# include # include # include # include # include using namespace std; # include "r8cbb.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 int r8cb_np_fa ( int n, int ml, int mu, double a[] ) //****************************************************************************80 // // Purpose: // // R8CB_NP_FA factors an R8CB matrix by Gaussian elimination. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // R8CB_NP_FA is a version of the LINPACK routine SGBFA, modifed to use // no pivoting, and to be applied to the R8CB compressed band matrix storage // format. It will fail if the matrix is singular, or if any zero // pivot is encountered. // // If R8CB_NP_FA successfully factors the matrix, R8CB_NP_SL may be called // to solve linear systems involving the matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input/output, double A[(ML+MU+1)*N], the compact band matrix. // On input, the coefficient matrix of the linear system. // On output, the LU factors of the matrix. // // Output, int R8CB_NP_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; int j; int ju; int k; int lm; int m; int mm; // // The value of M is MU + 1 rather than ML + MU + 1. // m = mu + 1; ju = 0; for ( k = 1; k <= n - 1; k++ ) { // // If our pivot entry A(MU+1,K) is zero, then we must give up. // if ( a[m-1+(k-1)*(ml+mu+1)] == 0.0 ) { cerr << "\n"; cerr << "R8CB_FA - Fatal error!\n"; cerr << " Zero pivot on step " << k << "\n"; exit ( 1 ); } // // LM counts the number of nonzero elements that lie below the current // diagonal entry, A(K,K). // // Multiply the LM entries below the diagonal by -1/A(K,K), turning // them into the appropriate "multiplier" terms in the L matrix. // lm = i4_min ( ml, n - k ); for ( i = m + 1; i <= m + lm; i++ ) { a[i-1+(k-1)*(ml+mu+1)] = -a[i-1+(k-1)*(ml+mu+1)] / a[m-1+(k-1)*(ml+mu+1)]; } // // MM points to the row in which the next entry of the K-th row is, A(K,J). // We then add L(I,K)*A(K,J) to A(I,J) for rows I = K+1 to K+LM. // ju = i4_max ( ju, mu + k ); ju = i4_min ( ju, n ); mm = m; for ( j = k + 1; j <= ju; j++ ) { mm = mm - 1; for ( i = 1; i <= lm; i++ ) { a[mm+i-1+(j-1)*(ml+mu+1)] = a[mm+i-1+(j-1)*(ml+mu+1)] + a[mm-1+(j-1)*(ml+mu+1)] * a[m+i-1+(k-1)*(ml+mu+1)]; } } } if ( a[m-1+(n-1)*(ml+mu+1)] == 0.0 ) { cerr << "\n"; cerr << "R8CB_FA - Fatal error!\n"; cerr << " Zero pivot on step " << n << "\n"; exit ( 1 ); } return 0; } //****************************************************************************80 double *r8cb_np_sl ( int n, int ml, int mu, double a_lu[], double b[], int job ) //****************************************************************************80 // // Purpose: // // R8CB_NP_SL solves an R8CB system factored by R8CB_NP_FA. // // Discussion: // // The R8CB storage format is appropriate for a compact banded matrix. // It is assumed that the matrix has lower and upper bandwidths ML and MU, // respectively. The matrix is stored in a way similar to that used // by LINPACK and LAPACK for a general banded matrix, except that in // this mode, no extra rows are set aside for possible fillin during pivoting. // Thus, this storage format is suitable if you do not intend to factor // the matrix, or if you can guarantee that the matrix can be factored // without pivoting. // // R8CB_NP_SL can also solve the related system A' * x = b. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N-1. // // Input, double A_LU[(ML+MU+1)*N], the LU factors from R8CB_NP_FA. // // Input, double B[N], the right hand side of the linear system. // // Input, int JOB. // If JOB is zero, the routine will solve A * x = b. // If JOB is nonzero, the routine will solve A' * x = b. // // Output, double R8CB_NP_SL[N], the solution of the linear system, X. // { int i; int k; int la; int lb; int lm; int m; double *x; x = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { x[i] = b[i]; } m = mu + 1; // // Solve A * x = b. // if ( job == 0 ) { // // Solve PL * Y = B. // if ( 0 < ml ) { for ( k = 1; k <= n - 1; k++ ) { lm = i4_min ( ml, n - k ); for ( i = 0; i < lm; i++ ) { x[k+i] = x[k+i] + x[k-1] * a_lu[m+i+(k-1)*(ml+mu+1)]; } } } // // Solve U * X = Y. // for ( k = n; 1 <= k; k-- ) { x[k-1] = x[k-1] / a_lu[m-1+(k-1)*(ml+mu+1)]; lm = i4_min ( k, m ) - 1; la = m - lm; lb = k - lm; for ( i = 0; i <= lm-1; i++ ) { x[lb+i-1] = x[lb+i-1] - x[k-1] * a_lu[la+i-1+(k-1)*(ml+mu+1)]; } } } // // Solve A' * X = B. // else { // // Solve U' * Y = B. // for ( k = 1; k <= n; k++ ) { lm = i4_min ( k, m ) - 1; la = m - lm; lb = k - lm; for ( i = 0; i <= lm - 1; i++ ) { x[k-1] = x[k-1] - a_lu[la+i-1+(k-1)*(ml+mu+1)] * x[lb+i-1]; } x[k-1] = x[k-1] / a_lu[m-1+(k-1)*(ml+mu+1)]; } // // Solve ( PL )' * X = Y. // if ( 0 < ml ) { for ( k = n - 1; 1 <= k; k-- ) { lm = i4_min ( ml, n - k ); for ( i = 0; i < lm; i++ ) { x[k-1] = x[k-1] + a_lu[m+i+(k-1)*(ml+mu+1)] * x[k+i]; } } } } return x; } //****************************************************************************80 double *r8cb_to_r8vec ( int m, int n, int ml, int mu, double *a ) //****************************************************************************80 // // Purpose: // // R8CB_TO_R8VEC copies an R8CB matrix to a real vector. // // Discussion: // // In C++ and FORTRAN, this routine is not really needed. In MATLAB, // a data item carries its dimensionality implicitly, and so cannot be // regarded sometimes as a vector and sometimes as an array. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the array. // // Input, int ML, MU, the lower and upper bandwidths. // // Input, double A[(ML+MU+1)*N], the array to be copied. // // Output, double R8CB_TO_R8VEC[(ML+MU+1)*N], the vector. // { int i; int ihi; int ilo; int j; double *x; x = r8vec_zeros_new ( ( ml + mu + 1 ) * n ); for ( j = 1; j <= n; j++ ) { ilo = i4_max ( ihi + 1, 1 ); ihi = i4_min ( ml + mu + 1, mu + 1 + m - j ); for ( i = ilo; i <= ihi; i++ ) { x[i-1+(j-1)*(ml+mu+1)] = a[i-1+(j-1)*(ml+mu+1)]; } } return x; } //****************************************************************************80 void r8cbb_add ( int n1, int n2, int ml, int mu, double a[], int i, int j, double value ) //****************************************************************************80 // // Purpose: // // R8CBB_ADD adds a value to an entry of an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input/output, double A[(ML+MU+1)*N1 + 2*N1*N2 + N2*N2], the R8CBB matrix. // // Input, int I, J, the indices of the entry to be incremented. // // Input, double VALUE, the value to be added to the (I,J) entry. // { int ij; if ( value == 0.0 ) { return; } // // Check for I or J out of bounds. // if ( i < 0 || n1 + n2 <= i ) { cerr << "\n"; cerr << "R8CBB_ADD - Fatal error!\n"; cerr << " Illegal input value of row index I = " << i << "\n"; exit ( 1 ); } if ( j < 0 || n1 + n2 <= j ) { cerr << "\n"; cerr << "R8CBB_ADD - Fatal error!\n"; cerr << " Illegal input value of column index J = " << j << "\n"; exit ( 1 ); } // // The A1 block of the matrix. // // Check for out of band problems. // if ( i < n1 && j < n1 ) { if ( mu < ( j - i ) || ml < ( i - j ) ) { cout << "\n"; cout << "R8CBB_ADD - Warning!\n"; cout << " Unable to add to entry (" << i << ", " << j << ").\n"; return; } else { ij = ( i - j + mu ) + j * ( ml + mu + 1 ); } } // // The A2 block of the matrix: // else if ( i < n1 && n1 <= j ) { ij = ( ml + mu + 1 ) * n1 + ( j - n1 ) * n1 + i; } // // The A3 and A4 blocks of the matrix. // else if ( n1 <= i ) { ij = ( ml + mu + 1 ) * n1 + n2 * n1 + j * n2 + ( i - n1 ); } a[ij] = a[ij] + value; return; } //****************************************************************************80 double *r8cbb_dif2 ( int n1, int n2, int ml, int mu ) //****************************************************************************80 // // Purpose: // // R8CBB_DIF2 sets up an R8CBB second difference matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative and no greater than N1-1. // // Output, double R8CBB_DIF2[(ML+MU+1)*N1+2*N1*N2+N2*N2], the matrix. // { double *a; int i; int j; double value; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n1 + 2 * n1 * n2 + n2 * n2 ); for ( i = 1; i < n1 + n2; i++ ) { j = i - 1; value = - 1.0; r8cbb_set ( n1, n2, ml, mu, a, i, j, value ); } for ( i = 0; i < n1 + n2; i++ ) { j = i; value = 2.0; r8cbb_set ( n1, n2, ml, mu, a, i, j, value ); } for ( i = 0; i < n1 + n2 - 1; i++ ) { j = i + 1; value = - 1.0; r8cbb_set ( n1, n2, ml, mu, a, i, j, value ); } return a; } //****************************************************************************80 int r8cbb_fa ( int n1, int n2, int ml, int mu, double a[] ) //****************************************************************************80 // // Purpose: // // R8CBB_FA factors an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // // Once the matrix has been factored by SCCB_FA, SCCB_SL may be called // to solve linear systems involving the matrix. // // SCCB_FA uses special non-pivoting versions of LINPACK routines to // carry out the factorization. The special version of the banded // LINPACK solver also results in a space saving, since no entries // need be set aside for fill in due to pivoting. // // The linear system must be border banded, of the form: // // ( A1 A2 ) (X1) = (B1) // ( A3 A4 ) (X2) (B2) // // where A1 is a (usually big) banded square matrix, A2 and A3 are // column and row strips which may be nonzero, and A4 is a dense // square matrix. // // The algorithm rewrites the system as: // // X1 + inverse(A1) A2 X2 = inverse(A1) B1 // // A3 X1 + A4 X2 = B2 // // and then rewrites the second equation as // // ( A4 - A3 inverse(A1) A2 ) X2 = B2 - A3 inverse(A1) B1 // // The algorithm will certainly fail if the matrix A1 is singular, // or requires pivoting. The algorithm will also fail if the A4 matrix, // as modified during the process, is singular, or requires pivoting. // All these possibilities are in addition to the failure that will // if the total matrix A is singular. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input/output, double A[ (ML+MU+1)*N1 + 2*N1*N2 + N2*N2]. // On input, A contains the compact border-banded coefficient matrix. // On output, A contains information describing a partial factorization // of the original coefficient matrix. // // Output, int R8CBB_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { double *b1; int i; int ij; int ik; int info; int j; int jk; int job; int k; int nband; double *x1; nband = ( ml + mu + 1 ) * n1; // // Factor the A1 band matrix, overwriting A1 by its factors. // if ( 0 < n1 ) { info = r8cb_np_fa ( n1, ml, mu, a ); if ( info != 0 ) { cerr << "\n"; cerr << "R8CBB_FA - Fatal error!\n"; cerr << " R8CB_NP_FA returned INFO = " << info << "\n"; cerr << " Factoring failed for column INFO.\n"; cerr << " The band matrix A1 is singular.\n"; cerr << " This algorithm cannot continue!\n"; exit ( 1 ); } } if ( 0 < n1 && 0 < n2 ) { // // Set A2 := -inverse(A1) * A2. // for ( j = 0; j < n2; j++ ) { for ( i = 0; i < n1; i++ ) { a[nband+i+j*n1] = - a[nband+i+j*n1]; } } b1 = r8vec_zeros_new ( n1 ); x1 = r8vec_zeros_new ( n1 ); job = 0; for ( j = 0; j < n2; j++ ) { for ( i = 0; i < n1; i++ ) { b1[i] = a[nband+i+j*n1]; } x1 = r8cb_np_sl ( n1, ml, mu, a, b1, job ); for ( i = 0; i < n1; i++ ) { a[nband+i+j*n1] = x1[i]; } } delete [] b1; delete [] x1; // // Set A4 := A4 + A3*A2 // for ( i = 1; i <= n2; i++ ) { for ( j = 1; j <= n1; j++ ) { ij = nband + n1 * n2 + ( j - 1 ) * n2 + i - 1; for ( k = 1; k <= n2; k++ ) { ik = nband + 2 * n1 * n2 + ( k - 1 ) * n2 + i - 1; jk = nband + ( k - 1 ) * n1 + j - 1; a[ik] = a[ik] + a[ij] * a[jk]; } } } } // // Factor A4. // if ( 0 < n2 ) { info = r8ge_np_fa ( n2, a+(nband+2*n1*n2) ); if ( info != 0 ) { cerr << "\n"; cerr << "R8CBB_FA - Fatal error!\n"; cerr << " R8GE_NP_FA returned INFO = " << info << "\n"; cerr << " This indicates singularity in column " << n1+info << ".\n"; cerr << " The dense matrix A4 is singular.\n"; cerr << " This algorithm cannot continue!\n"; exit ( 1 ); } } return 0; } //****************************************************************************80 double r8cbb_get ( int n1, int n2, int ml, int mu, double a[], int i, int j ) //****************************************************************************80 // // Purpose: // // R8CBB_GET gets the value of an entry of an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input/output, double A[(ML+MU+1)*N1 + 2*N1*N2 + N2*N2], the R8CBB matrix. // // Input, int I, J, the indices of the entry to be incremented. // // Output, double R8CBB_GET, the value of the (I,J) entry. // { int ij; // // Check for I or J out of bounds. // if ( i < 0 || n1 + n2 <= i ) { return 0.0; } if ( j < 0 || n1 + n2 <= j ) { return 0.0; } // // The A1 block of the matrix. // // Check for out of band problems. // if ( i < n1 && j < n1 ) { if ( mu < ( j - i ) || ml < ( i - j ) ) { return 0.0; } else { ij = ( i - j + mu ) + j * ( ml + mu + 1 ); } } // // The A2 block of the matrix: // else if ( i < n1 && n1 <= j ) { ij = ( ml + mu + 1 ) * n1 + ( j - n1 ) * n1 + i; } // // The A3 and A4 blocks of the matrix. // else if ( n1 <= i ) { ij = ( ml + mu + 1 ) * n1 + n2 * n1 + j * n2 + ( i - n1 ); } return a[ij]; } //****************************************************************************80 double *r8cbb_indicator ( int n1, int n2, int ml, int mu ) //****************************************************************************80 // // Purpose: // // R8CBB_INDICATOR sets up an R8CBB indicator matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative and no greater than N1-1. // // Output, double R8CBB_INDICATOR[(ML+MU+1)*N1+2*N1*N2+N2*N2], the R8CBB // indicator matrix. // { double *a; int base; int fac; int i; int j; int row; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n1 + 2 * n1 * n2 + n2 * n2 ); fac = i4_power ( 10, i4_log_10 ( n1 + n2 ) + 1 ); // // Set the banded matrix A1. // for ( j = 1; j <= n1; j++ ) { for ( row = 1; row <= ml + mu + 1; row++ ) { i = row + j - mu - 1; if ( 1 <= i && i <= n1 ) { a[row-1+(j-1)*(ml+mu+1)] = ( double ) ( fac * i + j ); } } } // // Set the N1 by N2 rectangular strip A2. // base = ( ml + mu + 1 ) * n1; for ( i = 1; i <= n1; i++ ) { for ( j = n1 + 1; j <= n1 + n2; j++ ) { a[base + i-1 + (j-n1-1)*n1 ] = ( double ) ( fac * i + j ); } } // // Set the N2 by N1 rectangular strip A3. // base = ( ml + mu + 1 ) * n1 + n1 * n2; for ( i = n1 + 1; i <= n1 + n2; i++ ) { for ( j = 1; j <= n1; j++ ) { a[base + i-n1-1 + (j-1)*n2 ] = ( double ) ( fac * i + j ); } } // // Set the N2 by N2 square A4. // base = ( ml + mu + 1 ) * n1 + n1 * n2 + n2 * n1; for ( i = n1 + 1; i <= n1 + n2; i++ ) { for ( j = n1 + 1; j <= n1 + n2; j++ ) { a[base + i-n1-1 + (j-n1-1)*n2 ] = ( double ) ( fac * i + j ); } } return a; } //****************************************************************************80 double *r8cbb_mtv ( int n1, int n2, int ml, int mu, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8CBB_MTV multiplies a vector by an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 23 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, double A[(ML+MU+1)*N1 + 2*N1*N2 + N2*N2], the R8CBB matrix. // // Input, double X[N1+N2], the vector to multiply the matrix. // // Output, double R8CBB_MTV[N1+N2], the product X * A. // { double *b; int i; int ihi; int ij; int ilo; int j; // // Set B to zero. // b = r8vec_zeros_new ( n1 + n2 ); // // Multiply by A1. // for ( j = 1; j <= n1; j++ ) { ilo = i4_max ( 1, j - mu ); ihi = i4_min ( n1, j + ml ); ij = ( j - 1 ) * ( ml + mu + 1 ) - j + mu + 1; for ( i = ilo; i <= ihi; i++ ) { b[j] = b[j] + x[i-1] * a[ij+i-1]; } } // // Multiply by A2. // for ( j = n1 + 1; j <= n1 + n2; j++ ) { ij = ( ml + mu + 1 ) * n1 + ( j - n1 - 1 ) * n1; for ( i = 1; i <= n1; i++ ) { b[j] = b[j] + x[i-1] * a[ij+i-1]; } } // // Multiply by A3 and A4. // for ( j = 1; j <= n1 + n2; j++ ) { ij = ( ml + mu + 1 ) * n1 + n1 * n2 + ( j - 1 ) * n2 - n1; for ( i = n1 + 1; i <= n1 + n2; i++ ) { b[j-1] = b[j-1] + x[i-1] * a[ij+i-1]; } } return b; } //****************************************************************************80 double *r8cbb_mv ( int n1, int n2, int ml, int mu, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8CBB_MV multiplies an R8CBB matrix times a vector. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, double A[(ML+MU+1)*N1 + 2*N1*N2 + N2*N2], the R8CBB matrix. // // Input, double X[N1+N2], the vector to be multiplied by A. // // Output, double R8CBB_MV[N1+N2], the result of multiplying A by X. // { double *b; int i; int ihi; int ij; int ilo; int j; // // Set B to zero. // b = r8vec_zeros_new ( n1 + n2 ); // // Multiply by A1. // for ( j = 1; j <= n1; j++ ) { ilo = i4_max ( 1, j - mu ); ihi = i4_min ( n1, j + ml ); ij = ( j - 1 ) * ( ml + mu + 1 ) - j + mu + 1; for ( i = ilo; i <= ihi; i++ ) { b[i-1] = b[i-1] + a[ij+i-1] * x[j-1]; } } // // Multiply by A2. // for ( j = n1 + 1; j <= n1 + n2; j++ ) { ij = ( ml + mu + 1 ) * n1 + ( j - n1 - 1 ) * n1; for ( i = 1; i <= n1; i++ ) { b[i-1] = b[i-1] + a[ij+i-1] * x[j-1]; } } // // Multiply by A3 and A4. // for ( j = 1; j <= n1 + n2; j++ ) { ij = ( ml + mu + 1 ) * n1 + n1 * n2 + ( j - 1 ) * n2 - n1; for ( i = n1 + 1; i <= n1 + n2; i++ ) { b[i-1] = b[i-1] + a[ij+i-1] * x[j-1]; } } return b; } //****************************************************************************80 void r8cbb_print ( int n1, int n2, int ml, int mu, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8CBB_PRINT prints an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input, double A[(ML+MU+1)*N1+2*N1*N2+N2*N2], the R8CBB matrix. // // Input, string TITLE, a title. // { r8cbb_print_some ( n1, n2, ml, mu, a, 0, 0, n1 + n2 - 1, n1 + n2 - 1, title ); return; } //****************************************************************************80 void r8cbb_print_some ( int n1, int n2, int ml, int mu, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8CBB_PRINT_SOME prints some of an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input, double A[(ML+MU+1)*N1+2*N1*N2+N2*N2], the R8CBB matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 double aij; int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n1 + n2 - 1 ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 0 ); i2hi = i4_min ( ihi, n1 + n2 - 1 ); for ( i = i2lo; i <= i2hi; i++ ) { cout << setw(4) << i << " "; // // Print out (up to) 5 entries in row I, that lie in the current strip. // for ( j = j2lo; j <= j2hi; j++ ) { aij = r8cbb_get ( n1, n2, ml, mu, a, i, j ); cout << setw(12) << aij << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8cbb_random ( int n1, int n2, int ml, int mu, int &seed ) //****************************************************************************80 // // Purpose: // // R8CBB_RANDOM randomizes an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative and no greater than N1-1. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8CBB_RANDOM[(ML+MU+1)*N1 + 2*N1*N2 + N2*N2], the R8CBB matrix. // { double *a; int i; int j; int row; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n1 + 2 * n1 * n2 + n2 * n2 ); // // Randomize the banded matrix A1. // for ( j = 1; j <= n1; j++ ) { for ( row = 1; row <= ml + mu + 1; row++ ) { i = row + j - mu - 1; if ( 1 <= i && i <= n1 ) { a[row-1+(j-1)*(ml+mu+1)] = r8_uniform_01 ( seed ); } } } // // Randomize the rectangular strips A2+A3+A4. // for ( i = ( ml + mu + 1 ) * n1 + 1; i <= (ml+mu+1)*n1+2*n1*n2+n2*n2; i++ ) { a[i-1] = r8_uniform_01 ( seed ); } return a; } //****************************************************************************80 void r8cbb_set ( int n1, int n2, int ml, int mu, double a[], int i, int j, double value ) //****************************************************************************80 // // Purpose: // // R8CBB_SET sets an entry of an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input/output, double A[(ML+MU+1)*N1 + 2*N1*N2 + N2*N2], the R8CBB matrix. // // Input, int I, J, the indices of the entry to be incremented. // // Input, double VALUE, the value to be assigned to the (I,J) entry. // { int ij; // // Check for I or J out of bounds. // if ( i < 0 || n1 + n2 <= i ) { cerr << "\n"; cerr << "R8CBB_SET - Fatal error!\n"; cerr << " Illegal input value of row index I = " << i << "\n"; exit ( 1 ); } if ( j < 0 || n1 + n2 <= j ) { cerr << "\n"; cerr << "R8CBB_SET - Fatal error!\n"; cerr << " Illegal input value of column index J = " << j << "\n"; exit ( 1 ); } // // The A1 block of the matrix. // // Check for out of band problems. // if ( i < n1 && j < n1 ) { if ( mu < ( j - i ) || ml < ( i - j ) ) { cout << "\n"; cout << "R8CBB_SET - Warning!\n"; cout << " Unable to set entry (" << i << ", " << j << ").\n"; return; } else { ij = ( i - j + mu ) + j * ( ml + mu + 1 ); } } // // The A2 block of the matrix: // else if ( i < n1 && n1 <= j ) { ij = ( ml + mu + 1 ) * n1 + ( j - n1 ) * n1 + i; } // // The A3 and A4 blocks of the matrix. // else if ( n1 <= i ) { ij = ( ml + mu + 1 ) * n1 + n2 * n1 + j * n2 + ( i - n1 ); } a[ij] = value; return; } //****************************************************************************80 double *r8cbb_sl ( int n1, int n2, int ml, int mu, double a_lu[], double b[] ) //****************************************************************************80 // // Purpose: // // R8CBB_SL solves an R8CBB system factored by R8CBB_FA. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // // The linear system A * x = b is decomposable into the block system: // // ( A1 A2 ) * (X1) = (B1) // ( A3 A4 ) (X2) (B2) // // where A1 is a (usually big) banded square matrix, A2 and A3 are // column and row strips which may be nonzero, and A4 is a dense // square matrix. // // All the arguments except B are input quantities only, which are // not changed by the routine. They should have exactly the same values // they had on exit from R8CBB_FA. // // If more than one right hand side is to be solved, with the same // matrix, R8CBB_SL should be called repeatedly. However, R8CBB_FA only // needs to be called once to create the factorization. // // See the documentation of R8CBB_FA for details on the matrix storage. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input, double A_LU[ (ML+MU+1)*N1 + 2*N1*N2 + N2*N2]. // the LU factors from R8CBB_FA. // // Input, double B[N1+N2], the right hand side of the linear system. // // Output, double R8CBB_SL[N1+N2], the solution. // { double *b2; int i; int ij; int j; int job; int nband; double *x; double *x1; double *x2; nband = ( ml + mu + 1 ) * n1; // // Set X1 := inverse(A1) * B1. // if ( 0 < n1 ) { job = 0; x1 = r8cb_np_sl ( n1, ml, mu, a_lu, b, job ); } // // Modify the right hand side of the second linear subsystem. // Set B2 = B2-A3*X1. // b2 = r8vec_zeros_new ( n2 ); for ( i = 0; i < n2; i++ ) { b2[i] = b[n1+i]; } for ( j = 0; j < n1; j++ ) { for ( i = 0; i < n2; i++ ) { ij = nband + n1 * n2 + j * n2 + i; b2[i] = b2[i] - a_lu[ij] * x1[j]; } } // // Solve A4*X2 = B2. // if ( 0 < n2 ) { job = 0; x2 = r8ge_np_sl ( n2, a_lu+(nband+2*n1*n2), b2, job ); } // // Modify the first subsolution. // Set X1 = X1+A2*X2. // for ( i = 0; i < n1; i++ ) { for ( j = 0; j < n2; j++ ) { ij = nband + j * n1 + i; x1[i] = x1[i] + a_lu[ij] * x2[j]; } } // // Collect X1 and X2 into X. // x = r8vec_zeros_new ( n1 + n2 ); for ( i = 0; i < n1; i++ ) { x[i] = x1[i]; } for ( i = 0; i < n2; i++ ) { x[n1+i] = x2[i]; } delete [] b2; delete [] x1; delete [] x2; return x; } //****************************************************************************80 double *r8cbb_to_r8ge ( int n1, int n2, int ml, int mu, double a[] ) //****************************************************************************80 // // Purpose: // // R8CBB_TO_R8GE copies an R8CBB matrix to an R8GE matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Input, double A[(ML+MU+1)*N1+2*N1*N2+N2*N2], the R8CBB matrix. // // Output, double R8CBB_TO_R8GE[(N1+N2)*(N1+N2)], the R8GE matrix. // { double *b; int i; int ij; int j; b = r8vec_zeros_new ( ( n1 + n2 ) * ( n1 + n2 ) ); for ( i = 1; i <= n1; i++ ) { for ( j = 1; j <= n1; j++ ) { if ( mu + ml < ( j - i ) || ml < ( i - j ) ) { b[i-1+(j-1)*(n1+n2)] = 0.0; } else { ij = ( i - j + mu + 1 ) + ( j - 1 ) * ( ml + mu + 1 ); b[i-1+(j-1)*(n1+n2)] = a[ij-1]; } } } for ( i = 1; i <= n1; i++ ) { for ( j = n1 + 1; j <= n1 + n2; j++ ) { ij = ( ml + mu + 1 ) * n1 + ( j - n1 - 1 ) * n1 + i; b[i-1+(j-1)*(n1+n2)] = a[ij-1]; } } for ( i = n1 + 1; i <= n1 + n2; i++ ) { for ( j = 1; j <= n1 + n2; j++) { ij = ( ml + mu + 1 ) * n1 + n2 * n1 + ( j - 1 ) * n2 + ( i - n1 ); b[i-1+(j-1)*(n1+n2)] = a[ij-1]; } } return b; } //****************************************************************************80 double *r8cbb_zeros ( int n1, int n2, int ml, int mu ) //****************************************************************************80 // // Purpose: // // R8CBB_ZEROS zeros an R8CBB matrix. // // Discussion: // // The R8CBB storage format is for a compressed border banded matrix. // Such a matrix has the logical form: // // A1 | A2 // ---+--- // A3 | A4 // // with A1 a (usually large) N1 by N1 banded matrix, while A2, A3 and A4 // are dense rectangular matrices of orders N1 by N2, N2 by N1, and N2 by N2, // respectively. // // The R8CBB format is the same as the R8BB format, except that the banded // matrix A1 is stored in compressed band form rather than standard // banded form. In other words, we do not include the extra room // set aside for fill in during pivoting. // // A should be defined as a vector. The user must then store // the entries of the four blocks of the matrix into the vector A. // Each block is stored by columns. // // A1, the banded portion of the matrix, is stored in // the first (ML+MU+1)*N1 entries of A, using the obvious variant // of the LINPACK general band format. // // The following formulas should be used to determine how to store // the entry corresponding to row I and column J in the original matrix: // // Entries of A1: // // 1 <= I <= N1, 1 <= J <= N1, (J-I) <= MU and (I-J) <= ML. // // Store the I, J entry into location // (I-J+MU+1)+(J-1)*(ML+MU+1). // // Entries of A2: // // 1 <= I <= N1, N1+1 <= J <= N1+N2. // // Store the I, J entry into location // (ML+MU+1)*N1+(J-N1-1)*N1+I. // // Entries of A3: // // N1+1 <= I <= N1+N2, 1 <= J <= N1. // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // // Entries of A4: // // N1+1 <= I <= N1+N2, N1+1 <= J <= N1+N2 // // Store the I, J entry into location // (ML+MU+1)*N1+N1*N2+(J-1)*N2+(I-N1). // (same formula used for A3). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N1, N2, the order of the banded and dense blocks. // N1 and N2 must be nonnegative, and at least one must be positive. // // Input, int ML, MU, the lower and upper bandwidths. // ML and MU must be nonnegative, and no greater than N1-1. // // Output, double R8CBB_ZERO[(ML+MU+1)*N1 + 2*N1*N2 + N2*N2], the matrix. // { double *a; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n1 + 2 * n1 * n2 + n2 * n2 ); return a; } //****************************************************************************80 int r8ge_np_fa ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8GE_NP_FA factors an R8GE matrix by nonpivoting Gaussian elimination. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // R8GE_NP_FA is a version of the LINPACK routine SGEFA, but uses no // pivoting. It will fail if the matrix is singular, or if any zero // pivot is encountered. // // If R8GE_NP_FA successfully factors the matrix, R8GE_NP_SL may be called // to solve linear systems involving the matrix. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input/output, double A[N*N]. // On input, A contains the matrix to be factored. // On output, A contains information about the factorization, // which must be passed unchanged to R8GE_NP_SL for solutions. // // Output, int R8GE_NP_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; int j; int k; for ( k = 1; k <= n - 1; k++ ) { if ( a[k-1+(k-1)*n] == 0.0 ) { return k; } for ( i = k + 1; i <= n; i++ ) { a[i-1+(k-1)*n] = - a[i-1+(k-1)*n] / a[k-1+(k-1)*n]; } for ( j = k + 1; j <= n; j++ ) { for ( i = k + 1; i <= n; i++ ) { a[i-1+(j-1)*n] = a[i-1+(j-1)*n] + a[i-1+(k-1)*n] * a[k-1+(j-1)*n]; } } } if ( a[n-1+(n-1)*n] == 0.0 ) { return n; } return 0; } //****************************************************************************80 double *r8ge_np_sl ( int n, double a_lu[], double b[], int job ) //****************************************************************************80 // // Purpose: // // R8GE_NP_SL solves a system factored by R8GE_NP_FA. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_LU[N*N], the LU factors from R8GE_NP_FA. // // Input, double B[N], the right hand side. // // Input, int JOB. // If JOB is zero, the routine will solve A * x = b. // If JOB is nonzero, the routine will solve A' * x = b. // // Output, double R8GE_NP_SL[N], the solution. // { int i; int k; double *x; // // Solve A * x = b. // x = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { x[i] = b[i]; } if ( job == 0 ) { for ( k = 0; k < n - 1; k++ ) { for ( i = k + 1; i < n; i++ ) { x[i] = x[i] + a_lu[i+k*n] * x[k]; } } for ( k = n - 1; 0 <= k; k-- ) { x[k] = x[k] / a_lu[k+k*n]; for ( i = 0; i <= k - 1; i++ ) { x[i] = x[i] - a_lu[i+k*n] * x[k]; } } } // // Solve A' * X = B. // else { for ( k = 0; k < n; k++ ) { for ( i = 0; i <= k - 1; i++ ) { x[k] = x[k] - x[i] * a_lu[i+k*n]; } x[k] = x[k] / a_lu[k+k*n]; } for ( k = n - 2; 0 <= k; k-- ) { for ( i = k + 1; i < n; i++ ) { x[k] = x[k] + x[i] * a_lu[i+k*n]; } } } return x; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = r8vec_zeros_new ( n ); for ( i = 0; i <= n - 1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_to_r8cb ( int m, int n, int ml, int mu, double *x ) //****************************************************************************80 // // Purpose: // // R8VEC_TO_R8CB copies an R8VEC into an R8CB matrix. // // Discussion: // // In C++ and FORTRAN, this routine is not really needed. In MATLAB, // a data item carries its dimensionality implicitly, and so cannot be // regarded sometimes as a vector and sometimes as an array. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns in the array. // // Input, int ML, MU, the lower and upper bandwidths. // // Input, double X[(ML+MU+1)*N], the vector to be copied into the array. // // Output, double R8VEC_TO_R8CB[(ML+MU+1)*N], the array. // { double *a; int i; int j; a = r8vec_zeros_new ( ( ml + mu + 1 ) * n ); for ( j = 1; j <= n; j++ ) { for ( i = 1; i <= ml + mu + 1; i++ ) { if ( ( 1 <= i + j - mu - 1 ) && ( i + j - mu - 1 <= m ) ) { a[i-1+(j-1)*(ml+mu+1)] = x[i-1+(j-1)*(ml+mu+1)]; } } } return a; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }