# include # include # include # include # include # include using namespace std; # include "r8s3.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8s3_diagonal ( int m, int n, int nz_num, int sym, int row[], int col[], double a[] ) //****************************************************************************80 // // Purpose: // // R8S3_DIAGONAL reorders an R8S3 matrix so diagonal entries are first. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // This routine reorders the entries of A so that the first N entries // are exactly the diagonal entries of the matrix, in order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, // and 1 if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and // column indices of the nonzero elements. // // Input/output, double A[NZ_NUM], the nonzero elements // of the matrix. // { int found; int i; int j; int k; double t; found = 0; for ( k = 0; k < nz_num; k++ ) { while ( row[k] == col[k] ) { if ( row[k] == k ) { found = found + 1; break; } i = row[k]; j = row[i]; row[i] = row[k]; row[k] = j; j = col[i]; col[i] = col[k]; col[k] = j; t = a[i]; a[i] = a[k]; a[k] = t; found = found + 1; if ( i4_min ( m, n ) <= found ) { break; } } if ( i4_min ( m, n ) <= found ) { break; } } if ( found < i4_min ( m, n ) ) { cerr << "\n"; cerr << "R8S3_DIAGONAL - Warning!\n"; cerr << " Number of diagonal entries expected: " << i4_min ( m, n ) << "\n"; cerr << " Number found was " << found << "\n"; } return; } //****************************************************************************80 void r8s3_dif2 ( int m, int n, int nz_num, int sym, int row[], int col[], double a[] ) //****************************************************************************80 // // Purpose: // // R8S3_DIF2 sets up an R8S3 second difference matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero entries. // // Input, int SYM, is 0 if the matrix is not symmetric, // and 1 if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Output, int ROW[NZ_NUM], COL[NZ_NUM], the row and column // indices of the nonzero elements. // // Output, double A[NZ_NUM], the indicator matrix. // { int i; int j; int k; k = 0; // // Diagonal entries. // for ( j = 0; j < n; j++ ) { i = j; row[k] = i; col[k] = j; a[k] = 2.0; k = k + 1; } // // Offdiagonal nonzeros, by column. // for ( j = 0; j < n; j++ ) { if ( sym != 1 ) { if ( 0 < j ) { i = j - 1; row[k] = i; col[k] = j; a[k] = -1.0; k = k + 1; } } if ( j + 1 <= m - 1 ) { i = j + 1; row[k] = i; col[k] = j; a[k] = -1.0; k = k + 1; } } return; } //****************************************************************************80 double *r8s3_indicator ( int m, int n, int nz_num, int sym, int row[], int col[] ) //****************************************************************************80 // // Purpose: // // R8S3_INDICATOR sets up an R8S3 indicator matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero entries. // // Input, int SYM, is 0 if the matrix is not symmetric, and 1 // if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Output, double R8S3_INDICATOR[NZ_NUM], the indicator matrix. // { double *a; int fac; int i; int j; int k; a = new double[nz_num]; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; a[k] = ( double ) ( fac * ( i + 1 ) + ( j + 1 ) ); } return a; } //****************************************************************************80 void r8s3_jac_sl ( int n, int nz_num, int sym, int row[], int col[], double a[], double b[], double x[], int it_max ) //****************************************************************************80 // // Purpose: // // R8S3_JAC_SL solves an R8S3 system using Jacobi iteration. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // This routine REQUIRES that the matrix be square, that the matrix // have nonzero diagonal entries, and that the first N entries of // the array A be exactly the diagonal entries of the matrix, in order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, // and 1 if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column // indices of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double B[N], the right hand side of the linear system. // // Input/output, double X[N], an approximate solution // to the system. // // Input, int IT_MAX, the maximum number of iterations. // { int i; int it_num; int j; int k; double *x_new; x_new = new double[n]; for ( it_num = 1; it_num <= it_max; it_num++ ) { // // Initialize to right hand side. // for ( j = 0; j < n; j++ ) { x_new[j] = b[j]; } // // Subtract off-diagonal terms. // for ( k = n; k < nz_num; k++ ) { i = row[k]; j = col[k]; x_new[i] = x_new[i] - a[k] * x[j]; if ( sym == 1 ) { x_new[j]= x_new[j] - a[k] * x[i]; } } // // Divide by diagonal terms and update. // for ( j = 0; j < n; j++ ) { x[j] = x_new[j] / a[j]; } } delete [] x_new; return; } //****************************************************************************80 double *r8s3_mtv ( int m, int n, int nz_num, int sym, int row[], int col[], double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8S3_MTV multiplies an R8VEC times an R8S3 matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, // and 1 if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column // indices of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double X[M], the vector to be multiplied by A'. // // Output, double B[N], the product A' * x. // { double *b; int i; int j; int k; b = r8vec_zeros_new ( n ); for ( k = 0; k < nz_num; k++ ) { i = col[k]; j = row[k]; b[i] = b[i] + a[k] * x[j]; } // // Handle the symmetric option. // if ( sym == 1 && m == n ) { for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; if ( i != j ) { b[i] = b[i] + a[k] * x[j]; } } } return b; } //****************************************************************************80 double *r8s3_mv ( int m, int n, int nz_num, int sym, int row[], int col[], double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8S3_MV multiplies an R8S3 matrix by an R8VEC. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, // and 1 if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column // indices of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double B[M], the product A * x. // { double *b; int i; int j; int k; b = r8vec_zeros_new ( m ); for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; b[i] = b[i] + a[k] * x[j]; } // // Handle the symmetric option. // if ( sym == 1 && m == n ) { for ( k = 0; k < nz_num; k++ ) { i = col[k]; j = row[k]; if ( i != j ) { b[i] = b[i] + a[k] * x[j]; } } } return b; } //****************************************************************************80 void r8s3_print ( int m, int n, int nz_num, int sym, int row[], int col[], double a[], string title ) //****************************************************************************80 // // Purpose: // // R8S3_PRINT prints an R8S3 matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, and 1 // if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements // of the matrix. // // Input, string TITLE, a title. // { r8s3_print_some ( m, n, nz_num, sym, row, col, a, 0, 0, m - 1, n - 1, title ); return; } //****************************************************************************80 void r8s3_print_some ( int m, int n, int nz_num, int sym, int row[], int col[], double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8S3_PRINT_SOME prints some of an R8S3 matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, and 1 // if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements // of the matrix. // // Input, int ILO, JLO, IHI, JHI, the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 double aij; int i; int i2hi; int i2lo; int inc; int index[INCX]; int j; int j2; int j2hi; int j2lo; int k; bool nonzero; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n - 1 ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 0 ); i2hi = i4_min ( ihi, m - 1 ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // nonzero = false; for ( j2 = 0; j2 < inc; j2++ ) { index[j2] = -1; } for ( k = 0; k < nz_num; k++ ) { if ( i == row[k] && j2lo <= col[k] && col[k] <= j2hi ) { j2 = col[k] - j2lo + 1; if ( a[k] != 0.0 ) { index[j2-1] = k; nonzero = true; } } else if ( sym == 1 && m == n && i == col[k] && j2lo <= row[k] && row[k] <= j2hi ) { j2 = row[k] - j2lo + 1; if ( a[k] != 0.0 ) { index[j2-1] = k; nonzero = true; } } } if ( nonzero ) { cout << setw(5) << i << " "; for ( j2 = 0; j2 < inc; j2++ ) { if ( 0 <= index[j2] ) { aij = a[index[j2]]; } else { aij = 0.0; } cout << setw(14) << aij; } cout << "\n"; } } } cout << "\n"; return; # undef INCX } //****************************************************************************80 double *r8s3_random ( int m, int n, int nz_num, int sym, int row[], int col[], int &seed ) //****************************************************************************80 // // Purpose: // // R8S3_RANDOM randomizes an R8S3 matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero entries. // // Input, int SYM, is 0 if the matrix is not symmetric, and 1 // if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input/output, integer &SEED, a seed for the random number generator. // // Output, double R8S3_RANDOM[NZ_NUM], the matrix. // { double *a; int k; a = new double[nz_num]; for ( k = 0; k < nz_num; k++ ) { a[k] = r8_uniform_01 ( seed ); } return a; } //****************************************************************************80 void r8s3_read ( string input_file, int m, int n, int nz_num, int row[], int col[], double a[] ) //****************************************************************************80 // // Purpose: // // R8S3_READ reads a square R8S3 matrix from a file. // // Discussion: // // This routine needs the value of NZ_NUM, which can be determined // by a call to R8S3_READ_SIZE. // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILE, the name of the file to be read. // // Unused, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Output, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Output, double A[NZ_NUM], the nonzero elements of the matrix. // { ifstream input; int k; input.open ( input_file.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8S3_READ - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_file << "\"\n"; exit ( 1 ); } for ( k = 0; k < nz_num; k++ ) { input >> row[k] >> col[k] >> a[k]; } input.close ( ); return; } //****************************************************************************80 void r8s3_read_size ( string input_file, int &m, int &n, int &nz_num ) //****************************************************************************80 // // Purpose: // // R8S3_READ_SIZE reads the size of a square R8S3 matrix from a file. // // Discussion: // // The value of NZ_NUM is simply the number of records in the input file. // // The value of N is determined as the maximum entry in the row and column // vectors. // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, string INPUT_FILE, the name of the file to // be read. // // Output, int &M, &N, the order of the matrix. // // Output, int &NZ_NUM, the number of nonzero elements in the matrix. // { double a_k; int col_k; ifstream input; int row_k; m = 0; n = 0; nz_num = 0; input.open ( input_file.c_str ( ) ); if ( !input ) { cerr << "\n"; cerr << "R8S3_READ_SIZE - Fatal error!\n"; cerr << " Could not open the input file: \"" << input_file << "\"\n"; exit ( 1 ); } for ( ; ; ) { input >> row_k >> col_k >> a_k; if ( input.eof ( ) ) { break; } nz_num = nz_num + 1; m = i4_max ( m, row_k + 1 ); n = i4_max ( n, col_k + 1 ); } input.close ( ); return; } //****************************************************************************80 double *r8s3_res ( int m, int n, int nz_num, int sym, int row[], int col[], double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R8S3_RES computes the residual r=b-A*x for an R8S3 matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, // and 1 if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column // indices of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the right hand side. // // Output, double R[M], the residual b-A*x. // { double *r; int i; r = r8s3_mv ( m, n, nz_num, sym, row, col, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 double *r8s3_to_r8ge ( int m, int n, int nz_num, int sym, int row[], int col[], double a[] ) //****************************************************************************80 // // Purpose: // // R8S3_TO_R8GE copies an R8S3 matrix to an R8GE matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // The R8GE storage format is used for a general M by N matrix. A storage // space is made for each entry. The two dimensional logical // array can be thought of as a vector of M*N entries, starting with // the M entries in the column 1, then the M entries in column 2 // and so on. Considered as a vector, the entry A(I,J) is then stored // in vector location I+(J-1)*M. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in // the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, // and 1 if the matrix is symmetric. The symmetric case only makes sense // if the matrix is also square, that is, M = N. In this case, only // the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column // indices of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements of the matrix. // // Output, double B[M*N], the R8GE matrix. // { double *b; int i; int j; int k; b = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { b[i+j*m] = 0.0; } } for ( k = 0; k < nz_num; k++ ) { i = row[k]; j = col[k]; b[i+j*m] = b[i+j*m] + a[k]; if ( sym == 1 && m == n && i != j ) { b[j+i*m] = b[j+i*m] + a[k]; } } return b; } //****************************************************************************80 void r8s3_write ( int m, int n, int nz_num, int sym, int row[], int col[], double a[], string output_file ) //****************************************************************************80 // // Purpose: // // R8S3_WRITE writes a square R8S3 matrix to a file. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // There is a symmetry option for square matrices. If the symmetric storage // option is used, the format specifies that only nonzeroes on the diagonal // and lower triangle are stored. However, this routine makes no attempt // to enforce this. The only thing it does is to "reflect" any nonzero // offdiagonal value. Moreover, no check is made for the erroneous case // in which both A(I,J) and A(J,I) are specified, but with different values. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 August 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero elements in the matrix. // // Input, int SYM, is 0 if the matrix is not symmetric, and 1 // if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Input, double A[NZ_NUM], the nonzero elements // of the matrix. // // Input, string OUTPUT_FILE, the name of the file to which // the information is to be written. // { int k; ofstream output; output.open ( output_file.c_str ( ) ); if ( !output ) { cerr << "\n"; cerr << "R8S3_WRITE - Fatal error!\n"; cerr << " Could not open the output file.\n"; exit ( 1 ); } for ( k = 0; k < nz_num; k++ ) { output << " " << setw(8) << row[k] << " " << setw(8) << col[k] << " " << setw(16) << a[k] << "\n"; } output.close ( ); return; } //****************************************************************************80 double *r8s3_zeros ( int m, int n, int nz_num, int sym, int row[], int col[] ) //****************************************************************************80 // // Purpose: // // R8S3_ZEROS zeros an R8S3 indicator matrix. // // Discussion: // // The R8S3 storage format corresponds to the SLAP Triad format. // // The R8S3 storage format stores the row, column and value of each nonzero // entry of a sparse matrix. The entries may be given in any order. No // check is made for the erroneous case in which a given matrix entry is // specified more than once. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 August 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, int NZ_NUM, the number of nonzero entries. // // Input, int SYM, is 0 if the matrix is not symmetric, and 1 // if the matrix is symmetric. If the matrix is symmetric, then // only the nonzeroes on the diagonal and in the lower triangle are stored. // // Input, int ROW[NZ_NUM], COL[NZ_NUM], the row and column indices // of the nonzero elements. // // Output, double R8S3_ZEROS[NZ_NUM], the matrix. // { double *a; a = r8vec_zeros_new ( nz_num ); return a; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }