# include # include # include using namespace std; int main ( ); void sor_test01 ( double w ); # include "gnuplot_i.hpp" # include "sor.hpp" //****************************************************************************80 int main ( ) //****************************************************************************80 // // Purpose: // // MAIN is the main program for SOR_TEST. // // Discussion: // // SOR_TEST tests the SOR library. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 May 2011 // // Author: // // John Burkardt // { double w; timestamp ( ); cout << "\n"; cout << "SOR_TEST\n"; cout << " C++ version.\n"; cout << " Test the SOR library.\n"; w = 0.5; sor_test01 ( w ); sleep ( 2 ); w = 1.0; sor_test01 ( w ); sleep ( 2 ); w = 1.5; sor_test01 ( w ); sleep ( 2 ); // // Terminate. // cout << "\n"; cout << "SOR_TEST\n"; cout << " Normal end of execution.\n"; cout << "\n"; timestamp ( ); return 0; } //****************************************************************************80 void sor_test01 ( double w ) //****************************************************************************80 // // Purpose: // // SOR_TEST01 tests SOR1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 June 2011 // // Author: // // John Burkardt // // Parameters: // // Input, double W, the relaxation factor. // 0 < W < 2 is required. // { double *a; double *b; int i; int it; int it_num; int j; double *m_plot; double *ml_plot; int n; double *r_plot; double *rl_plot; double *s_plot; double t; gnuplot_ctrl *window1; gnuplot_ctrl *window2; double *x; double *x_exact; double *x_new; double *x_plot; cout << "\n"; cout << "SOR1_TEST01:\n"; cout << " Relaxation parameter W = " << w << "\n"; it_num = 2000; n = 33; // // Set the matrix A. // a = dif2 ( n, n ); // // Determine the right hand side vector B. // x_exact = new double[n]; for ( i = 0; i < n; i++ ) { t = ( double ) i / ( double ) ( n - 1 ); x_exact[i] = exp ( t ) * ( t - 1 ) * t; // x_exact[i] = ( double ) ( i + 1 ); } b = r8mat_mv ( n, n, a, x_exact ); // // Set the initial estimate for the solution. // x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = 0.0; } // // Allocate plot arrays. // m_plot = new double[it_num+1]; r_plot = new double[it_num+1]; s_plot = new double[it_num+1]; x_plot = new double[n*(it_num+1)]; // // Initialize plot arrays. // r_plot[0] = r8mat_residual_norm ( n, n, a, x, b ); m_plot[0] = 1.0; for ( i = 0; i < n; i++ ) { x_plot[i+0*n] = x[i]; } for ( j = 0; j <= it_num; j++ ) { s_plot[j] = ( double ) j; } // // Carry out the iteration. // for ( it = 1; it <= it_num; it++ ) { x_new = sor1 ( n, a, b, x, w ); r_plot[it] = r8mat_residual_norm ( n, n, a, x_new, b ); // // Compute the average point motion. // m_plot[it] = r8vec_diff_norm_squared ( n, x, x_new ) / ( double ) n; // // Update the solution // r8vec_copy ( n, x_new, x ); for ( i = 0; i < n; i++ ) { x_plot[i+0*n] = x[i]; } delete [] x_new; } r8vec_print ( n, x, "Solution" ); // // Plot the residual. // rl_plot = new double[it_num+1]; for ( j = 0; j <= it_num; j++ ) { rl_plot[j] = log ( r_plot[j] ); } window1 = gnuplot_init ( ); gnuplot_setstyle ( window1, "lines" ); gnuplot_cmd ( window1, "set grid" ); gnuplot_set_xlabel ( window1, "Step" ); gnuplot_set_ylabel ( window1, "Log ( Residual )" ); gnuplot_setstyle ( window1, "lines" ); gnuplot_plot1d_var2v ( window1, s_plot, rl_plot, it_num + 1, "Log(Residual)" ); sleep ( 1 ); // // Plot the average point motion. // ml_plot = new double[it_num+1]; for ( j = 0; j <= it_num; j++ ) { ml_plot[j] = log ( m_plot[j] ); // cout << j << " " << ml_plot[j] << "\n"; } window2 = gnuplot_init ( ); gnuplot_setstyle ( window2, "lines" ); gnuplot_cmd ( window2, "set grid" ); gnuplot_set_xlabel ( window2, "Step" ); gnuplot_set_ylabel ( window2, "Log ( Motion )" ); gnuplot_setstyle ( window2, "lines" ); gnuplot_plot1d_var2v ( window2, s_plot, ml_plot, it_num + 1, "Log(Motion)" ); sleep ( 1 ); // // Plot the evolution of the locations of the generators. // //figure ( 3 ) //y = ( 0 : it_num ); //for k = 1 : n // plot ( x_plot(k,1:it_num+1), y ) // hold on; //end //grid on //hold off; //title ( "Generator evolution." ); //xlabel ( "Generator positions" ); //ylabel ( "Iterations" ); gnuplot_close ( window1 ); gnuplot_close ( window2 ); delete [] a; delete [] b; delete [] m_plot; delete [] ml_plot; delete [] r_plot; delete [] rl_plot; delete [] s_plot; delete [] x; delete [] x_exact; delete [] x_plot; return; }