# include # include # include # include # include # include using namespace std; # include "r83v.hpp" //****************************************************************************80 int i4_log_10 ( int i ) //****************************************************************************80 // // Purpose: // // I4_LOG_10 returns the integer part of the logarithm base 10 of an I4. // // Example: // // I I4_LOG_10 // ----- -------- // 0 0 // 1 0 // 2 0 // 9 0 // 10 1 // 11 1 // 99 1 // 100 2 // 101 2 // 999 2 // 1000 3 // 1001 3 // 9999 3 // 10000 4 // // Discussion: // // I4_LOG_10 ( I ) + 1 is the number of decimal digits in I. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, the number whose logarithm base 10 is desired. // // Output, int I4_LOG_10, the integer part of the logarithm base 10 of // the absolute value of X. // { int i_abs; int ten_pow; int value; if ( i == 0 ) { value = 0; } else { value = 0; ten_pow = 10; i_abs = abs ( i ); while ( ten_pow <= i_abs ) { value = value + 1; ten_pow = ten_pow * 10; } } return value; } //****************************************************************************80 void i4_log_10_test ( ) //****************************************************************************80 // // Purpose: // // I4_LOG_10_TEST tests I4_LOG_10. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 October 2006 // // Author: // // John Burkardt // { int i; int x[13] = { 0, 1, 2, 3, 9, 10, 11, 99, 101, -1, -2, -3, -9 }; cout << "\n"; cout << "I4_LOG_10_TEST\n"; cout << " I4_LOG_10: whole part of log base 10,\n"; cout << "\n"; cout << " X I4_LOG_10(X)\n"; cout << "\n"; for ( i = 0; i < 13; i++ ) { cout << " " << setw(6) << x[i] << " " << setw(6) << i4_log_10 ( x[i] ) << "\n"; } return; } //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void i4_max_test ( ) //****************************************************************************80 // // Purpose: // // I4_MAX_TEST tests I4_MAX. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 March 2015 // // Author: // // John Burkardt // { int a; int b; int c; int i; int i4_hi; int i4_lo; int seed; cout << "\n"; cout << "I4_MAX_TEST\n"; cout << " I4_MAX returns the maximum of two I4's.\n"; cout << "\n"; cout << " A B C=I4_MAX(A,B)\n"; cout << "\n"; i4_lo = -100; i4_hi = +100; seed = 123456789; for ( i = 0; i < 10; i++ ) { a = i4_uniform_ab ( i4_lo, i4_hi, seed ); b = i4_uniform_ab ( i4_lo, i4_hi, seed ); c = i4_max ( a, b ); cout << " " << setw(8) << a << " " << setw(8) << b << " " << setw(8) << c << "\n"; } return; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 void i4_min_test ( ) //****************************************************************************80 // // Purpose: // // I4_MIN_TEST tests I4_MIN. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 March 2015 // // Author: // // John Burkardt // { int a; int b; int c; int i; int i4_hi; int i4_lo; int seed; cout << "\n"; cout << "I4_MIN_TEST\n"; cout << " I4_MIN returns the minimum of two I4's.\n"; cout << "\n"; cout << " A B C=I4_MIN(A,B)\n"; cout << "\n"; i4_lo = -100; i4_hi = +100; seed = 123456789; for ( i = 0; i < 10; i++ ) { a = i4_uniform_ab ( i4_lo, i4_hi, seed ); b = i4_uniform_ab ( i4_lo, i4_hi, seed ); c = i4_min ( a, b ); cout << " " << setw(8) << a << " " << setw(8) << b << " " << setw(8) << c << "\n"; } return; } //****************************************************************************80 int i4_power ( int i, int j ) //****************************************************************************80 // // Purpose: // // I4_POWER returns the value of I^J. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 April 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int I, J, the base and the power. J should be nonnegative. // // Output, int I4_POWER, the value of I^J. // { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J negative.\n"; exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { cerr << "\n"; cerr << "I4_POWER - Fatal error!\n"; cerr << " I^J requested, with I = 0 and J = 0.\n"; exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } //****************************************************************************80 void i4_power_test ( ) //****************************************************************************80 // // Purpose: // // I4_POWER_TEST tests I4_POWER. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 January 2016 // // Author: // // John Burkardt // { int i; int i_test[7] = { 0, 1, 2, 3, 10, -1, -2 }; int j; int j_test[7] = { 1, 2, 3, 3, 3, 4, 5 }; int test; int test_num; test_num = 7; cout << "\n"; cout << "I4_POWER_TEST\n"; cout << " I4_POWER computes I^J\n"; cout << "\n"; cout << " I J I4_POWER(I,J)\n"; cout << "\n"; for ( test = 0; test < test_num; test++ ) { i = i_test[test]; j = j_test[test]; cout << " " << setw(8) << i << " " << setw(8) << j << " " << setw(8) << i4_power ( i, j ) << "\n"; } return; } //****************************************************************************80 void i4_uniform_ab_test ( ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB_TEST tests I4_UNIFORM_AB. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2014 // // Author: // // John Burkardt // { int a = -100; int b = 200; int i; int j; int seed = 123456789; cout << "\n"; cout << "I4_UNIFORM_AB_TEST\n"; cout << " I4_UNIFORM_AB computes pseudorandom values\n"; cout << " in an interval [A,B].\n"; cout << "\n"; cout << " The lower endpoint A = " << a << "\n"; cout << " The upper endpoint B = " << b << "\n"; cout << " The initial seed is " << seed << "\n"; cout << "\n"; for ( i = 1; i <= 20; i++ ) { j = i4_uniform_ab ( a, b, seed ); cout << " " << setw(8) << i << " " << setw(8) << j << "\n"; } return; } //****************************************************************************80 int i4_uniform_ab ( int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4_UNIFORM_AB returns a scaled pseudorandom I4 between A and B. // // Discussion: // // The pseudorandom number should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 October 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int I4_UNIFORM, a number between A and B. // { int c; const int i4_huge = 2147483647; int k; float r; int value; if ( seed == 0 ) { cerr << "\n"; cerr << "I4_UNIFORM_AB - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 void r8_uniform_01_test ( ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01_TEST tests R8_UNIFORM_01. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 September 2005 // // Author: // // John Burkardt // { # define N 1000 int i; int seed = 123456789; double x[N]; cout << "\n"; cout << "R8_UNIFORM_01_TEST\n"; cout << " R8_UNIFORM_01 samples a uniform random distribution in [0,1].\n"; cout << " distributed random numbers.\n"; cout << " Using initial random number seed = " << seed << "\n"; for ( i = 0; i < N; i++ ) { x[i] = r8_uniform_01 ( seed ); } cout << "\n"; cout << " First few values:\n"; cout << "\n"; for ( i = 0; i < 10; i++ ) { cout << " " << setw(6) << i << " " << setw(14) << x[i] << "\n"; } return; # undef N } //****************************************************************************80 double *r83_indicator ( int m, int n ) //****************************************************************************80 // // Purpose: // // R83_INDICATOR sets up an R83 indicator matrix. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // R8GE A(I,J) = R83 A[I-J+1+J*3] (0 based indexing). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double R83_INDICATOR[3*N], the R83 indicator matrix. // { double *a; int fac; int i; int i_hi; int i_lo; int j; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); a = new double[3*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < 3; i++ ) { a[i+j*3] = 0.0; } } for ( j = 0; j < n; j++ ) { i_lo = i4_max ( 0, j - 1 ); i_hi = i4_min ( m - 1, j + 1 ); for ( i = i_lo; i <= i_hi; i++ ) { a[i-j+1+j*3] = ( double ) ( fac * ( i + 1 ) + j + 1 ); } } return a; } //****************************************************************************80 void r83_indicator_test ( ) //****************************************************************************80 // // Purpose: // // R83_INDICATOR_TEST tests R83_INDICATOR. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2006 // // Author: // // John Burkardt // { double *a; int m = 5; int n = 4; cout << "\n"; cout << "R83_INDICATOR_TEST\n"; cout << " R83_INDICATOR sets up an R83 indicator matrix.\n"; cout << " Matrix order is " << m << " by " << n << "\n"; a = r83_indicator ( m, n ); r83_print ( m, n, a, " The R83 indicator matrix:" ); delete [] a; return; } //****************************************************************************80 void r83_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R83_PRINT prints an R83 matrix. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // R8GE A(I,J) = R83 A[I-J+1+J*3] (0 based indexing). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // A21 A32 A43 A54 * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[3*N], the R83 matrix. // // Input, string TITLE, a title. // { r83_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r83_print_test ( ) //****************************************************************************80 // // Purpose: // // R83_PRINT_TEST tests R83_PRINT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2006 // // Author: // // John Burkardt // { double *a; int m = 5; int n = 4; cout << "\n"; cout << "R83_PRINT_TEST\n"; cout << " R83_PRINT prints an R83 matrix.\n"; cout << " Matrix order is " << m << " by " << n << "\n"; a = r83_indicator ( m, n ); r83_print ( m, n, a, " The R83 matrix:" ); delete [] a; return; } //****************************************************************************80 void r83_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R83_PRINT_SOME prints some of an R83 matrix. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // R8GE A(I,J) = R83 A[I-J+1+J*3] (0 based indexing). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[3*N], the R83 matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column, to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int inc; int j; int j2; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { j2 = j + 1 - j2lo; cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2lo = i4_max ( i2lo, j2lo - 1 ); i2hi = i4_min ( ihi, m ); i2hi = i4_min ( i2hi, j2hi + 1 ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(6) << i << ": "; for ( j2 = 1; j2 <= inc; j2++ ) { j = j2lo - 1 + j2; if ( i - j + 1 < 0 || 2 < i - j + 1 ) { cout << " "; } else { cout << " " << setw(12) << a[i-j+1+(j-1)*3]; } } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r83_print_some_test ( ) //****************************************************************************80 // // Purpose: // // R83_PRINT_SOME_TEST tests R83_PRINT_SOME. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 August 2006 // // Author: // // John Burkardt // { double *a; int m = 5; int n = 5; cout << "\n"; cout << "R83_PRINT_SOME_TEST\n"; cout << " R83_PRINT prints some of an R83 matrix.\n"; cout << " Matrix order is " << m << " by " << n << "\n"; a = r83_indicator ( m, n ); r83_print_some ( m, n, a, 1, 1, 4, 3, " Rows 1-4, Cols 1-3:" ); delete [] a; return; } //****************************************************************************80 void r83v_cg ( int n, double a1[], double a2[], double a3[], double b[], double x[] ) //****************************************************************************80 // // Purpose: // // R83V_CG uses the conjugate gradient method on an R83V system. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Reference: // // Frank Beckman, // The Solution of Linear Equations by the Conjugate Gradient Method, // in Mathematical Methods for Digital Computers, // edited by John Ralston, Herbert Wilf, // Wiley, 1967, // ISBN: 0471706892, // LC: QA76.5.R3. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A1(N-1), A2(N), A3(N-1), the matrix. // // Input, double B[N], the right hand side vector. // // Input/output, double X[N]. // On input, an estimate for the solution, which may be 0. // On output, the approximate solution vector. // { double alpha; double *ap; double beta; int i; int it; double *p; double pap; double pr; double *r; double rap; // // Initialize // AP = A * x, // R = b - A * x, // P = b - A * x. // ap = r83v_mv ( n, n, a1, a2, a3, x ); r = new double[n]; for ( i = 0; i < n; i++ ) { r[i] = b[i] - ap[i]; } p = new double[n]; for ( i = 0; i < n; i++ ) { p[i] = b[i] - ap[i]; } // // Do the N steps of the conjugate gradient method. // for ( it = 1; it <= n; it++ ) { // // Compute the matrix*vector product AP=A*P. // delete [] ap; ap = r83v_mv ( n, n, a1, a2, a3, p ); // // Compute the dot products // PAP = P*AP, // PR = P*R // Set // ALPHA = PR / PAP. // pap = r8vec_dot_product ( n, p, ap ); pr = r8vec_dot_product ( n, p, r ); if ( pap == 0.0 ) { delete [] ap; break; } alpha = pr / pap; // // Set // X = X + ALPHA * P // R = R - ALPHA * AP. // for ( i = 0; i < n; i++ ) { x[i] = x[i] + alpha * p[i]; } for ( i = 0; i < n; i++ ) { r[i] = r[i] - alpha * ap[i]; } // // Compute the vector dot product // RAP = R*AP // Set // BETA = - RAP / PAP. // rap = r8vec_dot_product ( n, r, ap ); beta = - rap / pap; // // Update the perturbation vector // P = R + BETA * P. // for ( i = 0; i < n; i++ ) { p[i] = r[i] + beta * p[i]; } } // // Free memory. // delete [] p; delete [] r; return; } //****************************************************************************80 void r83v_cg_test ( ) //****************************************************************************80 // // Purpose: // // R83V_CG_TEST tests R83V_CG. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a1; double *a2; double *a3; double *b; double e_norm; int i; int n; double *r; double r_norm; int seed; double *x1; double *x2; cout << "\n"; cout << "R83_CG_TEST\n"; cout << " R83_CG applies CG to an R83 matrix.\n"; n = 10; // // Let A be the -1 2 -1 matrix. // a1 = new double[n-1]; a2 = new double[n]; a3 = new double[n-1]; r83v_dif2 ( n, n, a1, a2, a3 ); // // Choose a random solution. // seed = 123456789; x1 = r8vec_uniform_01_new ( n, seed ); // // Compute the corresponding right hand side. // b = r83v_mv ( n, n, a1, a2, a3, x1 ); // // Call the CG routine. // x2 = new double[n]; for ( i = 0; i < n; i++ ) { x2[i] = 1.0; } r83v_cg ( n, a1, a2, a3, b, x2 ); // // Compute the residual. // r = r83v_res ( n, n, a1, a2, a3, x2, b ); r_norm = r8vec_norm ( n, r ); // // Compute the error. // e_norm = r8vec_norm_affine ( n, x1, x2 ); // // Report. // cout << "\n"; cout << " Number of variables N = " << n << "\n"; cout << " Norm of residual ||Ax-b|| = " << r_norm << "\n"; cout << " Norm of error ||x1-x2|| = " << e_norm << "\n"; // // Free memory. // delete [] a1; delete [] a2; delete [] a3; delete [] b; delete [] r; delete [] x1; delete [] x2; return; } //****************************************************************************80 void r83v_copy ( int m, int n, double a1[], double a2[], double a3[], double b1[], double b2[], double b3[] ) //****************************************************************************80 // // Purpose: // // R83V_COPY copies a matrix in R83V format. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A1(min(M-1,N)), A2(min(M,N)), A3(min(M,N-1)), the matrix. // // Output, double B1(min(M-1,N)), B2(min(M,N)), B3(min(M,N-1)), the copy. // { int ahi; int bhi; int chi; int i; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( i = 0; i < ahi; i++ ) { b1[i] = a1[i]; } for ( i = 0; i < bhi; i++ ) { b2[i] = a2[i]; } for ( i = 0; i < chi; i++ ) { b3[i] = a3[i]; } return; } //****************************************************************************80 void r83v_copy_test ( ) //****************************************************************************80 // // Purpose: // // R83V_COPY_TEST tests R83V_COPY. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a1; double *a2; double *a3; int ahi; double *b1; double *b2; double *b3; int bhi; int chi; int i; int m; int n; cout << "\n"; cout << "R83V_COPY_TEST\n"; cout << " R83V_COPY copies an R83V matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a1 = new double[ahi]; a2 = new double[bhi]; a3 = new double[chi]; r83v_indicator ( m, n, a1, a2, a3 ); r83v_print ( m, n, a1, a2, a3, " R83V matrix A:" ); b1 = new double[ahi]; b2 = new double[bhi]; b3 = new double[chi]; r83v_copy ( m, n, a1, a2, a3, b1, b2, b3 ); r83v_print ( m, n, b1, b2, b3, " B = copy of A:" ); delete [] a1; delete [] a2; delete [] a3; delete [] b1; delete [] b2; delete [] b3; } return; } //****************************************************************************80 double *r83v_cr_fa ( int n, double a1[], double a2[], double a3[] ) //****************************************************************************80 // // Purpose: // // R83V_CR_FA decomposes an R83V matrix using cyclic reduction. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Once R83V_CR_FA has decomposed a matrix A, then R83V_CR_SL may be used to // solve linear systems A * x = b. // // This function does not employ pivoting. Hence, the results can be more // sensitive to ill-conditioning than standard Gauss elimination. In // particular, this function will fail if any diagonal element of the matrix // is zero. Other matrices may also cause this function to fail. // // This function can be guaranteed to work properly if the matrix is strictly // diagonally dominant, that is, if the absolute value of the diagonal // element is strictly greater than the sum of the absolute values of // the offdiagonal elements, for each equation. // // The algorithm may be illustrated by the following figures: // // The initial