# include # include # include # include # include using namespace std; # include "r8sm.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 int r8ge_fa ( int n, double a[], int pivot[] ) //****************************************************************************80 // // Purpose: // // R8GE_FA performs a LINPACK-style PLU factorization of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // R8GE_FA is a simplified version of the LINPACK routine SGEFA. // // The two dimensional array is stored by columns in a one dimensional // array. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979, // ISBN13: 978-0-898711-72-1, // LC: QA214.L56. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, double A[N*N], the matrix to be factored. // On output, A contains an upper triangular matrix and the multipliers // which were used to obtain it. The factorization can be written // A = L * U, where L is a product of permutation and unit lower // triangular matrices and U is upper triangular. // // Output, int PIVOT[N], a vector of pivot indices. // // Output, int R8GE_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; int j; int k; int l; double t; // for ( k = 1; k <= n - 1; k++ ) { // // Find L, the index of the pivot row. // l = k; for ( i = k + 1; i <= n; i++ ) { if ( fabs ( a[l-1+(k-1)*n] ) < fabs ( a[i-1+(k-1)*n] ) ) { l = i; } } pivot[k-1] = l; // // If the pivot index is zero, the algorithm has failed. // if ( a[l-1+(k-1)*n] == 0.0 ) { cerr << "\n"; cerr << "R8GE_FA - Fatal error!\n"; cerr << " Zero pivot on step " << k << "\n"; exit ( 1 ); } // // Interchange rows L and K if necessary. // if ( l != k ) { t = a[l-1+(k-1)*n]; a[l-1+(k-1)*n] = a[k-1+(k-1)*n]; a[k-1+(k-1)*n] = t; } // // Normalize the values that lie below the pivot entry A(K,K). // for ( i = k + 1; i <= n; i++ ) { a[i-1+(k-1)*n] = -a[i-1+(k-1)*n] / a[k-1+(k-1)*n]; } // // Row elimination with column indexing. // for ( j = k + 1; j <= n; j++ ) { if ( l != k ) { t = a[l-1+(j-1)*n]; a[l-1+(j-1)*n] = a[k-1+(j-1)*n]; a[k-1+(j-1)*n] = t; } for ( i = k + 1; i <= n; i++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + a[i-1+(k-1)*n] * a[k-1+(j-1)*n]; } } } pivot[n-1] = n; if ( a[n-1+(n-1)*n] == 0.0 ) { cerr << "\n"; cerr << "R8GE_FA - Fatal error!\n"; cerr << " Zero pivot on step " << n << "\n"; exit ( 1 ); } return 0; } //****************************************************************************80 double *r8ge_ml ( int n, double a_lu[], int pivot[], double x[], int job ) //****************************************************************************80 // // Purpose: // // R8GE_ML computes A * x or A' * x, using R8GE_FA factors. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // It is assumed that R8GE_FA has overwritten the original matrix // information by LU factors. R8GE_ML is able to reconstruct the // original matrix from the LU factor data. // // R8GE_ML allows the user to check that the solution of a linear // system is correct, without having to save an unfactored copy // of the matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_FA. // // Input, int PIVOT[N], the pivot vector computed by R8GE_FA. // // Input, double X[N], the vector to be multiplied. // // Input, int JOB, specifies the operation to be done: // JOB = 0, compute A * x. // JOB nonzero, compute A' * X. // // Output, double R8GE_ML[N], the result of the multiplication. // { double *b; int i; int j; int k; double temp; // b = new double[n]; for ( i = 0; i < n; i++ ) { b[i] = x[i]; } if ( job == 0 ) { // // Y = U * X. // for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= j - 1; i++ ) { b[i-1] = b[i-1] + a_lu[i-1+(j-1)*n] * b[j-1]; } b[j-1] = a_lu[j-1+(j-1)*n] * b[j-1]; } // // B = PL * Y = PL * U * X = A * x. // for ( j = n - 1; 1 <= j; j-- ) { for ( i = j+1; i <= n; i++ ) { b[i-1] = b[i-1] - a_lu[i-1+(j-1)*n] * b[j-1]; } k = pivot[j-1]; if ( k != j ) { temp = b[k-1]; b[k-1] = b[j-1]; b[j-1] = temp; } } } else { // // Y = (PL)' * X: // for ( j = 1; j <= n - 1; j++ ) { k = pivot[j-1]; if ( k != j ) { temp = b[k-1]; b[k-1] = b[j-1]; b[j-1] = temp; } temp = 0.0; for ( i = j+1; i <= n; i++ ) { temp = temp + b[i-1] * a_lu[i-1+(j-1)*n]; } b[j-1] = b[j-1] - temp; } // // B = U' * Y = ( PL * U )' * X = A' * X. // for ( i = n; 1 <= i; i-- ) { for ( j = i+1; j <= n; j++ ) { b[j-1] = b[j-1] + b[i-1] * a_lu[i-1+(j-1)*n]; } b[i-1] = b[i-1] * a_lu[i-1+(i-1)*n]; } } return b; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8ge_sl_new ( int n, double a_lu[], int pivot[], double b[], int job ) //****************************************************************************80 // // Purpose: // // R8GE_SL_NEW solves an R8GE system factored by R8GE_FA. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // R8GE_SL is a simplified version of the LINPACK routine SGESL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_FA. // // Input, int PIVOT[N], the pivot vector from R8GE_FA. // // Input, double B[N], the right hand side vector. // // Input, int JOB, specifies the operation. // 0, solve A * x = b. // nonzero, solve A' * x = b. // // Output, double R8GE_SL[N], the solution vector. // { int i; int k; int l; double t; double *x; // x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = b[i]; } // // Solve A * x = b. // if ( job == 0 ) { // // Solve PL * Y = B. // for ( k = 1; k <= n - 1; k++ ) { l = pivot[k-1]; if ( l != k ) { t = x[l-1]; x[l-1] = x[k-1]; x[k-1] = t; } for ( i = k + 1; i <= n; i++ ) { x[i-1] = x[i-1] + a_lu[i-1+(k-1)*n] * x[k-1]; } } // // Solve U * X = Y. // for ( k = n; 1 <= k; k-- ) { x[k-1] = x[k-1] / a_lu[k-1+(k-1)*n]; for ( i = 1; i <= k-1; i++ ) { x[i-1] = x[i-1] - a_lu[i-1+(k-1)*n] * x[k-1]; } } } // // Solve A' * X = B. // else { // // Solve U' * Y = B. // for ( k = 1; k <= n; k++ ) { t = 0.0; for ( i = 1; i <= k - 1; i++ ) { t = t + x[i-1] * a_lu[i-1+(k-1)*n]; } x[k-1] = ( x[k-1] - t ) / a_lu[k-1+(k-1)*n]; } // // Solve ( PL )' * X = Y. // for ( k = n - 1; 1 <= k; k-- ) { t = 0.0; for ( i = k + 1; i <= n; i++ ) { t = t + x[i-1] * a_lu[i-1+(k-1)*n]; } x[k-1] = x[k-1] + t; l = pivot[k-1]; if ( l != k ) { t = x[l-1]; x[l-1] = x[k-1]; x[k-1] = t; } } } return x; } //****************************************************************************80 void r8sm_indicator ( int m, int n, double a[], double u[], double v[] ) //****************************************************************************80 // // Purpose: // // R8SM_INDICATOR returns the indicator matrix as an R8SM matrix. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns // of the matrix. // // Output, double A[M*N], the R8SM matrix. // // Output, double U[M], V[N], the R8SM vectors. // { int fac; int i; int j; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); for ( i = 0; i < m; i++ ) { u[i] = - 1.0; } for ( j = 0; j < n; j++ ) { v[j] = ( double ) ( j + 1 ); } for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { a[i+j*m] = ( double ) ( fac * ( i + 1 ) ); } } return; } //****************************************************************************80 double *r8sm_ml ( int n, double a_lu[], double u[], double v[], int pivot[], double x[], int job ) //****************************************************************************80 // // Purpose: // // R8SM_ML multiplies a factored square R8SM matrix times a vector. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_FA. // // Input, double U[N], V[N], the Sherman Morrison vectors. // // Input, int PIVOT[N], the pivot vector computed by R8GE_FA. // // Input, double X[N], the vector to be multiplied. // // Input, int JOB, specifies the operation to be done: // JOB = 0, compute (A-u*v') * x. // JOB nonzero, compute (A-u*v')' * x. // // Output, double R8SM_ML[N], the result of the multiplication. // { double *b; int i; double ux; double vx; b = r8ge_ml ( n, a_lu, pivot, x, job ); if ( job == 0 ) { vx = 0.0; for ( i = 0; i < n; i++ ) { vx = vx + v[i] * x[i]; } for ( i = 0; i < n; i++ ) { b[i] = b[i] - u[i] * vx; } } else { ux = 0.0; for ( i = 0; i < n; i++ ) { ux = ux + u[i] * x[i]; } for ( i = 0; i < n; i++ ) { b[i] = b[i] - v[i] * ux; } } return b; } //****************************************************************************80 double *r8sm_mtv ( int m, int n, double a[], double u[], double v[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SM_MTV multiplies a vector by an R8SM matrix. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M*N], the R8SM matrix. // // Input, double U[M], V[N], the R8SM vectors. // // Input, double X[M], the vector to be multiplied. // // Output, double R8SM_MTV[N], the product (A-u*v')' * X. // { double *b; double dot; int i; int j; b = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < m; j++ ) { b[i] = b[i] + x[j] * a[j+i*m]; } dot = 0.0; for ( j = 0; j < m; j++ ) { dot = dot + u[j] * x[j]; } b[i] = b[i] - v[i] * dot; } return b; } //****************************************************************************80 double *r8sm_mv ( int m, int n, double a[], double u[], double v[], double x[] ) //****************************************************************************80 // // Purpose: // // R8SM_MV multiplies an R8SM matrix times a vector. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M*N], the R8SM matrix. // // Input, double U[M], V[N], the R8SM vectors U and V. // // Input, double X[N], the vector to be multiplied by (A-u*v'). // // Output, double R8SM_MV[M], the product (A-u*v') * x. // { double *b; int i; int j; double vx; b = r8vec_zeros_new ( m ); vx = 0.0; for ( j = 0; j < n; j++ ) { vx = vx + v[j] * x[j]; } for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { b[i] = b[i] + a[i+j*m] * x[j]; } b[i] = b[i] - u[i] * vx; } return b; } //****************************************************************************80 void r8sm_print ( int m, int n, double a[], double u[], double v[], string title ) //****************************************************************************80 // // Purpose: // // R8SM_PRINT prints an R8SM matrix. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M*N], the R8SM matrix. // // Input, double U[M], V[N], the R8SM vectors. // // Input, string TITLE, a title. // { r8sm_print_some ( m, n, a, u, v, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8sm_print_some ( int m, int n, double a[], double u[], double v[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8SM_PRINT_SOME prints some of an R8SM matrix. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M*N], the R8SM matrix. // // Input, double U[M], V[N], the R8SM vectors. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(4) << i << " "; // // Print out (up to) 5 entries in row I, that lie in the current strip. // for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] - u[i-1] * v[j-1] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8sm_random ( int m, int n, int &seed, double a[], double u[], double v[] ) //****************************************************************************80 // // Purpose: // // R8SM_RANDOM randomizes an R8SM matrix. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double A[M*N], the R8SM matrix. // // Output, double U[M], V[N], the R8SM vectors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = r8_uniform_01 ( seed ); } } for ( i = 0; i < m; i++ ) { u[i] = r8_uniform_01 ( seed ); } for ( j = 0; j < n; j++ ) { v[j] = r8_uniform_01 ( seed ); } return; } //****************************************************************************80 double *r8sm_sl ( int n, double a_lu[], double u[], double v[], double b[], int pivot[], int job ) //****************************************************************************80 // // Purpose: // // R8SM_SL solves a square R8SM system that has been factored. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // It is assumed that A has been decomposed into its LU factors // by R8GE_FA. The Sherman Morrison formula allows // us to solve linear systems involving (A-u*v') by solving linear // systems involving A and adjusting the results. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 October 2003 // // Author: // // John Burkardt // // Reference: // // David Kahaner, Cleve Moler, Stephen Nash // Numerical Methods and Software, // Prentice Hall, 1989 // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_FA. // // Input, double U[N], V[N], the R8SM vectors U and V. // // Input, double B[N], the right hand side vector. // // Input, int PIVOT[N], the pivot vector produced by R8GE_FA. // // Input, int JOB, specifies the system to solve. // 0, solve (A-u*v') * X = B. // nonzero, solve (A-u*v') * X = B. // // Output, double R8SM_SL[N], the solution vector, or NULL if // an error occurred. // { double alpha; double beta; int i; int job_local; double *w; double *x; x = new double[n]; if ( job == 0 ) { // // Solve A' * w = v. // job_local = 1; w = r8ge_sl_new ( n, a_lu, pivot, v, job_local ); // // Set beta = w' * b. // beta = 0.0; for ( i = 0; i < n; i++ ) { beta = beta + w[i] * b[i]; } // // Solve A * x = b. // job_local = 0; x = r8ge_sl_new ( n, a_lu, pivot, b, job_local ); // // Solve A * w = u. // job_local = 0; delete [] w; w = r8ge_sl_new ( n, a_lu, pivot, u, job_local ); // // Set alpha = 1 / ( 1 - v' * w ). // alpha = 1.0; for ( i = 0; i < n; i++ ) { alpha = alpha - v[i] * w[i]; } } else { // // Solve A * w = u. // job_local = 0; w = r8ge_sl_new ( n, a_lu, pivot, u, job_local ); // // Set beta = w' * b. // beta = 0.0; for ( i = 0; i < n; i++ ) { beta = beta + w[i] * b[i]; } // // Solve A' * x = b. // job_local = 1; x = r8ge_sl_new ( n, a_lu, pivot, b, job_local ); // // Solve A' * w = v. // job_local = 1; delete [] w; w = r8ge_sl_new ( n, a_lu, pivot, v, job_local ); // // Set alpha = 1 / ( 1 - u' * w ). // alpha = 1.0; for ( i = 0; i < n; i++ ) { alpha = alpha - u[i] * w[i]; } } if ( alpha == 0.0 ) { cerr << "\n"; cerr << "R8SM_SL - Fatal error!\n"; cerr << " The divisor ALPHA is zero.\n"; exit ( 1 ); } alpha = 1.0 / alpha; // // Set b = b + alpha * beta * w. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * beta * w[i]; } delete [] w; return x; } //****************************************************************************80 double *r8sm_to_r8ge ( int m, int n, double a[], double u[], double v[] ) //****************************************************************************80 // // Purpose: // // R8SM_TO_R8GE copies an R8SM matrix to an R8GE matrix. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Input, double A[M*N], the R8SM matrix. // // Input, double U[M], V[N], the R8SM vectors. // // Output, double R8SM_TO_R8GE[M*N], the R8GE matrix. // { double *b; int i; int j; b = new double[m*n]; for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { b[i+j*m] = a[i+j*m] - u[i] * v[j]; } } return b; } //****************************************************************************80 void r8sm_zeros ( int m, int n, double a[], double u[], double v[] ) //****************************************************************************80 // // Purpose: // // R8SM_ZEROS zeros an R8SM matrix. // // Discussion: // // The R8SM storage format is used for an M by N Sherman Morrison matrix B, // which is defined by an M by N matrix A, an M vector U, and // an N vector V, by B = A - U * V' // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of the matrix. // // Output, double A[M*N], the R8SM matrix. // // Output, double U[M], V[N], the R8SM vectors. // { int i; int j; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } for ( i = 0; i < m; i++ ) { u[i] = 0.0; } for ( i = 0; i < n; i++ ) { v[i] = 0.0; } return; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n - 1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void r8vec2_print_some ( int n, double x1[], double x2[], int max_print, string title ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT_SOME prints "some" of two real vectors. // // Discussion: // // The user specifies MAX_PRINT, the maximum number of lines to print. // // If N, the size of the vectors, is no more than MAX_PRINT, then // the entire vectors are printed, one entry of each per line. // // Otherwise, if possible, the first MAX_PRINT-2 entries are printed, // followed by a line of periods suggesting an omission, // and the last entry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vectors. // // Input, double X1[N], X2[N], the vector to be printed. // // Input, int MAX_PRINT, the maximum number of lines to print. // // Input, string TITLE, a title. // { int i; if ( max_print <= 0 ) { return; } if ( n <= 0 ) { return; } cout << "\n"; cout << title << "\n"; cout << "\n"; if ( n <= max_print ) { for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } } else if ( 3 <= max_print ) { for ( i = 0; i < max_print-2; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } cout << "...... .............. ..............\n"; i = n - 1; cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } else { for ( i = 0; i < max_print - 1; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } i = max_print - 1; cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "...more entries...\n"; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }