# include # include # include # include # include using namespace std; # include "r85.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of ABS(X). // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double *r85_dif2 ( int n ) //****************************************************************************80 // // Purpose: // // R85_DIF2 sets up an R85 second difference matrix. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 July 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Output, double R85_DIF2[5*N], the R85 matrix. // { double *a; int j; a = r8vec_zeros_new ( 5 * n ); for ( j = 2; j <= n; j++ ) { a[1+(j-1)*5] = - 1.0; } for ( j = 1; j <= n; j++ ) { a[2+(j-1)*5] = 2.0; } for ( j = 1; j <= n - 1; j++ ) { a[3+(j-1)*5] = - 1.0; } return a; } //****************************************************************************80 double *r85_indicator ( int n ) //****************************************************************************80 // // Purpose: // // R85_INDICATOR sets up an R85 indicator matrix. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Here are the values as stored in an indicator matrix: // // 00 00 13 24 35 46 // 00 12 23 34 45 56 // 11 22 33 44 55 66 // 21 32 43 54 65 00 // 31 42 53 64 00 00 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 05 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be at least 2. // // Output, double R85_INDICATOR[3*N], the R85 indicator matrix. // { double *a; int fac; int i; int j; a = r8vec_zeros_new ( 5 * n ); fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); for ( j = 3; j <= n; j++ ) { i = j - 2; a[0+(j-1)*5] = ( double ) ( fac * i + j ); } for ( j = 2; j <= n; j++ ) { i = j - 1; a[1+(j-1)*5] = ( double ) ( fac * i + j ); } for ( j = 1; j <= n; j++ ) { i = j; a[2+(j-1)*5] = ( double ) ( fac * i + j ); } for ( j = 1; j <= n - 1; j++ ) { i = j + 1; a[3+(j-1)*5] = ( double ) ( fac * i + j ); } for ( j = 1; j <= n - 2; j++ ) { i = j + 2; a[4+(j-1)*5] = ( double ) ( fac * i + j ); } return a; } //****************************************************************************80 double *r85_np_fs ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R85_NP_FS factors and solves an R85 system. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // This algorithm requires that each diagonal entry be nonzero. // // No pivoting is performed, and therefore the algorithm may fail // in simple cases where the matrix is not singular. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 18 September 2003 // // Author: // // Original FORTRAN77 version by Cheney, Kincaid. // C++ version by John Burkardt. // // Reference: // // Ward Cheney, David Kincaid, // Numerical Mathematics and Computing, // 1985, pages 233-236. // // Parameters: // // Input, int N, the order of the linear system. // // Input/output, double A[5*N], // On input, the pentadiagonal matrix. // On output, the data in these vectors has been overwritten // by factorization information. // // Input/output, double B[N]. // On input, B contains the right hand side of the linear system. // On output, B has been overwritten by factorization information. // // Output, double R85_NP_FS[N], the solution of the linear system. // { int i; double *x; double xmult; for ( i = 0; i < n; i++ ) { if ( a[2+i*5] == 0.0 ) { return NULL; } } x = r8vec_zeros_new ( n ); for ( i = 2; i <= n - 1; i++ ) { xmult = a[1+(i-1)*5] / a[2+(i-2)*5]; a[2+(i-1)*5] = a[2+(i-1)*5] - xmult * a[3+(i-2)*5]; a[3+(i-1)*5] = a[3+(i-1)*5] - xmult * a[4+(i-2)*5]; b[i-1] = b[i-1] - xmult * b[i-2]; xmult = a[0+i*5] / a[2+(i-2)*5]; a[1+i*5] = a[1+i*5] - xmult * a[3+(i-2)*5]; a[2+i*5] = a[2+i*5] - xmult * a[4+(i-2)*5]; b[i] = b[i] - xmult * b[i-2]; } xmult = a[1+(n-1)*5] / a[2+(n-2)*5]; a[2+(n-1)*5] = a[2+(n-1)*5] - xmult * a[3+(n-2)*5]; x[n-1] = ( b[n-1] - xmult * b[n-2] ) / a[2+(n-1)*5]; x[n-2] = ( b[n-2] - a[3+(n-2)*5] * x[n-1] ) / a[2+(n-2)*5]; for ( i = n - 2; 1 <= i; i-- ) { x[i-1] = ( b[i-1] - a[3+(i-1)*5] * x[i] - a[4+(i-1)*5] * x[i+1] ) / a[2+(i-1)*5]; } return x; } //****************************************************************************80 double *r85_mtv ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R85_MTV multiplies a vector times an R85 matrix. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the linear system. // // Input, double A[5*N], the pentadiagonal matrix. // // Input, double X[N], the vector to be multiplied by A'. // // Output, double R85_MTV[N], the product A' * x. // { double *b; int j; b = r8vec_zeros_new ( n ); for ( j = 0; j < n; j++ ) { b[j] = a[2+j*5] * x[j]; } for ( j = 1; j < n; j++ ) { b[j] = b[j] + a[3+j*5] * x[j-1]; } for ( j = 2; j < n; j++ ) { b[j] = b[j] + a[4+j*5] * x[j-2]; } for ( j = 0; j < n - 1; j++ ) { b[j] = b[j] + a[1+j*5] * x[j+1]; } for ( j = 0; j < n - 2; j++ ) { b[j] = b[j] + a[0+j*5] * x[j+2]; } return b; } //****************************************************************************80 double *r85_mv ( int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R85_MV multiplies an R85 matrix times a vector. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the linear system. // // Input, double A[5*N], the pentadiagonal matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R85_MV[N], the product A * x. // { double *b; int i; b = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { b[i] = a[2+i*5] * x[i]; } for ( i = 2; i < n; i++ ) { b[i] = b[i] + a[0+i*5] * x[i-2]; } for ( i = 1; i < n; i++ ) { b[i] = b[i] + a[1+i*5] * x[i-1]; } for ( i = 0; i < n - 1; i++ ) { b[i] = b[i] + a[3+i*5] * x[i+1]; } for ( i = 0; i < n - 2; i++ ) { b[i] = b[i] + a[4+i*5] * x[i+2]; } return b; } //****************************************************************************80 void r85_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R85_PRINT prints an R85 matrix. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[5*N], the pentadiagonal matrix. // // Input, string TITLE, a title. // { r85_print_some ( n, a, 1, 1, n, n, title ); return; } //****************************************************************************80 void r85_print_some ( int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R85_PRINT_SOME prints some of an R85 matrix. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A[5*N], the pentadiagonal matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column, to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int inc; int j; int j2; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2lo = i4_max ( i2lo, j2lo - 2 ); i2hi = i4_min ( ihi, n ); i2hi = i4_min ( i2hi, j2hi + 2 ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(6) << i << " "; for ( j2 = 1; j2 <= inc; j2++ ) { j = j2lo - 1 + j2; if ( 2 < i - j || 2 < j - i ) { cout << " "; } else if ( j == i + 2 ) { cout << setw(10) << a[0+(j-1)*5] << " "; } else if ( j == i + 1 ) { cout << setw(10) << a[1+(j-1)*5] << " "; } else if ( j == i ) { cout << setw(10) << a[2+(j-1)*5] << " "; } else if ( j == i - 1 ) { cout << setw(10) << a[3+(j-1)*5] << " "; } else if ( j == i - 2 ) { cout << setw(10) << a[4+(j-1)*5] << " "; } } cout << "\n"; } cout << "\n"; } return; # undef INCX } //****************************************************************************80 double *r85_random ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R85_RANDOM randomizes an R85 matrix. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the linear system. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R85_RANDOM[5*N], the pentadiagonal matrix. // { double *a; int i; int j; a = r8vec_zeros_new ( 5 * n ); i = 0; for ( j = 2; j < n; j++ ) { a[i+j*5] = r8_uniform_01 ( seed ); } i = 1; for ( j = 1; j < n; j++ ) { a[i+j*5] = r8_uniform_01 ( seed ); } i = 2; for ( j = 0; j < n; j++ ) { a[i+j*5] = r8_uniform_01 ( seed ); } i = 3; for ( j = 0; j < n - 1; j++ ) { a[i+j*5] = r8_uniform_01 ( seed ); } i = 4; for ( j = 0; j < n - 2; j++ ) { a[i+j*5] = r8_uniform_01 ( seed ); } return a; } //****************************************************************************80 double *r85_to_r8ge ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R85_TO_R8GE copies an R85 matrix to an R8GE matrix. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be at least 3. // // Input, double A[5*N], the nonzero diagonals of the matrix. // // Output, double R85_TO_R8GE[N*N], the pentadiagonal matrix. // { double *b; int i; int j; b = r8vec_zeros_new ( n * n ); for ( j = 0; j < n; j++ ) { for ( i = 0; i < n; i++ ) { if ( j == i - 2 ) { b[i+j*5] = a[0+i*5]; } else if ( j == i - 1 ) { b[i+j*5] = a[1+i*5]; } else if ( i == j ) { b[i+j*5] = a[2+i*5]; } else if ( j == i + 1 ) { b[i+j*5] = a[3+i*5]; } else if ( j == i + 2 ) { b[i+j*5] = a[4+i*5]; } else { b[i+j*5] = 0.0; } } } return b; } //****************************************************************************80 double *r85_zeros ( int n ) //****************************************************************************80 // // Purpose: // // R85_ZEROS zeros an R85 matrix. // // Discussion: // // The R85 storage format represents a pentadiagonal matrix as a 5 // by N array, in which each row corresponds to a diagonal, and // column locations are preserved. Thus, the original matrix is // "collapsed" vertically into the array. // // Example: // // Here is how an R85 matrix of order 6 would be stored: // // * * A13 A24 A35 A46 // * A12 A23 A34 A45 A56 // A11 A22 A33 A44 A55 A66 // A21 A32 A43 A54 A65 * // A31 A42 A53 A64 * * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the linear system. // // Output, double R85_ZERO[5*N], the R85 matrix. // { double *a; a = r8vec_zeros_new ( 5 * n ); return a; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = r8vec_zeros_new ( n ); for ( i = 0; i <= n - 1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }