# include # include # include # include # include # include using namespace std; # include "r8utt.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of an I4. // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double *r8ge_mm ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8GE_MM multiplies two R8GE matrices. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrices. // N must be positive. // // Input, double A[N*N], B[N*N], the R8GE factor matrices. // // Output, double C[N*N], the R8GE product matrix. // { double *c; int i; int j; int k; c = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { c[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { c[i+j*n] = c[i+j*n] + a[i+k*n] * b[k+j*n]; } } } return c; } //****************************************************************************80 double *r8ge_mtm ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8GE_MTM computes C=A'*B for R8GE matrices. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 August 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrices. // N must be positive. // // Input, double A[N*N], B[N*N], the factors. // // Output, double C[N*N], the product. // { double *c; int i; int j; int k; c = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { c[i+j*n] = 0.0; for ( k = 0; k < n; k++ ) { c[i+j*n] = c[i+j*n] + a[k+i*n] * b[k+j*n]; } } } return c; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double r8utt_det ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8UTT_DET computes the determinant of a R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N], the matrix. // // Output, double R8UTT_DET, the determinant of the matrix. // { double det; det = pow ( a[0], n ); return det; } //****************************************************************************80 double *r8utt_indicator ( int n ) //****************************************************************************80 // // Purpose: // // R8UTT_INDICATOR sets up a R8UTT indicator matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double A[N], the matrix. // { double *a; int j; a = new double[n]; for ( j = 0; j < n; j++ ) { a[j] = ( double ) ( j + 1 ); } return a; } //****************************************************************************80 double *r8utt_inverse ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8UTT_INVERSE computes the inverse of a R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N], the matrix to be inverted. // // Output, double R8UTT_INVERSE[N], the inverse matrix. // { double *b; double d; int i; int j; double *p; double *pn; double *pnn; // // Initialize B. // d = 1.0 / a[0]; b = new double[n]; b[0] = d; for ( i = 1; i < n; i++ ) { b[i] = 0.0; } // // Set the strict upper triangle. // p = new double[n]; p[0] = 0.0; for ( i = 1; i < n; i++ ) { p[i] = a[i]; } // // PN will hold powers of P. // pn = new double[n]; pn[0] = 1.0; for ( i = 1; i < n; i++ ) { pn[i] = 0.0; } // // Add N-1 powers of strict upper triangle. // for ( j = 1; j < n; j++ ) { d = - d / a[0]; pnn = r8utt_mm ( n, p, pn ); for ( i = 0; i < n; i++ ) { b[i] = b[i] + d * pnn[i]; pn[i] = pnn[i]; } delete [] pnn; } delete [] p; delete [] pn; return b; } //****************************************************************************80 double *r8utt_mm ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8UTT_MM computes C = A * B, where A and B are R8UTT matrices. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrices. // // Input, double A[N], the first factor. // // Input, double B[N], the second factor. // // Output, double R8UTT_MM[N], the product. // { double *c; double *d; double *e; int k; d = new double[n]; for ( k = 0; k < n; k++ ) { d[k] = b[n-1-k]; } e = r8utt_mv ( n, a, d ); c = new double[n]; for ( k = 0; k < n; k++ ) { c[k] = e[n-1-k]; } delete [] d; delete [] e; return c; } //****************************************************************************80 double *r8utt_mtm ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8UTT_MTM computes C = A' * B, where A and B are R8UTT matrices. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Note that the result C is a dense matrix, of type R8GE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrices. // // Input, double A[N], B[N], the factors. // // Output, double R8UTT_MTM[N*N], the product. // { double *c; int i; int j; int k; c = new double[n*n]; for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { c[i+j*n] = 0.0; for ( k = 0; k <= i4_min ( i, j ); k++ ) { c[i+j*n] = c[i+j*n] + a[i-k] * b[j-k]; } } } return c; } //****************************************************************************80 double *r8utt_mtv ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8UTT_MTV computes b = A'*x, where A is an R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8UTT_MTV[N], the product A' * x. // { double *b; int d; int i; int j; b = new double[n]; for ( j = 0; j < n; j++ ) { b[j] = 0.0; } for ( d = 0; d < n; d++ ) { for ( j = d; j < n; j++ ) { i = j - d; b[j] = b[j] + a[j-i] * x[i]; } } return b; } //****************************************************************************80 double *r8utt_mv ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8UTT_MV computes b=A*x, where A is an R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8UTT_MV[N], the product A * x. // { double *b; int d; int i; int j; b = new double[n]; for ( i = 0; i < n; i++ ) { b[i] = 0.0; } for ( d = 0; d < n; d++ ) { for ( j = d; j < n; j++ ) { i = j - d; b[i] = b[i] + a[j-i] * x[j]; } } return b; } //****************************************************************************80 void r8utt_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8UTT_PRINT prints an R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of rows and columns of the matrix. // // Input, double A[N], the R8UTT matrix. // // Input, string TITLE, a title. // { r8utt_print_some ( n, a, 0, 0, n - 1, n - 1, title ); return; } //****************************************************************************80 void r8utt_print_some ( int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8UTT_PRINT_SOME prints some of an R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of rows and columns of the matrix. // // Input, double A[N], the R8UTT matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // 0 <= ILO <= IHI < M. // 0 <= JLO <= JHI < N. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n - 1 ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 0 ); i2hi = i4_min ( ihi, n - 1 ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(4) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { if ( j < i ) { cout << " "; } else { cout << setw(12) << a[j-i] << " "; } } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8utt_random ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8UTT_RANDOM randomizes an R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8UTT_RANDOM[N], the R8UTT matrix. // { double *a; a = r8vec_uniform_01_new ( n, seed ); return a; } //****************************************************************************80 double *r8utt_sl ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8UTT_SL solves a linear system A*x=b with an R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // No factorization of the upper triangular matrix is required. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N], the R8UTT matrix. // // Input, double B[N], the right hand side. // // Output, double R8UTT_SL[N], the solution vector. // { int i; int j; double *x; x = new double[n]; for ( j = 0; j < n; j++ ) { x[j] = b[j]; } for ( j = n - 1; 0 <= j; j-- ) { x[j] = x[j] / a[0]; for ( i = 0; i < j; i++ ) { x[i] = x[i] - a[j-i] * x[j]; } } return x; } //****************************************************************************80 double *r8utt_slt ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R8UTT_SLT solves a linear system A'*x=b with an R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // No factorization of the upper triangular matrix is required. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A[N], the R8UTT matrix. // // Input, double B[N], the right hand side. // // Output, double R8UTT_SLT[N], the solution vector. // { int i; int j; double *x; x = new double[n]; for ( j = 0; j < n; j++ ) { x[j] = b[j]; } for ( j = 0; j < n; j++ ) { x[j] = x[j] / a[0]; for ( i = j + 1; i < n; i++ ) { x[i] = x[i] - x[j] * a[i-j]; } } return x; } //****************************************************************************80 double *r8utt_to_r8ge ( int n, double a_utt[] ) //****************************************************************************80 // // Purpose: // // R8UTT_TO_R8GE copies an R8UTT matrix to an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a general M by N matrix. A storage // space is made for each entry. The two dimensional logical // array can be thought of as a vector of M*N entries, starting with // the M entries in the column 1, then the M entries in column 2 // and so on. Considered as a vector, the entry A(I,J) is then stored // in vector location I+(J-1)*M. // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A_UTT[N], the R8UTT matrix. // // Output, double R8UTT_TO_R8GE[N*N], the R8GE matrix. // { double *a_ge; int d; int i; int j; a_ge = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { a_ge[i+j*n] = 0.0; } } for ( d = 0; d < n; d++ ) { for ( j = d; j < n; j++ ) { i = j - d; a_ge[i+j*n] = a_utt[j-i]; } } return a_ge; } //****************************************************************************80 double *r8utt_zeros ( int n ) //****************************************************************************80 // // Purpose: // // R8UTT_ZEROS zeros an R8UTT matrix. // // Discussion: // // The R8UTT storage format is used for an N by N upper triangular Toeplitz // matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 November 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of rows and columns of the matrix. // // Output, double R8UTT_ZEROS[M*N], the R8UTT matrix. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator vector {1,2,3,...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 September 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the indicator array. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 August 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }