# include # include # include # include using namespace std; # include "tetrahedron_nco_rule.hpp" int main ( ); void test01 ( ); void test02 ( ); void test03 ( ); void test04 ( ); void test05 ( ); void test06 ( ); //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for TETRAHEDRON_NCO_RULE_TEST. // // Discussion: // // TETRAHEDRON_NCO_RULE_TEST tests the TETRAHEDRON_NCO_RULE library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2007 // // Author: // // John Burkardt // { timestamp ( ); cout << "\n"; cout << "TETRAHEDRON_NCO_RULE_TEST:\n"; cout << " C++ version\n"; cout << " Test the TETRAHEDRON_NCO_RULE library.\n"; test01 ( ); test02 ( ); test03 ( ); test04 ( ); test05 ( ); test06 ( ); // // Terminate. // cout << "\n"; cout << "TETRAHEDRON_NCO_RULE_TEST:\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void test01 ( ) //****************************************************************************80 // // Purpose: // // TEST01 tests TETRAHEDRON_NCO_RULE_NUM, TETRAHEDRON_NCO_DEGREE, TETRAHEDRON_NCO_ORDER_NUM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2007 // // Author: // // John Burkardt // { int degree; int order_num; int rule; int rule_num; cout << "\n"; cout << "TEST01\n"; cout << " TETRAHEDRON_NCO_RULE_NUM returns the number of rules;\n"; cout << " TETRAHEDRON_NCO_DEGREE returns the degree of a rule;\n"; cout << " TETRAHEDRON_NCO_ORDER_NUM returns the order of a rule.\n"; rule_num = tetrahedron_nco_rule_num ( ); cout << "\n"; cout << " Number of available rules = " << rule_num << "\n"; cout << "\n"; cout << " Rule Degree Order\n"; cout << "\n"; for ( rule = 1; rule <= rule_num; rule++ ) { order_num = tetrahedron_nco_order_num ( rule ); degree = tetrahedron_nco_degree ( rule ); cout << " " << setw(8) << rule << " " << setw(8) << degree << " " << setw(8) << order_num << "\n"; } return; } //****************************************************************************80 void test02 ( ) //****************************************************************************80 // // Purpose: // // TEST02 tests TETRAHEDRON_NCO_RULE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2007 // // Author: // // John Burkardt // { int dim_num = 3; int order; int order_num; int rule; int rule_num; double *wtab; double wtab_sum; double *xyztab; cout << "\n"; cout << "TEST02\n"; cout << " TETRAHEDRON_NCO_RULE returns the points and weights\n"; cout << " of an NCO rule for the tetrahedron.\n"; cout << "\n"; cout << " In this test, we simply check that the weights\n"; cout << " sum to 1.\n"; rule_num = tetrahedron_nco_rule_num ( ); cout << "\n"; cout << " Number of available rules = " << rule_num << "\n"; cout << "\n"; cout << " Rule Sum of weights\n"; cout << "\n"; for ( rule = 1; rule <= rule_num; rule++ ) { order_num = tetrahedron_nco_order_num ( rule ); xyztab = new double[dim_num*order_num]; wtab = new double[order_num]; tetrahedron_nco_rule ( rule, order_num, xyztab, wtab ); wtab_sum = 0.0; for ( order = 0; order < order_num; order++ ) { wtab_sum = wtab_sum + wtab[order]; } cout << " " << setw(8) << rule << " " << setw(14) << wtab_sum << "\n"; delete [] wtab; delete [] xyztab; } return; } //****************************************************************************80 void test03 ( ) //****************************************************************************80 // // Purpose: // // TEST03 tests TETRAHEDRON_NCO_RULE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 January 2007 // // Author: // // John Burkardt // { int rule; int rule_num; int suborder; int suborder_num; double *suborder_w; double *suborder_xyz; double xyz_sum; cout << "\n"; cout << "TEST03\n"; cout << " TETRAHEDRON_NCO_RULE returns the points and weights\n"; cout << " of an NCO rule for the tetrahedron.\n"; cout << "\n"; cout << " In this test, we simply check that, for each\n"; cout << " quadrature point, the barycentric coordinates\n"; cout << " add up to 1.\n"; rule_num = tetrahedron_nco_rule_num ( ); cout << "\n"; cout << " Rule Suborder Sum of coordinates\n"; cout << "\n"; for ( rule = 1; rule <= rule_num; rule++ ) { suborder_num = tetrahedron_nco_suborder_num ( rule ); suborder_xyz = new double[4*suborder_num]; suborder_w = new double[suborder_num]; tetrahedron_nco_subrule ( rule, suborder_num, suborder_xyz, suborder_w ); cout << "\n"; cout << " " << setw(8) << rule << " " << setw(8) << suborder_num << "\n"; for ( suborder = 0; suborder < suborder_num; suborder++ ) { xyz_sum = suborder_xyz[0+suborder*4] + suborder_xyz[1+suborder*4] + suborder_xyz[2+suborder*4] + suborder_xyz[3+suborder*4]; cout << " " << " " << setprecision(16) << setw(25) << xyz_sum << "\n"; } delete [] suborder_w; delete [] suborder_xyz; } return; } //****************************************************************************80 void test04 ( ) //****************************************************************************80 // // Purpose: // // TEST04 tests TETRAHEDRON_NCO_RULE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2007 // // Author: // // John Burkardt // { int a; int b; int c; double coef; int dim_num = 3; double err; double exact; int i; int order; int order_num; double quad; int rule; int rule_num; double value; double volume; double *wtab; double x; double *xyztab; double y; double z; cout << "\n"; cout << "TEST04\n"; cout << " TETRAHEDRON_NCO_RULE returns the points and weights of\n"; cout << " an NCO rule for the unit tetrahedron.\n"; cout << "\n"; cout << " This routine uses those rules to estimate the\n"; cout << " integral of monomomials in the unit tetrahedron.\n"; rule_num = tetrahedron_nco_rule_num ( ); volume = 1.0 / 6.0; for ( a = 0; a <= 6; a++ ) { for ( b = 0; b <= 6 - a; b++ ) { for ( c = 0; c <= 6 - a - b; c++ ) { // // Multiplying X**A * Y**B * Z**C by COEF will give us an integrand // whose integral is exactly 1. This makes the error calculations easy. // coef = 1.0; // for ( i = 1; i <= a; i++ ) // { // coef = coef * i / i; // } for ( i = a + 1; i <= a + b; i++ ) { coef = coef * ( double ) ( i ) / ( double ) ( i - a ); } for ( i = a + b + 1; i <= a + b + c; i++ ) { coef = coef * ( double ) ( i ) / ( double ) ( i - a - b ); } for ( i = a + b + c + 1; i <= a + b + c + 3; i++ ) { coef = coef * ( double ) ( i ); } cout << "\n"; cout << " Integrate " << coef << " * X^" << a << " * Y^" << b << " * Z^" << c << "\n"; cout << "\n"; cout << " Rule QUAD ERROR\n"; cout << "\n"; for ( rule = 1; rule <= rule_num; rule++ ) { order_num = tetrahedron_nco_order_num ( rule ); xyztab = new double[dim_num*order_num]; wtab = new double[order_num]; tetrahedron_nco_rule ( rule, order_num, xyztab, wtab ); quad = 0.0; for ( order = 0; order < order_num; order++ ) { x = xyztab[0+order*dim_num]; y = xyztab[1+order*dim_num]; z = xyztab[2+order*dim_num]; // // Some tedious calculations to avoid 0**0 complaints. // value = coef; if ( a != 0 ) { value = value * pow ( x, a ); } if ( b != 0 ) { value = value * pow ( y, b ); } if ( c != 0 ) { value = value * pow ( z, c ); } quad = quad + wtab[order] * value; } quad = volume * quad; exact = 1.0; err = fabs ( exact - quad ); cout << " " << setw(8) << rule << " " << setw(14) << quad << " " << setw(14) << err << "\n"; delete [] wtab; delete [] xyztab; } } } } return; } //****************************************************************************80 void test05 ( ) //****************************************************************************80 // // Purpose: // // TEST05 demonstrates REFERENCE_TO_PHYSICAL_T4. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2007 // // Author: // // John Burkardt // { # define DIM_NUM 3 # define NODE_NUM 4 int i; int node; double node_xyz[DIM_NUM*NODE_NUM] = { 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 }; double node_xyz2[DIM_NUM*NODE_NUM] = { 4.0, 5.0, 1.0, 6.0, 5.0, 1.0, 4.0, 8.0, 1.0, 4.0, 5.0, 5.0 }; int order; int order_num; int rule; double volume; double volume2; double *w; double *xyz; double *xyz2; cout << "\n"; cout << "TEST06\n"; cout << " REFERENCE_TO_PHYSICAL_T4 transforms a rule\n"; cout << " on the unit (reference) tetrahedron to a rule on \n"; cout << " an arbitrary (physical) tetrahedron.\n"; rule = 3; order_num = tetrahedron_nco_order_num ( rule ); xyz = new double[DIM_NUM*order_num]; xyz2 = new double[DIM_NUM*order_num]; w = new double[order_num]; tetrahedron_nco_rule ( rule, order_num, xyz, w ); // // Here is the reference tetrahedron, and its rule. // cout << "\n"; cout << " The reference tetrahedron:\n"; cout << "\n"; for ( node = 0; node < NODE_NUM; node++ ) { cout << " " << setw(8) << node+1 << " " << setw(14) << node_xyz[0+node*DIM_NUM] << " " << setw(14) << node_xyz[1+node*DIM_NUM] << " " << setw(14) << node_xyz[2+node*DIM_NUM] << "\n"; } volume = tetrahedron_volume ( node_xyz ); cout << "\n"; cout << " Rule " << rule << " for reference tetrahedron\n"; cout << " with volume = " << volume << "\n"; cout << "\n"; cout << " X Y Z W\n"; cout << "\n"; for ( order = 0; order < order_num; order++ ) { cout << " " << setw(8) << order << " " << setw(14) << xyz[0+order*DIM_NUM] << " " << setw(14) << xyz[1+order*DIM_NUM] << " " << setw(14) << xyz[2+order*DIM_NUM] << " " << setw(14) << w[order] << "\n"; } // // Transform the rule. // reference_to_physical_t4 ( node_xyz2, order_num, xyz, xyz2 ); // // Here is the physical tetrahedron, and its transformed rule. // cout << "\n"; cout << " The physical tetrahedron:\n"; cout << "\n"; for ( node = 0; node < NODE_NUM; node++ ) { cout << " " << setw(8) << node+1 << " " << setw(14) << node_xyz2[0+node*DIM_NUM] << " " << setw(14) << node_xyz2[1+node*DIM_NUM] << " " << setw(14) << node_xyz2[2+node*DIM_NUM] << "\n"; } volume2 = tetrahedron_volume ( node_xyz2 ); cout << "\n"; cout << " Rule " << rule << " for physical tetrahedron\n"; cout << " with volume = " << volume2 << "\n"; cout << "\n"; cout << " X Y Z W\n"; cout << "\n"; for ( order = 0; order < order_num; order++ ) { cout << " " << setw(8) << order << " " << setw(14) << xyz2[0+order*DIM_NUM] << " " << setw(14) << xyz2[1+order*DIM_NUM] << " " << setw(14) << xyz2[2+order*DIM_NUM] << " " << setw(14) << w[order] << "\n"; } delete [] w; delete [] xyz; delete [] xyz2; return; # undef DIM_NUM # undef NODE_NUM } //****************************************************************************80 void test06 ( ) //****************************************************************************80 // // Purpose: // // TEST06 tests TETRAHEDRON_NCO_RULE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 January 2007 // // Author: // // John Burkardt // { int dim_num = 3; int o; int order_num; int rule; int s; int *suborder; int suborder_num; double *suborder_w; double *suborder_xyz; double *w; double *xyz; cout << "\n"; cout << "TEST06\n"; cout << " TETRAHEDRON_NCO_RULE returns the points and weights\n"; cout << " of an NCO rule for the tetrahedron.\n"; rule = 4; cout << "\n"; cout << " In this test, we simply print rule " << rule << "\n"; suborder_num = tetrahedron_nco_suborder_num ( rule ); suborder = tetrahedron_nco_suborder ( rule, suborder_num ); suborder_w = new double[suborder_num]; suborder_xyz = new double[4*suborder_num]; tetrahedron_nco_subrule ( rule, suborder_num, suborder_xyz, suborder_w ); cout << "\n"; cout << " The compressed rule:\n"; cout << "\n"; cout << " Number of suborders = " << suborder_num << "\n"; cout << "\n"; cout << " S Sub Weight Xsi1 Xsi2 Xsi3 Xsi4\n"; cout << "\n"; for ( s = 0; s < suborder_num; s++ ) { cout << " " << setw(4) << s+1 << " " << setw(4) << suborder[s] << " " << setw(8) << suborder_w[s] << " " << setw(8) << suborder_xyz[0+s*4] << " " << setw(8) << suborder_xyz[1+s*4] << " " << setw(8) << suborder_xyz[2+s*4] << " " << setw(8) << setprecision(4) << suborder_xyz[3+s*4] << "\n"; } order_num = tetrahedron_nco_order_num ( rule ); xyz = new double[dim_num*order_num]; w = new double[order_num]; tetrahedron_nco_rule ( rule, order_num, xyz, w ); cout << "\n"; cout << " The full rule:\n"; cout << "\n"; cout << " Order = " << order_num << "\n"; cout << "\n"; cout << " O Weight X Y Z\n"; cout << "\n"; for ( o = o; o < order_num; o++ ) { cout << " " << setw(4) << o+1 << " " << setw(8) << w[o] << " " << setw(8) << xyz[0+o*3] << " " << setw(8) << xyz[1+o*3] << " " << setw(8) << setprecision(4) << xyz[2+o*3] << "\n"; } delete [] suborder; delete [] suborder_w; delete [] suborder_xyz; delete [] w; delete [] xyz; return; }