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1 Background

Mathematical models for heating/cooling of buildings typically feature large
number of parameters characterizing features such as conductivity, convec-
tive coefficients, as well as geometric layout. Whereas lumped (ordinary
differential equations - ODE) models are common, the treatment here will
retain the distributed nature of the underlying physics (partial differential
equations - PDE).

2 A Mathematical Model

We consider unsteady heat conduction in a plane. The governing partial
differential equation is

σCp
∂T

∂t
=

∂

∂x

(
kx

∂T

∂x

)
+

∂

∂y

(
ky

∂T

∂y

)
+F (T, x, y, t), (x, y)∈Ω, t > 0 , (1)

where:

• Ω = {(x, y) | 0 ≤ x ≤ L, 0 ≤ y ≤ w}⊂ IR2,

• F (T, x, y, t) is a specified source term,

• σ is the areal density of the material,
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• Cp is the thermal capacitance of the material, and

• kx > 0 (ky > 0) is the conductivity in the x direction (the y-direction).

Boundary conditions for our problem are:

∂T (x, 0)
∂y

=
∂T (x, w)

∂y
= 0 , (2)

kx
∂T (L, y)

∂x
= f(y) , (3)

kx
∂T (0, y)

∂x
= α(y) (T (0, y)− β(y)) . (4)

In the final (Robin) boundary condition we require that α(y) ≥ 0. The
initial data is given by

T (0, x, y) = h(x, y) . (5)

3 Numerical Approximation

3.1 Time discretization

Numerical solution of the problem (1 - 5) requires some type of discretiza-
tion. We begin by introducing a uniform time-grid, viz tn = n∆t, n =
0, 1, ..., and defining Tn(x, y)

4
= T (tn, x, y). The time-derivative in (1) is

approximated by the usual difference quotient leading to

(σ Cp)
Tn+1 − Tn

∆t
=
[

∂

∂x

(
kx

∂

∂x

)
+

∂

∂y

(
ky

∂

∂y

)]
(θTn+1+(1− θ)Tn)

+ F ((θTn+1+(1− θ)Tn), x, y, t̂) .

We have the choices:

• θ = 0 - explicit Euler,

• θ = 1 - implicit Euler,

• θ = 1/2 - implicit mid-point rule (similar to Crank-Nicholson).

We choose the implicit Euler scheme and re-write as

Tn+1 − Tn − ∆t

σ Cp

[
∂

∂x

(
kx

∂

∂x

)
+

∂

∂y

(
ky

∂

∂y

)]
Tn+1

− ∆t

σ Cp
F (Tn+1, x, y, tn+1) = 0 . (6)
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The (spatial) PDE (6) is to be solved at n = 0, 1, ... with T 0(x, y) = h(x, y),
from (5).

3.2 Spatial discretization

Our numerical solution of (6) is based on a weak formulation. We multiply
by a test function Ψ(x, y) and integrate over the spatial domain Ω:

∫
Ω

(
Tn+1 − Tn − ∆t

σ Cp
F (Tn+1, x, y, tn+1)

)
Ψ dω

− ∆t

σ Cp

∫
Ω

[
∂

∂x

(
kx

∂

∂x

)
+

∂

∂y

(
ky

∂

∂y

)]
Tn+1 Ψ dω = 0 . (7)

The 2nd term in (7) is integrated by parts∫
Ω

[
∂

∂x

(
kx

∂

∂x

)
+

∂

∂y

(
ky

∂

∂y

)]
Tn+1 Ψ dω

= −
∫

Ω

(
k∇Tn+1 · ∇Ψ

)
dω +

∫
∂Ω

(
k∇Tn+1 · n̂

)
Ψ dσ , (8)

where in the boundary integral, n̂ is an outward normal to the surface, and
the integration is in an anti-clockwise sense around the region Ω. Imposing
the specified boundary conditions (2 - 4), the boundary term in (8) evaluates
to ∫

∂Ω

(
k∇Tn+1 · n̂

)
Ψ dσ =

∫ w

0
f(y)Ψ(L, y) dy

−
∫ 0

w
α(y)

[
Tn+1(0, y)− β(y)

]
Ψ(0, y) dy . (9)

In the following we restrict attention to the case wherein the source term F
does not depend on T .

3.3 Galerkin Finite Element

We seek an approximate solution of the form

Tn
N (x, y) =

N∑
=1

zn
 Φ(x, y) . (10)
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Substitute the approximation (10) into the weak-form and use for test func-
tions Ψ = Φı leads to:

∑


zn+1

∫
Ω

Φ(x, y) Φı(x, y) dω −
∑



zn

∫
Ω

Φ(x, y) Φı(x, y) dω

− ∆t

σ Cp

∫
Ω

F (x, y, tn+1)Φı dω +
∆t

σ Cp

∑


zn+1

∫
Ω

(k∇Φ · ∇Φı) dω

− ∆t

σ Cp

[∫ w

0
f(y)Φı(L, y) dy −

∫ 0

w
α(y)

(∑


zn+1
 Φ(0, y)− β(y)

)
Φı(0, y) dy

]
= 0

for ı = 1, 2, ..., N . (11)

Gathering terms leads to

∑


[∫
Ω

Φ(x, y) Φı(x, y) dω

+
∆t

σ Cp

(∫
Ω

(k∇Φ · ∇Φı) dω +
∫ 0

w
α(y) Φ(0, y) Φı(0, y) dy

)]
zn+1


−
∑



[∫
Ω

Φ(x, y) Φı(x, y) dω

]
zn
 −

[
∆t

σ Cp

∫
Ω

F (x, y, tn+1)Φı dω

]

− ∆t

σ Cp

[∫ w

0
f(y)Φı(L, y) dy +

∫ 0

w
α(y)β(y)Φı(0, y) dy

]
= 0

for ı = 1, 2, ..., N . (12)

In matrix terminology

(M1 + M2) zn+1 − M1 zn + F(tn+1) + b = 0 . (13)

Note that if the source term in (1) has a finite limit (limt→∞ F (t, x, y) =
F∞(x, y)) and limt→∞F(t) = F∞ then (13) has a steady-state solution that
satisifies

M2z
ss + F∞ + b = 0 . (14)

3.3.1 Quadratic Functions on Triangular Elements

We impose a regular nx × ny = ((2` + 1)× (2m + 1)) grid on Ω (`,m ≥ 1).
Using the odd-labeled points we generate ` m rectangles; diagonals divide
these into 2 ` m triangles. Figure 1 shows the case nx = 21, ny = 13
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Figure 1: 21× 13 Grid
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Figure 2: Computational Triangle

(` = 10,m = 6). Grid points at the center of each line segment are not
shown.

A typical computational triangle is shown in Figure 2. Note that the
vertex points are numbered 1 - 3 in order as one traverses the edges of
the triangle in counter-clockwise fashion. The center points are similarly
numbered 4 - 6.

We construct six quadratic functions: three of these interpolate values
at vertex points (H1,H2,H3), and three interpolate values at the segment
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Figure 3: Basic Quadratic Functions

center points (H4,H5,H6).

H1(r, s) = 1− 3r + 2r2 − 3s + 4rs + 2s2

H2(r, s) = −r + 2r2

H3(r, s) = −s + 2s2

H4(r, s) = 4r − 4r2 − 4rs

H5(r, s) = 4rs

H6(r, s) = 4s− 4rs− 4s2

Figure 3 displays the shape of these local interpolating functions for the
vertex points (left) and the segment center points (right) [1, from p 139].

3.4 Example Results

Example 1
We first consider a case with Ω = [0, 10] × [0, 20] with σ = Cp = kx =
ky = 1, and F ≡ 0.. On the right boundary we take f = 0, while on the
left boundary we take α = α̂ (a constant), β(y) = β̂ cos pπy

w . In this case a
standard separation of variables analysis leads to a steady-state solution:

T ss(x, y) =
α̂β̂ cos pπy

w cosh pπ(L−x)
w

α̂ cosh pπL
w + pπ

w sinh pπL
w

. (15)

Figure 4 compares surface plots of the analytic solution (4a) and the numer-
ical approximation at t = 400 on a 21 × 41 grid (4b). Figure 5 compares
line plots of the analytic solution and the same numerical approximation
along lines at x = 0 (5a) at x = 2 (5b). It appears that the approximation
for the steady-state solution (at least) is quite good.

Example 2
For our second example we change Ω = [0, 10]× [0, 4] and introduce several
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(a) Analytic Solution
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Figure 4: Surface Plot of Steady State Solutions
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(b) x = 2

Figure 5: Steady State Solutions at Two Values of x
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Figure 6: Example 2 - Solution at t = 2

‘zones’ along the x = 0 boundary with the parameters α and β varying in
step fashion (see 4). Specifically, we have:

α(y) =


4 if 0.8 ≤ y ≤ 1.2
2 if 1.6 ≤ y ≤ 2.4
4 if 2.8 ≤ y ≤ 3.2
0 otherwise, and

β(y) =


35 if 0.8 ≤ y ≤ 1.2
35 if 2.8 ≤ y ≤ 3.2
0 otherwise.

On the right boundary we have:

k
∂T

∂x
|x=10 = 2 ,

whereas along the upper and lower boundaries we use (2). The initial con-
dition is T (x, y, 0) = 0.

Figure 6 compares the numerical results at t = 2 for a 41× 21 grid (6a)
and a 51 × 51 grid (6b). Figure 7 compares the numerical results on the
same grids at t = 42.

4 Sensitivity

Here we focus on sensitivity of the solution to parameters in the boundary
conditions (2 - 4). More specifically, we suppose that the functions α, β, f
depend smoothly on parameters q ∈ Q ⊂ IRp. Since the solution depends
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Figure 7: Example 2 - Solution at t = 42

on the parameter q we have T : IR+ × Ω × Q 7→ IR. We assume that T
depends smoothly on q and write:

Sk(t, x, y; q)
4
=

∂T

∂qk
|(t,x,y;q) . (16)

Assuming sufficient smoothness, we can obtain a model for Sk by differen-
tiating a model for T . We choose to apply this procedure to the weak-form
(7 - 9):

σ Cp

∆t

∫
Ω

(
Sn+1

k − Sn
k

)
Ψ dω −

∫
Ω

(
k∇Sn+1

k · ∇Ψ
)

dω

+
∫ w

0

∂f(y; q)
∂qk

Ψ(L, y) dy +
∫ w

0

∂α(y; q)
∂qk

[
Tn+1(0, y)− β(y)

]
Ψ(0, y) dy

+
∫ w

0
α(y)

[
Sn+1

k (0, y)− ∂β(y; q)
∂qk

]
Ψ(0, y) dy , (17)

where Sn
k (x, y; q) = Sk(tn, x, y; q). Here, as above, we have assumed that

the source term F , does not depend on T (nor on q).
We use the Galerkin finite element scheme from § 3.3 and approximate

Sn
k (x, y; q) by the finite sum

Sn(x, y) ≈
N∑

=1

un
 Φ(x, y) .

Note that we have suppressed both the k index (which labels the components
of the parameter vector q) and the explicit dependence on the parameter q.

9



The weak-form (17) leads to:

σ Cp

∆t

∑


un+1


∫
Ω

Φ(x, y)Φı(x, y) dω − σ Cp

∆t

∑


un


∫
Ω

Φ(x, y)Φı(x, y) dω

+
∑



un+1


∫
Ω

k∇Φ(x, y) · ∇Φı(x, y) dω +
∫ w

0

∂f

∂q
Φı(L, y) dy

+
∑



zn+1


∫ w

0

∂α

∂q
Φ(0, y)Φı(0, y) dy +

∫ 0

w

∂α

∂q
β(y)Φı(0, y) dy

+
∑



un+1


∫ w

0
α(y)Φ(0, y)Φı(0, y) dy

∫ 0

w
α(y)

∂β

∂q
Φı(0, y) dy = 0 . (18)

Define the N ×N matrix M3 by

M3 =
∆t

σ Cp

∫ w

0

∂α

∂q
(y) Φ(0, y) Φı(0, y) dy ,

and, the vectors b0, bL ∈ IRN by

b0
ı =

∆t

σ Cp

∫ 0

w

∂(α β)
∂q

(y) Φı(0, y) dy

bL
ı =

∆t

σ Cp

∫ 0

w

∂f

∂q
(y) Φı(L, y) dy .

Equation (18) can be written in matrix form as

(M1 + M2)un+1 −M1u
n + M3z

n+1 + b0 + bL = 0 . (19)

Since our initial condition for the temperature field does not depend on
the parameter (q), we have S0(x, y) = 0, hence u0 = 0 ∈ IRN . Note that
Equation (19) includes terms from the temperature distribution (zn+1). One
strategy is to solve the pair (13, 19) as a coupled system.

4.1 Numerical Example

Here we consider the sensitivity of the steady-state solution of Example 2
to the value of the α parameter on the central interval (1.6 ≤ y ≤ 2.4). The
steady-state solution for the temperature distribution is found from (13) as

M2 zss = −(F + b) ,

and the steady-state solution for the sensitivity is found from (19) as

M2 uss = −(M3z
ss + b0 + bL) .

The resulting sensitivity (distribution) is shown in Figure 8.

10



0
2

4
6

8
10

0

1
2

3

4
−5

−4

−3

−2

−1

 x
 y

 S
en

si
ti

vi
ty

Figure 8: Steady sensitivity on a 51× 51 grid
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