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1 Background

Mathematical models for heating/cooling of buildings typically feature large
number of parameters characterizing features such as conductivity, convec-
tive coefficients, as well as geometric layout. Whereas lumped (ordinary
differential equations - ODE) models are common, the treatment here will
retain the distributed nature of the underlying physics (partial differential
equations - PDE).

2 A Mathematical Model

We consider unsteady heat conduction in a plane. The governing partial
differential equation is

oT 0 oT 0 oT
ana =5 <kwax> +87y <ky6y> +F(T,x,y,t), (r,y)€Q, t >0, (1)

where:
e Q={(z,y) | 0<z<L, 0<y<w}cR?
o F(T,z,y,t) is a specified source term,

e o is the areal density of the material,



e (), is the thermal capacitance of the material, and
e k, >0 (k, > 0) is the conductivity in the « direction (the y-direction).

Boundary conditions for our problem are:
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In the final (Robin) boundary condition we require that a(y) > 0. The
initial data is given by
T(0,z,y) = h(z,y) - (5)

3 Numerical Approximation

3.1 Time discretization

Numerical solution of the problem (1 - 5) requires some type of discretiza-

tion. We begin by introducing a uniform time-grid, viz t, = nAt, n =
A

0,1,..., and defining T"(x,y) = T(tn,z,y). The time-derivative in (1) is

approximated by the usual difference quotient leading to

(0 Cp) TWN_T” = [;x (k,,,;;) + gy (ky;y)] 0T +(1—0)T™)
+ F(0T" 1 (1 — 0)T™), z,y,1) .
We have the choices:
e 0 =0 - explicit Euler,
e 0 =1 - implicit Euler,
e 0 =1/2 - implicit mid-point rule (similar to Crank-Nicholson).
We choose the implicit Euler scheme and re-write as
e
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oC)

F(T"H, z,Y,tht1) =0. (6)



The (spatial) PDE (6) is to be solved at n = 0,1, ... with T%(z,y) = h(x,y),
from (5).
3.2 Spatial discretization

Our numerical solution of (6) is based on a weak formulation. We multiply
by a test function ¥(z,y) and integrate over the spatial domain Q:

At
/ (Tn+1 _ Tn — F(Tn+17 x,Yy, tn—‘,—l)) \Il dw
0 oCp
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The 2°¢ term in (7) is integrated by parts

0 0 0 N7 onea
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=— / (kVT™ . V) dw + / (kVT™ ) Wdo, (8)
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where in the boundary integral, 7 is an outward normal to the surface, and
the integration is in an anti-clockwise sense around the region §2. Imposing
the specified boundary conditions (2 - 4), the boundary term in (8) evaluates
to

/ (kVT™ - R) \Ifda:/wf(y)\I'(L,y) dy
onN 0
0

- / aly) [T"(0,) — B(y)] ©(0.9) dy . (9)

In the following we restrict attention to the case wherein the source term F'
does not depend on T.

3.3 Galerkin Finite Element

We seek an approximate solution of the form

N

Th(z,y) =) 2 @)(x,y) . (10)
1=1



Substitute the approximation (10) into the weak-form and use for test func-
tions ¥ = &, leads to:

zj:zn—i-l /Q O, (z,y) y(2,y) dw — zj:zn /Q Q) (z,y) @,(z,y) dw
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fore=1,2,..,N. (11)

Gathering terms leads to
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forv=1,2,...,N. (12)
In matrix terminology
(M) +M,) 2" — M; 2" + F(tyy1) + b=0. (13)

Note that if the source term in (1) has a finite limit (lim;—o F(¢,z,y) =
F>(z,y)) and lim;_,o, F(t) = F* then (13) has a steady-state solution that
satisifies

Mz +F* +b=0. (14)

3.3.1 Quadratic Functions on Triangular Elements

We impose a regular n, x n, = ((20 + 1) x (2m + 1)) grid on Q (¢,m > 1).
Using the odd-labeled points we generate £ m rectangles; diagonals divide
these into 2 ¢ m triangles. Figure 1 shows the case n, = 21,n, = 13



Figure 1: 21 x 13 Grid

Figure 2: Computational Triangle

(¢ = 10,m = 6). Grid points at the center of each line segment are not
shown.

A typical computational triangle is shown in Figure 2. Note that the
vertex points are numbered 1 - 3 in order as one traverses the edges of
the triangle in counter-clockwise fashion. The center points are similarly
numbered 4 - 6.

We construct six quadratic functions: three of these interpolate values
at vertex points (Hi, Ho, H3), and three interpolate values at the segment



Figure 3: Basic Quadratic Functions

center points (Hy, Hs, Hg).

Hi(r,s) = 1—3r+2r%—3s+ 4rs+ 25>
Hy(r,s) = —r+2r?

Hs(r,s) = —s+2s°

Hy(r,s) = 4r—4r? —4rs

Hs(r,s) = drs

Hg(r,s) = 4s—4rs — 4s>

Figure 3 displays the shape of these local interpolating functions for the
vertex points (left) and the segment center points (right) [1, from p 139].

3.4 Example Results

Example 1
We first consider a case with Q = [0, 10] x [0, 20] with 0 = C), = k, =
ky =1, and F' = 0.. On the right boundary we take f = 0, while on the
left boundary we take o = & (a constant), 8(y) = 3 cos P In this case a
standard separation of variables analysis leads to a steady-state solution:

pry
w
&cosh% + %sinh% '

af cos cosh PrL=2)
w

T (x,y) = (15)

Figure 4 compares surface plots of the analytic solution (4a) and the numer-
ical approximation at ¢ = 400 on a 21 x 41 grid (4b). Figure 5 compares
line plots of the analytic solution and the same numerical approximation

along lines at x = 0 (5a) at = 2 (5b). It appears that the approximation
for the steady-state solution (at least) is quite good.

Example 2
For our second example we change € = [0, 10] x [0, 4] and introduce several



(a) Analytic Solution (b) 21 x 41 grid

Figure 4: Surface Plot of Steady State Solutions
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(a)z=0 (b)z=2

Figure 5: Steady State Solutions at Two Values of x



(b) 51 x 51

Figure 6: Example 2 - Solution at ¢ = 2

‘zones’ along the r = 0 boundary with the parameters o and 3 varying in
step fashion (see 4). Specifically, we have:

4 if08<y<12
2 ifl6<y<24
4 if28<y<3.2
0

otherwise, and

35 if0.8<y<1.2
Bly)=<{35 if28<y<32

0  otherwise.

On the right boundary we have:

oT
ki r= - 2 9
3x| 10

whereas along the upper and lower boundaries we use (2). The initial con-
dition is T'(z,y,0) = 0.

Figure 6 compares the numerical results at t = 2 for a 41 x 21 grid (6a)
and a 51 x 51 grid (6b). Figure 7 compares the numerical results on the
same grids at ¢ = 42.

4 Sensitivity

Here we focus on sensitivity of the solution to parameters in the boundary
conditions (2 - 4). More specifically, we suppose that the functions «, 3, f
depend smoothly on parameters ¢ € Q C IRP. Since the solution depends



(a) 41 x 21 (b) 51 x 51

Figure 7: Example 2 - Solution at ¢ = 42

on the parameter ¢ we have 7' : IRT x Q x Q — IR. We assume that T
depends smoothly on ¢ and write:

Se(t, 2, y5q) = aiqk|(t,r,y;q) : (16)
Assuming sufficient smoothness, we can obtain a model for Si by differen-
tiating a model for T. We choose to apply this procedure to the weak-form
(7-9):

UACtp/ (St =) \I/dw—/ (kVSPH - V) dw
Q Q
“oflyq) Y03 q) (g )
+/0 9 L) dy+/0 g (L (0.9) = By)] (0.y) dy

w 8 .
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where SP(z,y;q) = Sk(tn,z,y;q). Here, as above, we have assumed that
the source term F', does not depend on 7' (nor on q).

We use the Galerkin finite element scheme from § 3.3 and approximate
Sy (x,y;q) by the finite sum

N
S™(@,y) ~ Y ul By, y) -
1=1

Note that we have suppressed both the k index (which labels the components
of the parameter vector ¢) and the explicit dependence on the parameter g.



The weak-form (17) leads to:

acpz n+1/ (z,y)® mydw— pz / (2, 9)®,(z, y) dw
+Zu§l+1/§2k‘v¢j(m,y).V@l(ﬂf,y)dw—i-/ a—cbl(L,y)dy
+Z n+1/ ,(0,y)® (0ydy+/ 8—ﬂ y)®,(0,7) dy

0
+Zun+1/ y)®@,(0,)®,(0,7) dy/ a(y)?i{%((),y) dy=0. (18)

w

Define the N x N matrix Mg by

At [V O«
M3 = —(y) ®,(0,%) ®,(0,y) dy ,
=50 ) aq(y) 5(0,) ©,(0,y) dy
and, the vectors b?, bL ¢ R by
At [0 0(ap)
b? = ®,(0,y) d
) =Gy . "o (1) ©.(0,y) dy
At [0Of
bl = —(y)®,(L,y) d
5 -Gy /. 8q(y) (L,y) dy
Equation (18) can be written in matrix form as
(M + Mo)u"t — Myu” + M32" ™ 4 b + bl =0. (19)

Since our initial condition for the temperature field does not depend on
the parameter (q), we have S°(z,y) = 0, hence u’ = 0 € RY. Note that
Equation (19) includes terms from the temperature distribution (2"*1). One
strategy is to solve the pair (13, 19) as a coupled system.

4.1 Numerical Example

Here we consider the sensitivity of the steady-state solution of Example 2
to the value of the a parameter on the central interval (1.6 <y < 2.4). The
steady-state solution for the temperature distribution is found from (13) as

M; 2% =—(F+b),
and the steady-state solution for the sensitivity is found from (19) as
My u® = —(M3z® + b + b") .

The resulting sensitivity (distribution) is shown in Figure 8.
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Sensitivity

Figure 8: Steady sensitivity on a 51 x 51 grid
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