# include # include # include # include # include # include using namespace std; # include "r8pbu.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 double r8_max ( double x, double y ) //****************************************************************************80 // // Purpose: // // R8_MAX returns the maximum of two R8s. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 January 2002 // // Author: // // John Burkardt // // Parameters: // // Input, double X, Y, the quantities to compare. // // Output, double R8_MAX, the maximum of X and Y. // { if ( y < x ) { return x; } else { return y; } } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double r8ge_det ( int n, double a_lu[], int pivot[] ) //****************************************************************************80 // // Purpose: // // R8GE_DET computes the determinant of a matrix factored by R8GE_FA or R8GE_TRF. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2004 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979, // ISBN13: 978-0-898711-72-1, // LC: QA214.L56. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_FA or R8GE_TRF. // // Input, int PIVOT[N], as computed by R8GE_FA or R8GE_TRF. // // Output, double R8GE_DET, the determinant of the matrix. // { double det; int i; det = 1.0; for ( i = 1; i <= n; i++ ) { det = det * a_lu[i-1+(i-1)*n]; if ( pivot[i-1] != i ) { det = -det; } } return det; } //****************************************************************************80 int r8ge_fa ( int n, double a[], int pivot[] ) //****************************************************************************80 // // Purpose: // // R8GE_FA performs a LINPACK-style PLU factorization of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // R8GE_FA is a simplified version of the LINPACK routine SGEFA. // // The two dimensional array is stored by columns in a one dimensional // array. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979, // ISBN13: 978-0-898711-72-1, // LC: QA214.L56. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, double A[N*N], the matrix to be factored. // On output, A contains an upper triangular matrix and the multipliers // which were used to obtain it. The factorization can be written // A = L * U, where L is a product of permutation and unit lower // triangular matrices and U is upper triangular. // // Output, int PIVOT[N], a vector of pivot indices. // // Output, int R8GE_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; int j; int k; int l; double t; // for ( k = 1; k <= n - 1; k++ ) { // // Find L, the index of the pivot row. // l = k; for ( i = k + 1; i <= n; i++ ) { if ( fabs ( a[l-1+(k-1)*n] ) < fabs ( a[i-1+(k-1)*n] ) ) { l = i; } } pivot[k-1] = l; // // If the pivot index is zero, the algorithm has failed. // if ( a[l-1+(k-1)*n] == 0.0 ) { cerr << "\n"; cerr << "R8GE_FA - Fatal error!\n"; cerr << " Zero pivot on step " << k << "\n"; exit ( 1 ); } // // Interchange rows L and K if necessary. // if ( l != k ) { t = a[l-1+(k-1)*n]; a[l-1+(k-1)*n] = a[k-1+(k-1)*n]; a[k-1+(k-1)*n] = t; } // // Normalize the values that lie below the pivot entry A(K,K). // for ( i = k + 1; i <= n; i++ ) { a[i-1+(k-1)*n] = -a[i-1+(k-1)*n] / a[k-1+(k-1)*n]; } // // Row elimination with column indexing. // for ( j = k + 1; j <= n; j++ ) { if ( l != k ) { t = a[l-1+(j-1)*n]; a[l-1+(j-1)*n] = a[k-1+(j-1)*n]; a[k-1+(j-1)*n] = t; } for ( i = k + 1; i <= n; i++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + a[i-1+(k-1)*n] * a[k-1+(j-1)*n]; } } } pivot[n-1] = n; if ( a[n-1+(n-1)*n] == 0.0 ) { cerr << "\n"; cerr << "R8GE_FA - Fatal error!\n"; cerr << " Zero pivot on step " << n << "\n"; exit ( 1 ); } return 0; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8pbu_cg ( int n, int mu, double a[], double b[], double x_init[] ) //****************************************************************************80 // // Purpose: // // R8PBU_CG uses the conjugate gradient method on an R8PBU system. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // The matrix A must be a positive definite symmetric band matrix. // // The method is designed to reach the solution after N computational // steps. However, roundoff may introduce unacceptably large errors for // some problems. In such a case, calling the routine again, using // the computed solution as the new starting estimate, should improve // the results. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 29 July 2015 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals. // MU must be at least 0, and no more than N-1. // // Input, double A[(MU+1)*N], the R8PBU matrix. // // Input, double B[N], the right hand side vector. // // Input, double X_INIT[N], an estimate for the solution. // // Output, double R8PBU_CG[N], the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; double *x; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = x_init[i]; } // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r8pbu_mv ( n, n, mu, a, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP=A*P. // delete [] ap; ap = r8pbu_mv ( n, n, mu, a, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = 0.0; for ( i = 0; i < n; i++ ) { pap = pap + p[i] * ap[i]; } if ( pap == 0.0 ) { delete [] ap; break; } pr = 0.0; for ( i = 0; i < n; i++ ) { pr = pr + p[i] * r[i]; } alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = 0.0; for ( i = 0; i < n; i++ ) { rap = rap + r[i] * ap[i]; } beta = - rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } delete [] p; delete [] r; return x; } //****************************************************************************80 double r8pbu_det ( int n, int mu, double a_lu[] ) //****************************************************************************80 // // Purpose: // // R8PBU_DET computes the determinant of a matrix factored by R8PBU_FA. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 October 2003 // // Author: // // Original FORTRAN77 version by Dongarra, Bunch, Moler, Stewart. // C++ version by John Burkardt. // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979, // ISBN13: 978-0-898711-72-1, // LC: QA214.L56. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals of the matrix. // MU must be at least 0 and no more than N-1. // // Input, double A_LU[(MU+1)*N], the LU factors from R8PBU_FA. // // Output, double R8PBU_DET, the determinant of the matrix. // { double det; int j; det = 1.0; for ( j = 0; j < n; j++ ) { det = det * a_lu[mu+j*(mu+1)] * a_lu[mu+j*(mu+1)]; } return det; } //****************************************************************************80 double *r8pbu_dif2 ( int m, int n, int mu ) //****************************************************************************80 // // Purpose: // // R8PBU_DIF2 returns the DIF2 matrix in R8PBU format. // // Example: // // N = 5 // // 2 -1 . . . // -1 2 -1 . . // . -1 2 -1 . // . . -1 2 -1 // . . . -1 2 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I. // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int MU, the number of superdiagonals. // MU must be at least 0, and no more than N-1. // // Output, double R8PBU_DIF2[(MU+1)*N], the matrix. // { double *a; int i; int j; a = new double[(mu+1)*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < mu + 1; i++ ) { a[i+j*(mu+1)] = 0.0; } } for ( j = 1; j < n; j++ ) { i = mu - 1; a[i+j*(mu+1)] = -1.0; } for ( j = 0; j < n; j++ ) { i = mu; a[i+j*(mu+1)] = 2.0; } return a; } //****************************************************************************80 double *r8pbu_fa ( int n, int mu, double a[] ) //****************************************************************************80 // // Purpose: // // R8PBU_FA factors an R8PBU matrix. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // The matrix A must be a positive definite symmetric band matrix. // // Once factored, linear systems A*x=b involving the matrix can be solved // by calling R8PBU_SL. No pivoting is performed. Pivoting is not necessary // for positive definite symmetric matrices. If the matrix is not positive // definite, the algorithm may behave correctly, but it is also possible // that an illegal divide by zero will occur. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 February 2004 // // Author: // // Original FORTRAN77 version by Dongarra, Bunch, Moler, Stewart. // C++ version by John Burkardt. // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979, // ISBN13: 978-0-898711-72-1, // LC: QA214.L56. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals of the matrix. // MU must be at least 0, and no more than N-1. // // Input, double A[(MU+1)*N], the R8PBU matrix. // // Output, double R8PBU_FA[(MU+1)*N], information describing a factored // form of the matrix. // { double *b; int i; int ik; int j; int jk; int k; int mm; double s; double t; b = new double[(mu+1)*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < mu+1; i++ ) { b[i+j*(mu+1)] = a[i+j*(mu+1)]; } } for ( j = 1; j <= n; j++ ) { ik = mu + 1; jk = i4_max ( j - mu, 1 ); mm = i4_max ( mu + 2 - j, 1 ); s = 0.0; for ( k = mm; k <= mu; k++ ) { t = 0.0; for ( i = 0; i <= k-mm-1; i++ ) { t = t + b[ik+i-1+(jk-1)*(mu+1)] * b[mm+i-1+(j-1)*(mu+1)]; } b[k-1+(j-1)*(mu+1)] = ( b[k-1+(j-1)*(mu+1)] - t ) / b[mu+(jk-1)*(mu+1)]; s = s + b[k-1+(j-1)*(mu+1)] * b[k-1+(j-1)*(mu+1)]; ik = ik - 1; jk = jk + 1; } s = b[mu+(j-1)*(mu+1)] - s; if ( s <= 0.0 ) { return NULL; } b[mu+(j-1)*(mu+1)] = sqrt ( s ); } return b; } //****************************************************************************80 double *r8pbu_indicator ( int n, int mu ) //****************************************************************************80 // // Purpose: // // R8PBU_INDICATOR sets up an R8PBU indicator matrix. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals in the matrix. // MU must be at least 0 and no more than N-1. // // Output, double R8PBU_INDICATOR[(MU+1)*N], the R8PBU matrix. // { double *a; int fac; int i; int j; a = new double[(mu+1)*n]; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); // // Zero out the "junk" entries. // for ( j = 0; j < mu; j++ ) { for ( i = 0; i <= mu - j; i++ ) { a[i+j*(mu+1)] = 0.0; } } // // Set the meaningful values. // for ( i = 1; i <= n; i++ ) { for ( j = i; j <= i4_min ( i + mu, n ); j++ ) { a[mu+i-j+(j-1)*(mu+1)] = ( double ) ( fac * i + j ); } } return a; } //****************************************************************************80 double *r8pbu_ml ( int n, int mu, double a_lu[], double x[] ) //****************************************************************************80 // // Purpose: // // R8PBU_ML multiplies a vector times a matrix that was factored by R8PBU_FA. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals of the matrix. // MU must be at least 0 and no more than N-1. // // Input, double A_LU[(MU+1)*N], the LU factors from R8PBU_FA. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8PBU_ML[N], the product A * x. // { double *b; int i; int ilo; int j; int jhi; int k; b = new double[n]; for ( i = 0; i < n; i++ ) { b[i] = x[i]; } // // Multiply U * X = Y. // for ( k = 1; k <= n; k++ ) { ilo = i4_max ( 1, k - mu ); for ( i = ilo; i <= k - 1; i++ ) { b[i-1] = b[i-1] + a_lu[mu+i-k+(k-1)*(mu+1)] * b[k-1]; } b[k-1] = a_lu[mu+(k-1)*(mu+1)] * b[k-1]; } // // Multiply L * Y = B. // for ( k = n; 1 <= k; k-- ) { jhi = i4_min ( k + mu, n ); for ( j = k + 1; j <= jhi; j++ ) { b[j-1] = b[j-1] + a_lu[mu+k-j+(j-1)*(mu+1)] * b[k-1]; } b[k-1] = a_lu[mu+(k-1)*(mu+1)] * b[k-1]; } return b; } //****************************************************************************80 double *r8pbu_mv ( int m, int n, int mu, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8PBU_MV multiplies an R8PBU matrix times a vector. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 February 2013 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, int MU, the number of superdiagonals in the matrix. // MU must be at least 0 and no more than N-1. // // Input, double A[(MU+1)*N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8PBU_MV[M], the result vector A * x. // { double *b; int i; int ieqn; int j; b = new double[m]; // // Multiply X by the diagonal of the matrix. // for ( j = 0; j < n; j++ ) { b[j] = a[mu+j*(mu+1)] * x[j]; } // // Multiply X by the superdiagonals of the matrix. // for ( i = mu; 1 <= i; i-- ) { for ( j = mu+2-i; j <= n; j++ ) { ieqn = i + j - mu - 1; b[ieqn-1] = b[ieqn-1] + a[i-1+(j-1)*(mu+1)] * x[j-1]; b[j-1] = b[j-1] + a[i-1+(j-1)*(mu+1)] * x[ieqn-1]; } } return b; } //****************************************************************************80 void r8pbu_print ( int n, int mu, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8PBU_PRINT prints an R8PBU matrix. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the upper (and lower) bandwidth. // MU must be nonnegative, and no greater than N-1. // // Input, double A[(MU+1)*N], the R8PBU matrix. // // Input, string TITLE, a title. // { r8pbu_print_some ( n, mu, a, 1, 1, n, n, title ); return; } //****************************************************************************80 void r8pbu_print_some ( int n, int mu, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8PBU_PRINT_SOME prints some of an R8PBU matrix. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the upper (and lower) bandwidth. // MU must be nonnegative, and no greater than N-1. // // Input, double A[(MU+1)*N], the R8PBU matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2lo = i4_max ( i2lo, j2lo - mu ); i2hi = i4_min ( ihi, n ); i2hi = i4_min ( i2hi, j2hi + mu ); for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(4) << i << " "; // // Print out (up to) 5 entries in row I, that lie in the current strip. // for ( j = j2lo; j <= j2hi; j++ ) { if ( mu < i-j || mu < j-i ) { cout << " "; } else if ( i <= j && j <= i + mu ) { cout << setw(12) << a[mu+i-j+(j-1)*(mu+1)] << " "; } else if ( i - mu <= j && j <= i ) { cout << setw(12) << a[mu+j-i+(i-1)*(mu+1)] << " "; } } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8pbu_random ( int n, int mu, int &seed ) //****************************************************************************80 // // Purpose: // // R8PBU_RANDOM randomizes an R8PBU matrix. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // The matrix returned will be positive definite, but of limited // randomness. The off diagonal elements are random values between // 0 and 1, and the diagonal element of each row is selected to // ensure strict diagonal dominance. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals in the matrix. // MU must be at least 0 and no more than N-1. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8PBU_RANDOM[(MU+1)*N], the R8PBU matrix. // { double *a; int i; int j; int jhi; int jlo; double r; double sum2; a = new double[(mu+1)*n]; // // Zero out the "junk" entries. // for ( j = 0; j < mu; j++ ) { for ( i = 0; i <= mu - j; i++ ) { a[i+j*(mu+1)] = 0.0; } } // // Set the off diagonal values. // for ( i = 0; i < n; i++ ) { for ( j = i + 1; j <= i4_min ( i + mu, n - 1 ); j++ ) { a[mu+i-j+j*(mu+1)] = r8_uniform_01 ( seed ); } } // // Set the diagonal values. // for ( i = 1; i <= n; i++ ) { sum2 = 0.0; jlo = i4_max ( 1, i - mu ); for ( j = jlo; j <= i-1; j++ ) { sum2 = sum2 + fabs ( a[(mu+j-i)+(i-1)*(mu+1)] ); } jhi = i4_min ( i + mu, n ); for ( j = i+1; j <= jhi; j++ ) { sum2 = sum2 + fabs ( a[mu+i-j+(j-1)*(mu+1)] ); } r = r8_uniform_01 ( seed ); a[mu+(i-1)*(mu+1)] = ( 1.0 + r ) * ( sum2 + 0.01 ); } return a; } //****************************************************************************80 double *r8pbu_res ( int m, int n, int mu, double a[], double x[], double b[] ) //****************************************************************************80 // // Purpose: // // R8PBU_RES computes the residual R = B-A*X for R8PBU matrices. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 June 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals in the matrix. // MU must be at least 0 and no more than N-1. // // Input, double A[(MU+1)*N], the matrix. // // Input, double X[N], the vector to be multiplied by A. // // Input, double B[M], the desired result A * x. // // Output, double R8PBU_RES[M], the residual R = B - A * X. // { int i; double *r; r = r8pbu_mv ( m, n, mu, a, x ); for ( i = 0; i < m; i++ ) { r[i] = b[i] - r[i]; } return r; } //****************************************************************************80 double *r8pbu_sl ( int n, int mu, double a_lu[], double b[] ) //****************************************************************************80 // // Purpose: // // R8PBU_SL solves an R8PBU system factored by R8PBU_FA. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2016 // // Author: // // Original FORTRAN77 version by Dongarra, Bunch, Moler, Stewart. // C++ version by John Burkardt. // // Reference: // // Jack Dongarra, Jim Bunch, Cleve Moler, Pete Stewart, // LINPACK User's Guide, // SIAM, 1979, // ISBN13: 978-0-898711-72-1, // LC: QA214.L56. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals of the matrix. // MU must be at least 0 and no more than N-1. // // Input, double A_LU[(MU+1)*N], the LU factors from R8PBU_FA. // // Input, double B[N], the right hand side of the linear system. // // Output, double R8PBU_SL[N], the solution vector. // { int i; int ilo; int k; double t; double *x; x = new double[n]; for ( k = 0; k < n; k++ ) { x[k] = b[k]; } // // Solve L * Y = B. // for ( k = 1; k <= n; k++ ) { ilo = i4_max ( 1, k - mu ); t = 0.0; for ( i = ilo; i <= k - 1; i++ ) { t = t + x[i-1] * a_lu[mu+i-k+(k-1)*(mu+1)]; } x[k-1] = ( x[k-1] - t ) / a_lu[mu+(k-1)*(mu+1)]; } // // Solve U * X = Y. // for ( k = n; 1 <= k; k-- ) { x[k-1] = x[k-1] / a_lu[mu+(k-1)*(mu+1)]; ilo = i4_max ( 1, k - mu ); for ( i = ilo; i <= k - 1; i++ ) { x[i-1] = x[i-1] - x[k-1] * a_lu[mu+i-k+(k-1)*(mu+1)]; } } return x; } //****************************************************************************80 double *r8pbu_sor ( int n, int mu, double a[], double b[], double eps, int itchk, int itmax, double omega, double x_init[] ) //****************************************************************************80 // // Purpose: // // R8PBU_SOR uses SOR iteration to solve an R8PBU linear system. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // The matrix A must be a positive definite symmetric band matrix. // // A relaxation factor OMEGA may be used. // // The iteration will proceed until a convergence test is met, // or the iteration limit is reached. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals in the matrix. // MU must be at least 0, and no more than N-1. // // Input, double A[(MU+1)*N], the R8PBU matrix. // // Input, double B[N], the right hand side of the system. // // Input, double EPS, convergence tolerance for the system. The vector // b - A * x is computed every ITCHK iterations, and if the maximum // entry of this vector is of norm less than EPS, the program // will return. // // Input, int ITCHK, the interval between convergence checks. ITCHK steps // will be taken before any check is made on whether the iteration // has converged. ITCHK should be at least 1 and no greater // than ITMAX. // // Input, int ITMAX, the maximum number of iterations allowed. The // program will return to the user if this many iterations are taken // without convergence. // // Input, double OMEGA, the relaxation factor. OMEGA must be strictly between // 0 and 2. Use OMEGA = 1 for no relaxation, classical Jacobi iteration. // // Input, double X_INIT[N], a starting vector for the iteration. // // Output, double R8PBU_SOR[N], the approximation to the solution. // { double err; int i; int it; int itknt; double *x; double *xtemp; if ( itchk <= 0 || itmax < itchk ) { cerr << "\n"; cerr << "R8PBU_SOR - Fatal error!\n"; cerr << " Illegal ITCHK = " << itchk << "\n"; exit ( 1 ); } if ( itmax <= 0 ) { cerr << "\n"; cerr << "R8PBU_SOR - Fatal error!\n"; cerr << " Nonpositive ITMAX = " << itmax << "\n"; exit ( 1 ); } if ( omega <= 0.0 || 2.0 <= omega ) { cerr << "\n"; cerr << "R8PBU_SOR - Fatal error!\n"; cerr << " Illegal value of OMEGA = " << omega << "\n"; exit ( 1 ); } itknt = 0; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = x_init[i]; } // // Take ITCHK steps of the iteration before doing a convergence check. // while ( itknt <= itmax ) { for ( it = 1; it <= itchk; it++ ) { // // Compute XTEMP(I) = B(I) + A(I,I) * X(I) - SUM ( J=1 to N ) A(I,J) * X(J). // xtemp = r8pbu_mv ( n, n, mu, a, x ); for ( i = 0; i < n; i++ ) { xtemp[i] = x[i] + ( b[i] - xtemp[i] ) / a[mu+i*(mu+1)]; } // // Compute the next iterate as a weighted combination of the // old iterate and the just computed standard Jacobi iterate. // if ( omega != 1.0 ) { for ( i = 0; i < n; i++ ) { xtemp[i] = ( 1.0 - omega ) * x[i] + omega * xtemp[i]; } } // // Copy the new result into the old result vector. // for ( i = 0; i < n; i++ ) { x[i] = xtemp[i]; } } delete [] xtemp; // // Compute the maximum residual, the greatest entry in the vector // RESID(I) = B(I) - A(I,J) * X(J). // xtemp = r8pbu_mv ( n, n, mu, a, x ); err = 0.0; for ( i = 0; i < n; i++ ) { err = r8_max ( err, fabs ( b[i] - xtemp[i] ) ); } delete [] xtemp; // // Test to see if we can quit because of convergence, // if ( err <= eps ) { return x; } } cout << "\n"; cout << "R8PBU_SOR - Warning!\n"; cout << " The iteration did not converge.\n"; return x; } //****************************************************************************80 double *r8pbu_to_r8ge ( int n, int mu, double a[] ) //****************************************************************************80 // // Purpose: // // R8PBU_TO_R8GE copies an R8PBU matrix to an R8GE matrix. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 May 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrices. // N must be positive. // // Input, int MU, the upper bandwidth of A1. // MU must be nonnegative, and no greater than N-1. // // Input, double A[(MU+1)*N], the R8PBU matrix. // // Output, double R8PBU_TO_R8GE[N*N], the R8GE matrix. // { double *b; int i; int j; b = new double[n*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { b[i+j*n] = 0.0; } } for ( i = 0; i < n; i++ ) { for ( j = 0; j < n; j++ ) { if ( i <= j && j <= i+mu ) { b[i+j*n] = a[mu+i-j+j*(mu+1)]; } else if ( i-mu <= j && j < i ) { b[i+j*n] = a[mu+j-i+i*(mu+1)]; } else { b[i+j*n] = 0.0; } } } return b; } //****************************************************************************80 double *r8pbu_zeros ( int n, int mu ) //****************************************************************************80 // // Purpose: // // R8PBU_ZEROS zeros an R8PBU matrix. // // Discussion: // // The R8PBU storage format is used for a symmetric positive definite band matrix. // // To save storage, only the diagonal and upper triangle of A is stored, // in a compact diagonal format that preserves columns. // // The diagonal is stored in row MU+1 of the array. // The first superdiagonal in row MU, columns 2 through N. // The second superdiagonal in row MU-1, columns 3 through N. // The MU-th superdiagonal in row 1, columns MU+1 through N. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int MU, the number of superdiagonals in the matrix. // MU must be at least 0 and no more than N-1. // // Output, double R8PBU_ZERO[(MU+1)*N], the R8PBU matrix. // { double *a; int i; int j; a = new double[(mu+1)*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < mu+1; i++ ) { a[i+j*(mu+1)] = 0.0; } } return a; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n - 1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec_print_some ( int n, double a[], int max_print, string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT_SOME prints "some" of an R8VEC. // // Discussion: // // The user specifies MAX_PRINT, the maximum number of lines to print. // // If N, the size of the vector, is no more than MAX_PRINT, then // the entire vector is printed, one entry per line. // // Otherwise, if possible, the first MAX_PRINT-2 entries are printed, // followed by a line of periods suggesting an omission, // and the last entry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 February 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vector. // // Input, double A[N], the vector to be printed. // // Input, int MAX_PRINT, the maximum number of lines // to print. // // Input, string TITLE, a title. // { int i; if ( max_print <= 0 ) { return; } if ( n <= 0 ) { return; } cout << "\n"; cout << title << "\n"; cout << "\n"; if ( n <= max_print ) { for ( i = 0; i < n; i++ ) { cout << " " << setw(8) << i << " " << setw(14) << a[i] << "\n"; } } else if ( 3 <= max_print ) { for ( i = 0; i < max_print - 2; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } cout << " ........ ..............\n"; i = n - 1; cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } else { for ( i = 0; i < max_print - 1; i++ ) { cout << " " << setw(8) << i << ": " << setw(14) << a[i] << "\n"; } i = max_print - 1; cout << " " << setw(8) << i << ": " << setw(14) << a[i] << " " << "...more entries...\n"; } return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void r8vec2_print_some ( int n, double x1[], double x2[], int max_print, string title ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT_SOME prints "some" of two real vectors. // // Discussion: // // The user specifies MAX_PRINT, the maximum number of lines to print. // // If N, the size of the vectors, is no more than MAX_PRINT, then // the entire vectors are printed, one entry of each per line. // // Otherwise, if possible, the first MAX_PRINT-2 entries are printed, // followed by a line of periods suggesting an omission, // and the last entry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vectors. // // Input, double X1[N], X2[N], the vector to be printed. // // Input, int MAX_PRINT, the maximum number of lines to print. // // Input, string TITLE, a title. // { int i; if ( max_print <= 0 ) { return; } if ( n <= 0 ) { return; } cout << "\n"; cout << title << "\n"; cout << "\n"; if ( n <= max_print ) { for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } } else if ( 3 <= max_print ) { for ( i = 0; i < max_print-2; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } cout << "...... .............. ..............\n"; i = n - 1; cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } else { for ( i = 0; i < max_print - 1; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } i = max_print - 1; cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "...more entries...\n"; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }