady heat conduction in a plane. The governing partial differential equation is

$$
\begin{equation*}
\sigma C_{p} \frac{\partial T}{\partial t}=\frac{\partial}{\partial x}\left(k_{x} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k_{y} \frac{\partial T}{\partial y}\right)+F(T, x, y, t),(x, y) \in \Omega, t>0 \tag{1}
\end{equation*}
$$

where:

- $\Omega=\{(x, y) \quad \mid \quad 0 \leq x \leq L, \quad 0 \leq y \leq w\} \subset \mathbb{R}^{2}$,
- $F(T, x, y, t)$ is a specified source term,
- σ is the areal density of the material,
- C_{p} is the thermal capacitance of the material, and
- $k_{x}>0\left(k_{y}>0\right)$ is the conductivity in the x direction (the y-direction).

Boundary conditions for our problem are:

$$
\begin{gather*}
\frac{\partial T(x, 0)}{\partial y}=\frac{\partial T(x, w)}{\partial y}=0 \tag{2}\\
k_{x} \frac{\partial T(L, y)}{\partial x}=f(y) \tag{3}\\
k_{x} \frac{\partial T(0, y)}{\partial x}=\alpha(y)(T(0, y)-\beta(y)) . \tag{4}
\end{gather*}
$$

In the final (Robin) boundary condition we require that $\alpha(y) \geq 0$. The initial data is given by

$$
\begin{equation*}
T(0, x, y)=h(x, y) \tag{5}
\end{equation*}
$$

3 Numerical Approximation

3.1 Time discretization

Numerical solution of the problem (1-5) requires some type of discretization. We begin by introducing a uniform time-grid, viz $t_{n}=n \Delta t, n=$ $0,1, \ldots$, and defining $T^{n}(x, y) \triangleq T\left(t_{n}, x, y\right)$. The time-derivative in (1) is approximated by the usual difference quotient leading to

$$
\begin{aligned}
\left(\sigma C_{p}\right) \frac{T^{n+1}-T^{n}}{\Delta t}=\left[\frac{\partial}{\partial x}\left(k_{x} \frac{\partial}{\partial x}\right)+\right. & \left.\frac{\partial}{\partial y}\left(k_{y} \frac{\partial}{\partial y}\right)\right]\left(\theta T^{n+1}+(1-\theta) T^{n}\right) \\
& +F\left(\left(\theta T^{n+1}+(1-\theta) T^{n}\right), x, y, \hat{t}\right)
\end{aligned}
$$

We have the choices:

- $\theta=0$ - explicit Euler,
- $\theta=1$ - implicit Euler,
- $\theta=1 / 2$ - implicit mid-point rule (similar to Crank-Nicholson).

We choose the implicit Euler scheme and re-write as

$$
\begin{align*}
T^{n+1}-T^{n}-\frac{\Delta t}{\sigma C_{p}}\left[\frac{\partial}{\partial x}\left(k_{x} \frac{\partial}{\partial x}\right)+\right. & \left.\frac{\partial}{\partial y}\left(k_{y} \frac{\partial}{\partial y}\right)\right] T^{n+1} \\
& -\frac{\Delta t}{\sigma C_{p}} F\left(T^{n+1}, x, y, t_{n+1}\right)=0 . \tag{6}
\end{align*}
$$

The (spatial) PDE (6) is to be solved at $n=0,1, \ldots$ with $T^{0}(x, y)=h(x, y)$, from (5).

3.2 Spatial discretization

Our numerical solution of (6) is based on a weak formulation. We multiply by a test function $\Psi(x, y)$ and integrate over the spatial domain Ω :

$$
\begin{align*}
\int_{\Omega}\left(T^{n+1}-\right. & \left.T^{n}-\frac{\Delta t}{\sigma C_{p}} F\left(T^{n+1}, x, y, t_{n+1}\right)\right) \Psi \mathrm{d} \omega \\
& -\frac{\Delta t}{\sigma C_{p}} \int_{\Omega}\left[\frac{\partial}{\partial x}\left(k_{x} \frac{\partial}{\partial x}\right)+\frac{\partial}{\partial y}\left(k_{y} \frac{\partial}{\partial y}\right)\right] T^{n+1} \Psi \mathrm{~d} \omega=0 . \tag{7}
\end{align*}
$$

The $2^{\text {nd }}$ term in (7) is integrated by parts

$$
\begin{align*}
\int_{\Omega}\left[\frac{\partial}{\partial x}\left(k_{x} \frac{\partial}{\partial x}\right)\right. & \left.+\frac{\partial}{\partial y}\left(k_{y} \frac{\partial}{\partial y}\right)\right] T^{n+1} \Psi \mathrm{~d} \omega \\
& =-\int_{\Omega}\left(k \nabla T^{n+1} \cdot \nabla \Psi\right) \mathrm{d} \omega+\int_{\partial \Omega}\left(k \nabla T^{n+1} \cdot \hat{n}\right) \Psi \mathrm{d} \sigma, \tag{8}
\end{align*}
$$

where in the boundary integral, \hat{n} is an outward normal to the surface, and the integration is in an anti-clockwise sense around the region Ω. Imposing the specified boundary conditions ($2-4$), the boundary term in (8) evaluates to

$$
\begin{align*}
\int_{\partial \Omega}\left(k \nabla T^{n+1} \cdot \hat{n}\right) \Psi \mathrm{d} \sigma= & \int_{0}^{w} f(y) \Psi(L, y) \mathrm{d} y \\
& -\int_{w}^{0} \alpha(y)\left[T^{n+1}(0, y)-\beta(y)\right] \Psi(0, y) \mathrm{d} y . \tag{9}
\end{align*}
$$

In the following we restrict attention to the case wherein the source term F does not depend on T.

3.3 Galerkin Finite Element

We seek an approximate solution of the form

$$
\begin{equation*}
T_{N}^{n}(x, y)=\sum_{\jmath=1}^{N} z_{\jmath}^{n} \Phi_{\jmath}(x, y) . \tag{10}
\end{equation*}
$$

Substitute the approximation (10) into the weak-form and use for test functions $\Psi=\Phi_{\imath}$ leads to:

$$
\begin{align*}
& \sum_{\jmath} z^{n+1} \int_{\Omega} \Phi_{\jmath}(x, y) \Phi_{\imath}(x, y) \mathrm{d} \omega-\sum_{\jmath} z^{n} \int_{\Omega} \Phi_{\jmath}(x, y) \Phi_{\imath}(x, y) \mathrm{d} \omega \\
& \quad-\frac{\Delta t}{\sigma C_{p}} \int_{\Omega} F\left(x, y, t_{n+1}\right) \Phi_{\imath} \mathrm{d} \omega+\frac{\Delta t}{\sigma C_{p}} \sum_{\jmath} z^{n+1} \int_{\Omega}\left(k \nabla \Phi_{\jmath} \cdot \nabla \Phi_{\imath}\right) \mathrm{d} \omega \\
& -\frac{\Delta t}{\sigma C_{p}}\left[\int_{0}^{w} f(y) \Phi_{\imath}(L, y) \mathrm{d} y-\int_{w}^{0} \alpha(y)\left(\sum_{\jmath} z_{\jmath}^{n+1} \Phi_{\jmath}(0, y)-\beta(y)\right) \Phi_{\imath}(0, y) \mathrm{d} y\right]=0 \\
& \text { for } \imath=1,2, \ldots, N . \quad(11) \tag{11}
\end{align*}
$$

Gathering terms leads to

$$
\begin{align*}
& \sum_{\jmath}\left[\int_{\Omega} \Phi_{\jmath}(x, y) \Phi_{\imath}(x, y) \mathrm{d} \omega\right. \\
& \left.+\frac{\Delta t}{\sigma C_{p}}\left(\int_{\Omega}\left(k \nabla \Phi_{\jmath} \cdot \nabla \Phi_{\imath}\right) \mathrm{d} \omega+\int_{w}^{0} \alpha(y) \Phi_{\jmath}(0, y) \Phi_{\imath}(0, y) \mathrm{d} y\right)\right] z_{\jmath}^{n+1} \\
& \quad-\sum_{\jmath}\left[\int_{\Omega} \Phi_{\jmath}(x, y) \Phi_{\imath}(x, y) \mathrm{d} \omega\right] z_{\jmath}^{n}-\left[\frac{\Delta t}{\sigma C_{p}} \int_{\Omega} F\left(x, y, t_{n+1}\right) \Phi_{\imath} \mathrm{d} \omega\right] \\
& \quad-\frac{\Delta t}{\sigma C_{p}}\left[\int_{0}^{w} f(y) \Phi_{\imath}(L, y) \mathrm{d} y+\int_{w}^{0} \alpha(y) \beta(y) \Phi_{\imath}(0, y) \mathrm{d} y\right]=0 \\
& \text { for } \imath=1,2, \ldots, N \tag{12}
\end{align*}
$$

In matrix terminology

$$
\begin{equation*}
\left(\mathbf{M}_{1}+\mathbf{M}_{2}\right) z^{n+1}-\mathbf{M}_{1} z^{n}+\mathbf{F}\left(t_{n+1}\right)+\mathbf{b}=0 \tag{13}
\end{equation*}
$$

Note that if the source term in (1) has a finite limit $\left(\lim _{t \rightarrow \infty} F(t, x, y)=\right.$ $\left.F^{\infty}(x, y)\right)$ and $\lim _{t \rightarrow \infty} \mathbf{F}(t)=\mathbf{F}^{\infty}$ then (13) has a steady-state solution that satisifies

$$
\begin{equation*}
\mathbf{M}_{2} z^{\mathrm{ss}}+\mathbf{F}^{\infty}+\mathbf{b}=0 \tag{14}
\end{equation*}
$$

3.3.1 Quadratic Functions on Triangular Elements

We impose a regular $n_{x} \times n_{y}=((2 \ell+1) \times(2 m+1)) \operatorname{grid}$ on $\Omega(\ell, m \geq 1)$. Using the odd-labeled points we generate ℓm rectangles; diagonals divide these into $2 \ell m$ triangles. Figure 1 shows the case $n_{x}=21, n_{y}=13$

Figure 1: 21×13 Grid

Figure 2: Computational Triangle
$(\ell=10, m=6)$. Grid points at the center of each line segment are not shown.

A typical computational triangle is shown in Figure 2. Note that the vertex points are numbered $1-3$ in order as one traverses the edges of the triangle in counter-clockwise fashion. The center points are similarly numbered 4-6.

We construct six quadratic functions: three of these interpolate values at vertex points $\left(H_{1}, H_{2}, H_{3}\right)$, and three interpolate values at the segment

Figure 3: Basic Quadratic Functions
center points $\left(H_{4}, H_{5}, H_{6}\right)$.

$$
\begin{aligned}
H_{1}(r, s) & =1-3 r+2 r^{2}-3 s+4 r s+2 s^{2} \\
H_{2}(r, s) & =-r+2 r^{2} \\
H_{3}(r, s) & =-s+2 s^{2} \\
H_{4}(r, s) & =4 r-4 r^{2}-4 r s \\
H_{5}(r, s) & =4 r s \\
H_{6}(r, s) & =4 s-4 r s-4 s^{2}
\end{aligned}
$$

Figure 3 displays the shape of these local interpolating functions for the vertex points (left) and the segment center points (right) [1, from p 139].

3.4 Example Results

Example 1
We first consider a case with $\Omega=[0,10] \times[0,20]$ with $\sigma=C_{p}=k_{x}=$ $k_{y}=1$, and $F \equiv 0$. On the right boundary we take $f=0$, while on the left boundary we take $\alpha=\hat{\alpha}$ (a constant), $\beta(y)=\hat{\beta} \cos \frac{p \pi y}{w}$. In this case a standard separation of variables analysis leads to a steady-state solution:

$$
\begin{equation*}
T^{\mathrm{ss}}(x, y)=\frac{\hat{\alpha} \hat{\beta} \cos \frac{p \pi y}{w} \cosh \frac{p \pi(L-x)}{w}}{\hat{\alpha} \cosh \frac{p \pi L}{w}+\frac{p \pi}{w} \sinh \frac{p \pi L}{w}} . \tag{15}
\end{equation*}
$$

Figure 4 compares surface plots of the analytic solution (4a) and the numerical approximation at $t=400$ on a $21 \times 41 \operatorname{grid}(4 b)$. Figure 5 compares line plots of the analytic solution and the same numerical approximation along lines at $x=0(5 \mathrm{a})$ at $x=2(5 \mathrm{~b})$. It appears that the approximation for the steady-state solution (at least) is quite good.

Example 2
For our second example we change $\Omega=[0,10] \times[0,4]$ and introduce several

Figure 4: Surface Plot of Steady State Solutions

Figure 5: Steady State Solutions at Two Values of x

Figure 6: Example 2 - Solution at $t=2$
'zones' along the $x=0$ boundary with the parameters α and β varying in step fashion (see 4). Specifically, we have:

$$
\begin{aligned}
& \alpha(y)= \begin{cases}4 & \text { if } 0.8 \leq y \leq 1.2 \\
2 & \text { if } 1.6 \leq y \leq 2.4 \\
4 & \text { if } 2.8 \leq y \leq 3.2 \\
0 & \text { otherwise, and }\end{cases} \\
& \beta(y)= \begin{cases}35 & \text { if } 0.8 \leq y \leq 1.2 \\
35 & \text { if } 2.8 \leq y \leq 3.2 \\
0 & \text { otherwise } .\end{cases}
\end{aligned}
$$

On the right boundary we have:

$$
\left.k \frac{\partial T}{\partial x}\right|_{x=10}=2
$$

whereas along the upper and lower boundaries we use (2). The initial condition is $T(x, y, 0)=0$.

Figure 6 compares the numerical results at $t=2$ for a 41×21 grid (6a) and a 51×51 grid (6b). Figure 7 compares the numerical results on the same grids at $t=42$.

4 Sensitivity

Here we focus on sensitivity of the solution to parameters in the boundary conditions (2-4). More specifically, we suppose that the functions α, β, f depend smoothly on parameters $q \in \mathbf{Q} \subset \mathbb{R}^{p}$. Since the solution depends

Figure 7: Example 2 - Solution at $t=42$
on the parameter q we have $T: \mathbb{R}^{+} \times \Omega \times \mathbf{Q} \mapsto \mathbb{R}$. We assume that T depends smoothly on q and write:

$$
\begin{equation*}
\left.S_{k}(t, x, y ; q) \triangleq \frac{\partial T}{\partial q_{k}}\right|_{(t, x, y ; q)} \tag{16}
\end{equation*}
$$

Assuming sufficient smoothness, we can obtain a model for S_{k} by differentiating a model for T. We choose to apply this procedure to the weak-form (7-9):

$$
\begin{align*}
& \frac{\sigma C_{p}}{\Delta t} \int_{\Omega}\left(S_{k}^{n+1}-S_{k}^{n}\right) \Psi \mathrm{d} \omega-\int_{\Omega}\left(k \nabla S_{k}^{n+1} \cdot \nabla \Psi\right) \mathrm{d} \omega \\
& +\int_{0}^{w} \frac{\partial f(y ; q)}{\partial q_{k}} \Psi(L, y) \mathrm{d} y+\int_{0}^{w} \frac{\partial \alpha(y ; q)}{\partial q_{k}}\left[T^{n+1}(0, y)-\beta(y)\right] \Psi(0, y) \mathrm{d} y \\
& \quad+\int_{0}^{w} \alpha(y)\left[S_{k}^{n+1}(0, y)-\frac{\partial \beta(y ; q)}{\partial q_{k}}\right] \Psi(0, y) \mathrm{d} y \tag{17}
\end{align*}
$$

where $S_{k}^{n}(x, y ; q)=S_{k}\left(t_{n}, x, y ; q\right)$. Here, as above, we have assumed that the source term F, does not depend on T (nor on q).

We use the Galerkin finite element scheme from § 3.3 and approximate $S_{k}^{n}(x, y ; q)$ by the finite sum

$$
S^{n}(x, y) \approx \sum_{\jmath=1}^{N} u_{\jmath}^{n} \Phi_{\jmath}(x, y)
$$

Note that we have suppressed both the k index (which labels the components of the parameter vector q) and the explicit dependence on the parameter q.

The weak-form (17) leads to:

$$
\begin{align*}
& \frac{\sigma C_{p}}{\Delta t} \sum_{\jmath} u_{\jmath}^{n+1} \int_{\Omega} \Phi_{\jmath}(x, y) \Phi_{\imath}(x, y) \mathrm{d} \omega-\frac{\sigma C_{p}}{\Delta t} \sum_{\jmath} u_{\jmath}^{n} \int_{\Omega} \Phi_{\jmath}(x, y) \Phi_{\imath}(x, y) \mathrm{d} \omega \\
& \quad+\sum_{\jmath} u_{\jmath}^{n+1} \int_{\Omega} k \nabla \Phi_{\jmath}(x, y) \cdot \nabla \Phi_{\imath}(x, y) \mathrm{d} \omega+\int_{0}^{w} \frac{\partial f}{\partial q} \Phi_{\imath}(L, y) \mathrm{d} y \\
& \quad+\sum_{\jmath} z_{\jmath}^{n+1} \int_{0}^{w} \frac{\partial \alpha}{\partial q} \Phi_{\jmath}(0, y) \Phi_{\imath}(0, y) \mathrm{d} y+\int_{w}^{0} \frac{\partial \alpha}{\partial q} \beta(y) \Phi_{\imath}(0, y) \mathrm{d} y \\
& \quad+\sum_{\jmath} u_{\jmath}^{n+1} \int_{0}^{w} \alpha(y) \Phi_{\jmath}(0, y) \Phi_{\imath}(0, y) \mathrm{d} y \int_{w}^{0} \alpha(y) \frac{\partial \beta}{\partial q} \Phi_{\imath}(0, y) \mathrm{d} y=0 \tag{18}
\end{align*}
$$

Define the $N \times N$ matrix \mathbf{M}_{3} by

$$
\mathbf{M}_{3}=\frac{\Delta t}{\sigma C_{p}} \int_{0}^{w} \frac{\partial \alpha}{\partial q}(y) \Phi_{\jmath}(0, y) \Phi_{\imath}(0, y) \mathrm{d} y
$$

and, the vectors $\mathbf{b}^{0}, \mathbf{b}^{L} \in \mathbb{R}^{N}$ by

$$
\begin{aligned}
\mathbf{b}_{\imath}^{0} & =\frac{\Delta t}{\sigma C_{p}} \int_{w}^{0} \frac{\partial(\alpha \beta)}{\partial q}(y) \Phi_{\imath}(0, y) \mathrm{d} y \\
\mathbf{b}_{\imath}^{L} & =\frac{\Delta t}{\sigma C_{p}} \int_{w}^{0} \frac{\partial f}{\partial q}(y) \Phi_{\imath}(L, y) \mathrm{d} y
\end{aligned}
$$

Equation (18) can be written in matrix form as

$$
\begin{equation*}
\left(\mathbf{M}_{1}+\mathbf{M}_{2}\right) u^{n+1}-\mathbf{M}_{1} u^{n}+\mathbf{M}_{3} z^{n+1}+\mathbf{b}^{0}+\mathbf{b}^{L}=0 . \tag{19}
\end{equation*}
$$

Since our initial condition for the temperature field does not depend on the parameter (q), we have $S^{0}(x, y)=0$, hence $u^{0}=0 \in \mathbb{R}^{N}$. Note that Equation (19) includes terms from the temperature distribution $\left(z^{n+1}\right)$. One strategy is to solve the pair $(13,19)$ as a coupled system.

4.1 Numerical Example

Here we consider the sensitivity of the steady-state solution of Example 2 to the value of the α parameter on the central interval $(1.6 \leq y \leq 2.4)$. The steady-state solution for the temperature distribution is found from (13) as

$$
\mathbf{M}_{2} z^{\mathrm{ss}}=-(\mathbf{F}+\mathbf{b}),
$$

and the steady-state solution for the sensitivity is found from (19) as

$$
\mathbf{M}_{2} u^{\mathrm{ss}}=-\left(\mathbf{M}_{3} z^{\mathrm{ss}}+\mathbf{b}^{0}+\mathbf{b}^{L}\right)
$$

The resulting sensitivity (distribution) is shown in Figure 8.

Figure 8: Steady sensitivity on a 51×51 grid

References

[1] J.E. Akin, Finite Elements for Analysis and Design, Academic Press, 1994