matrix is given by: // // D1 U1 // L1 D2 U2 // L2 D3 U3 // L3 D4 U4 // L4 D U5 // L5 D6 // // Rows and columns are permuted in an odd/even way to yield: // // D1 U1 // D3 L2 U3 // D5 L4 U5 // L1 U2 D2 // L3 U4 D4 // L5 D6 // // A block LU decomposition is performed to yield: // // D1 |U1 // D3 |L2 U3 // D5| L4 U5 // --------+-------- // |D2'F3 // |F1 D4'F4 // | F2 D6' // // For large systems, this reduction is repeated on the lower right hand // tridiagonal subsystem until a completely upper triangular system // is obtained. The system has now been factored into the product of a // lower triangular system and an upper triangular one, and the information // defining this factorization may be used by R83V_CR_SL to solve linear // systems. // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Reference: // // Roger Hockney, // A fast direct solution of Poisson's equation using Fourier Analysis, // Journal of the ACM, // Volume 12, Number 1, pages 95-113, January 1965. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A1(N-1), A2(N), A3(N-1), the matrix. // // Output, double R83V_CR_FA[3*(2*N+1)], factorization information // needed by R83V_CR_SL. // { double *a_cr; int i; int iful; int ifulp; int ihaf; int il; int ilp; int inc; int incr; int ipnt; int ipntp; int j; if ( n <= 0 ) { cerr << "\n"; cerr << "R83V_CR_FA - Fatal error!\n"; cerr << " Nonpositive N = " << n << "\n"; exit ( 1 ); } a_cr = new double[3 * ( 2 * n + 1 )]; for ( j = 0; j < 2 * n + 1; j++ ) { for ( i = 0; i < 3; i++ ) { a_cr[i+j*3] = 0.0; } } if ( n == 1 ) { a_cr[1+0*3] = 1.0 / a2[0]; return a_cr; } for ( j = 1; j <= n - 1; j++ ) { a_cr[0+j*3] = a3[j-1]; } for ( j = 1; j <= n; j++ ) { a_cr[1+j*3] = a2[j-1]; } for ( j = 1; j <= n - 1; j++ ) { a_cr[2+j*3] = a1[j-1]; } il = n; ipntp = 0; while ( 1 < il ) { ipnt = ipntp; ipntp = ipntp + il; if ( ( il % 2 ) == 1 ) { inc = il + 1; } else { inc = il; } incr = inc / 2; il = il / 2; ihaf = ipntp + incr + 1; ifulp = ipnt + inc + 2; for ( ilp = incr; 1 <= ilp; ilp-- ) { ifulp = ifulp - 2; iful = ifulp - 1; ihaf = ihaf - 1; a_cr[1+iful*3] = 1.0 / a_cr[1+iful*3]; a_cr[2+iful*3] = a_cr[2+iful*3] * a_cr[1+iful*3]; a_cr[0+ifulp*3] = a_cr[0+ifulp*3] * a_cr[1+(ifulp+1)*3]; a_cr[1+ihaf*3] = a_cr[1+ifulp*3] - a_cr[0+iful*3] * a_cr[2+iful*3] - a_cr[0+ifulp*3] * a_cr[2+ifulp*3]; a_cr[2+ihaf*3] = -a_cr[2+ifulp*3] * a_cr[2+(ifulp+1)*3]; a_cr[0+ihaf*3] = -a_cr[0+ifulp*3] * a_cr[0+(ifulp+1)*3]; } } a_cr[1+(ipntp+1)*3] = 1.0 / a_cr[1+(ipntp+1)*3]; return a_cr; } //****************************************************************************80 void r83v_cr_fa_test ( ) //****************************************************************************80 // // Purpose: // // R83V_CR_FA_TEST tests R83V_CR_FA. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a_cr; double *a1; double *a2; double *a3; double *b; int i; int j; int n = 10; double *x; cout << "\n"; cout << "R83V_CR_FA_TEST:\n"; cout << " R83V_CR_FA factors an R83V matrix using cyclic reduction;\n"; cout << "\n"; cout << " Matrix order N = " << n << "\n"; cout << " The matrix is NOT symmetric.\n"; // // Set the matrix values. // a1 = new double[( n - 1 )]; a2 = new double[ n ]; a3 = new double[( n - 1 )]; for ( j = 0; j < n; j++ ) { for ( i = i4_max ( 0, j - 1 ); i <= i4_min ( n - 1, j + 1 ); i++ ) { if ( j == i - 1 ) { a1[j] = ( double ) ( j + 1 ); } else if ( j == i ) { a2[j] = ( double ) ( 4 * ( j + 1 ) ); } else if ( j == i + 1 ) { a3[j-1] = ( double ) ( j + 1 ); } } } r83v_print ( n, n, a1, a2, a3, " The matrix:" ); // // Set the desired solution. // x = r8vec_indicator1_new ( n ); // // Compute the corresponding right hand side. // b = r83v_mv ( n, n, a1, a2, a3, x ); // // Factor the matrix. // a_cr = r83v_cr_fa ( n, a1, a2, a3 ); // // Solve the linear system. // x = r83v_cr_sl ( n, a_cr, b ); r8vec_print ( n, x, " Solution:" ); delete [] a_cr; delete [] a1; delete [] a2; delete [] a3; delete [] b; delete [] x; return; } //****************************************************************************80 double *r83v_cr_sl ( int n, double a_cr[], double b[] ) //****************************************************************************80 // // Purpose: // // R83V_CR_SL solves a real linear system factored by R83V_CR_FA. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // The matrix A must be tridiagonal. R83V_CR_FA is called to compute the // LU factors of A. It does so using a form of cyclic reduction. If // the factors computed by R83V_CR_FA are passed to R83V_CR_SL, then one or // many linear systems involving the matrix A may be solved. // // Note that R83V_CR_FA does not perform pivoting, and so the solution // produced by R83V_CR_SL may be less accurate than a solution produced // by a standard Gauss algorithm. However, such problems can be // guaranteed not to occur if the matrix A is strictly diagonally // dominant, that is, if the absolute value of the diagonal coefficient // is greater than the sum of the absolute values of the two off diagonal // coefficients, for each row of the matrix. // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Reference: // // Roger Hockney, // A fast direct solution of Poisson's equation using Fourier Analysis, // Journal of the ACM, // Volume 12, Number 1, pages 95-113, January 1965. // // Parameters: // // Input, int N, the order of the matrix. // N must be positive. // // Input, double A_CR[3*(2*N+1)], factorization information computed by // R83V_CR_FA. // // Input, double B[N], the right hand side. // // Output, double R83V_CR_SL[N], the solution. // { int i; int iful; int ifulm; int ihaf; int il; int ipnt; int ipntp; int ndiv; double *rhs; double *x; if ( n <= 0 ) { cerr << "\n"; cerr << "R83V_CR_SL - Fatal error!\n"; cerr << " Nonpositive N = " << n << "\n"; exit ( 1 ); } if ( n == 1 ) { x = new double[1]; x[0] = a_cr[1+1*3] * b[0]; return x; } // // Set up RHS. // rhs = new double[ ( 2 * n + 1 )]; rhs[0] = 0.0; for ( i = 1; i <= n; i++ ) { rhs[i] = b[i-1]; } for ( i = n + 1; i <= 2 * n; i++ ) { rhs[i] = 0.0; } il = n; ndiv = 1; ipntp = 0; while ( 1 < il ) { ipnt = ipntp; ipntp = ipntp + il; il = il / 2; ndiv = ndiv * 2; ihaf = ipntp; for ( iful = ipnt + 2; iful <= ipntp; iful = iful + 2 ) { ihaf = ihaf + 1; rhs[ihaf] = rhs[iful] - a_cr[2+(iful-1)*3] * rhs[iful-1] - a_cr[0+iful*3] * rhs[iful+1]; } } rhs[ihaf] = rhs[ihaf] * a_cr[1+ihaf*3]; ipnt = ipntp; while ( 0 < ipnt ) { ipntp = ipnt; ndiv = ndiv / 2; il = n / ndiv; ipnt = ipnt - il; ihaf = ipntp; for ( ifulm = ipnt + 1; ifulm <= ipntp; ifulm = ifulm + 2 ) { iful = ifulm + 1; ihaf = ihaf + 1; rhs[iful] = rhs[ihaf]; rhs[ifulm] = a_cr[1+ifulm*3] * ( rhs[ifulm] - a_cr[2+(ifulm-1)*3] * rhs[ifulm-1] - a_cr[0+ifulm*3] * rhs[iful] ); } } x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = rhs[i+1]; } delete [] rhs; return x; } //****************************************************************************80 void r83v_cr_sl_test ( ) //****************************************************************************80 // // Purpose: // // R83V_CR_SL_TEST tests R83V_CR_SL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a_cr; double *a1; double *a2; double *a3; double *b; int i; int j; int n = 10; double *x; cout << "\n"; cout << "R83V_CR_SL_TEST:\n"; cout << " R83V_CR_SL solves a linear system factored by R83V_CR_FA.\n"; cout << "\n"; cout << " Matrix order N = " << n << "\n"; cout << " The matrix is NOT symmetric.\n"; // // Set the matrix values. // a1 = new double[n-1]; a2 = new double[n]; a3 = new double[n-1]; for ( j = 0; j < n; j++ ) { for ( i = i4_max ( 0, j - 1 ); i <= i4_min ( n - 1, j + 1 ); i++ ) { if ( j == i - 1 ) { a1[j] = ( double ) ( j + 1 ); } else if ( j == i ) { a2[j] = ( double ) ( 4 * ( j + 1 ) ); } else if ( j == i + 1 ) { a3[j-1] = ( double ) ( j + 1 ); } } } r83v_print ( n, n, a1, a2, a3, " The matrix:" ); // // Set the desired solution. // x = r8vec_indicator1_new ( n ); // // Compute the corresponding right hand side. // b = r83v_mv ( n, n, a1, a2, a3, x ); // // Factor the matrix. // a_cr = r83v_cr_fa ( n, a1, a2, a3 ); // // Solve the linear system. // x = r83v_cr_sl ( n, a_cr, b ); r8vec_print ( n, x, " Solution:" ); delete [] a_cr; delete [] a1; delete [] a2; delete [] a3; delete [] b; delete [] x; return; } //****************************************************************************80 double *r83v_cr_sls ( int n, double a_cr[], int nb, double b[] ) //****************************************************************************80 // // Purpose: // // R83V_CR_SLS solves several real linear systems factored by R83V_CR_FA. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // The matrix A must be tridiagonal. R83V_CR_FA is called to compute the // LU factors of A. It does so using a form of cyclic reduction. If // the factors computed by R83V_CR_FA are passed to R83V_CR_SLS, then one or // many linear systems involving the matrix A may be solved. // // Note that R83V_CR_FA does not perform pivoting, and so the solutions // produced by R83V_CR_SLS may be less accurate than a solution produced // by a standard Gauss algorithm. However, such problems can be // guaranteed not to occur if the matrix A is strictly diagonally // dominant, that is, if the absolute value of the diagonal coefficient // is greater than the sum of the absolute values of the two off diagonal // coefficients, for each row of the matrix. // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Reference: // // Roger Hockney, // A fast direct solution of Poisson's equation using Fourier Analysis, // Journal of the ACM, // Volume 12, Number 1, pages 95-113, January 1965. // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A_CR[3*(2*N+1)], factorization information computed by // R83V_CR_FA. // // Input, int NB, the number of systems. // // Input, double B[N*NB], the right hand sides. // // Output, double R83V_CR_SL[N*NB], the solutions. // { int i; int iful; int ifulm; int ihaf; int il; int ipnt; int ipntp; int j; int ndiv; double *rhs; double *x; if ( n <= 0 ) { cerr << "\n"; cerr << "R83V_CR_SLS - Fatal error!\n"; cerr << " Nonpositive N = " << n << "\n"; exit ( 1 ); } if ( n == 1 ) { x = new double[n*nb]; for ( j = 0; j < nb; j++ ) { x[0+j*n] = a_cr[1+0*3] * b[0+j*n]; } return x; } // // Set up RHS. // rhs = new double[( 2 * n + 1 ) * nb]; for ( j = 0; j < nb; j++ ) { rhs[0+j*(2*n+1)] = 0.0; for ( i = 1; i <= n; i++ ) { rhs[i+j*(2*n+1)] = b[i-1+j*n]; } for ( i = n + 1; i <= 2 * n; i++ ) { rhs[i+j*(2*n+1)] = 0.0; } } il = n; ndiv = 1; ipntp = 0; while ( 1 < il ) { ipnt = ipntp; ipntp = ipntp + il; il = il / 2; ndiv = ndiv * 2; for ( j = 0; j < nb; j++ ) { ihaf = ipntp; for ( iful = ipnt + 2; iful <= ipntp; iful = iful + 2 ) { ihaf = ihaf + 1; rhs[ihaf+j*(2*n+1)] = rhs[iful+j*(2*n+1)] - a_cr[2+(iful-1)*3] * rhs[iful-1+j*(2*n+1)] - a_cr[0+iful*3] * rhs[iful+1+j*(2*n+1)]; } } } for ( j = 0; j < nb; j++ ) { rhs[ihaf+j*(2*n+1)] = rhs[ihaf+j*(2*n+1)] * a_cr[1+ihaf*3]; } ipnt = ipntp; while ( 0 < ipnt ) { ipntp = ipnt; ndiv = ndiv / 2; il = n / ndiv; ipnt = ipnt - il; for ( j = 0; j < nb; j++ ) { ihaf = ipntp; for ( ifulm = ipnt + 1; ifulm <= ipntp; ifulm = ifulm + 2 ) { iful = ifulm + 1; ihaf = ihaf + 1; rhs[iful+j*(2*n+1)] = rhs[ihaf+j*(2*n+1)]; rhs[ifulm+j*(2*n+1)] = a_cr[1+ifulm*3] * ( rhs[ifulm+j*(2*n+1)] - a_cr[2+(ifulm-1)*3] * rhs[ifulm-1+j*(2*n+1)] - a_cr[0+ifulm*3] * rhs[iful+j*(2*n+1)] ); } } } x = new double[n * nb]; for ( j = 0; j < nb; j++ ) { for ( i = 0; i < n; i++ ) { x[i+j*n] = rhs[i+1+j*(2*n+1)]; } } delete [] rhs; return x; } //****************************************************************************80 void r83v_cr_sls_test ( ) //****************************************************************************80 // // Purpose: // // R83V_CR_SLS_TEST tests R83V_CR_SLS. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a_cr; double *a1; double *a2; double *a3; double *b; int i; int j; int n = 5; int nb = 2; double *x; cout << "\n"; cout << "R83V_CR_SLS_TEST\n"; cout << " R83V_CR_SLS solves multiple linear systems A*x=b1:bn with R83V matrix\n"; cout << " using cyclic reduction, after factorization by R83V_CR_FA.\n"; cout << "\n"; cout << " Matrix order N = " << n << "\n"; cout << " Number of linear systems = " << nb << "\n"; cout << " Demonstrate multiple system solution method.\n"; // // Set the matrix values. // // // Set the matrix values. // a1 = new double[n-1]; a2 = new double[n]; a3 = new double[n-1]; r83v_dif2 ( n, n, a1, a2, a3 ); r83v_print ( n, n, a1, a2, a3, " System matrix:" ); // // Factor the matrix once. // a_cr = r83v_cr_fa ( n, a1, a2, a3 ); // // Set up the linear systems. // b = new double[n * nb]; for ( j = 0; j < nb; j++ ) { for ( i = 0; i < n; i++ ) { b[i+j*n] = 0.0; } } j = 0; b[n-1+j*n] = ( double ) ( n + 1 ); j = 1; b[0 +j*n] = 1.0; b[n-1+j*n] = 1.0; r8ge_print ( n, nb, b, " RHS:" ); // // Solve the linear systems. // x = r83v_cr_sls ( n, a_cr, nb, b ); r8ge_print ( n, nb, x, " Solutions:" ); delete [] a_cr; delete [] a1; delete [] a2; delete [] a3; delete [] b; delete [] x; return; } //****************************************************************************80 void r83v_dif2 ( int m, int n, double a[], double b[], double c[] ) //****************************************************************************80 // // Purpose: // // R83V_DIF2 returns the DIF2 matrix in R83V format. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Properties: // // A is banded, with bandwidth 3. // A is tridiagonal. // Because A is tridiagonal, it has property A (bipartite). // A is a special case of the TRIS or tridiagonal scalar matrix. // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // A is Toeplitz: constant along diagonals. // A is symmetric: A' = A. // Because A is symmetric, it is normal. // Because A is normal, it is diagonalizable. // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // A is positive definite. // A is an M matrix. // A is weakly diagonally dominant, but not strictly diagonally dominant. // A has an LU factorization A = L * U, without pivoting. // The matrix L is lower bidiagonal with subdiagonal elements: // L(I+1,I) = -I/(I+1) // The matrix U is upper bidiagonal, with diagonal elements // U(I,I) = (I+1)/I // and superdiagonal elements which are all -1. // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // The eigenvalues are // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // The corresponding eigenvector X(I) has entries // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // Simple linear systems: // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // det ( A ) = N + 1. // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A(min(M-1,N)), B(min(M,N)), C(min(M,N-1)), the matrix. // { int ahi; int bhi; int chi; int i; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( i = 0; i < ahi; i++ ) { a[i] = -1.0; } for ( i = 0; i < bhi; i++ ) { b[i] = 2.0; } for ( i = 0; i < chi; i++ ) { c[i] = -1.0; } return; } //****************************************************************************80 void r83v_dif2_test ( ) //****************************************************************************80 // // Purpose: // // R83V_DIF2_TEST tests R83V_DIF2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; int ahi; double *b; int bhi; double *c; int chi; int i; int m; int n; cout << "\n"; cout << "R83V_DIF2_TEST\n"; cout << " R83V_DIF2 sets up an R83V second difference matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[ahi]; b = new double[bhi]; c = new double[chi]; r83v_dif2 ( m, n, a, b, c ); r83v_print ( m, n, a, b, c, " The R83V DIF2 matrix:" ); delete [] a; delete [] b; delete [] c; } return; } //****************************************************************************80 double *r83v_fs ( int n, double a1[], double a2[], double a3[], double b[] ) //****************************************************************************80 // // Purpose: // // R83V_FS solves a linear system with R83V matrix. // // Discussion: // // This function is based on the LINPACK SGTSL routine. // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt, based on the LINPACK SGTSL function. // // Reference: // // Jack Dongarra, Cleve Moler, Jim Bunch and Pete Stewart, // LINPACK User's Guide, // SIAM, (Society for Industrial and Applied Mathematics), // 3600 University City Science Center, // Philadelphia, PA, 19104-2688. // ISBN 0-89871-172-X // // Parameters: // // Input, int N, the order of the tridiagonal matrix. // // Input, double A1[N-1], A2[N], A3[N-1], the R83V matrix. // // Input, double B[N], the right hand side. // // Output, double R83V_FS[N], the solution. // { double *c; double *d; double *e; int i; int k; double t; double *x; // // Copy the input data. // c = new double[n]; d = new double[n]; e = new double[n]; x = new double[n]; c[0] = 0.0; for ( i = 1; i < n; i++ ) { c[i] = a1[i-1]; } for ( i = 0; i < n; i++ ) { d[i] = a2[i]; } for ( i = 0; i < n - 1; i++ ) { e[i] = a3[i]; } e[n-1] = 0.0; for ( i = 0; i < n; i++ ) { x[i] = b[i]; } // // Factor. // c[0] = a2[0]; if ( 2 <= n ) { d[0] = e[0]; e[0] = 0.0; e[n-1] = 0.0; for ( k = 1; k <= n - 1; k++ ) { // // Find the larger of the two rows. // if ( fabs ( c[k-1] ) <= fabs ( c[k] ) ) { // // Interchange rows. // t = c[k]; c[k] = c[k-1]; c[k-1] = t; t = d[k]; d[k] = d[k-1]; d[k-1] = t; t = e[k]; e[k] = e[k-1]; e[k-1] = t; t = x[k]; x[k] = x[k-1]; x[k-1] = t; } // // Zero elements. // if ( c[k-1] == 0.0 ) { return NULL; } t = - c[k] / c[k-1]; c[k] = d[k] + t * d[k-1]; d[k] = e[k] + t * e[k-1]; e[k] = 0.0; x[k] = x[k] + t * x[k-1]; } } if ( c[n-1] == 0.0 ) { return NULL; } // // Back solve. // x[n-1] = x[n-1] / c[n-1]; if ( 1 < n ) { x[n-2] = ( x[n-2] - d[n-2] * x[n-1] ) / c[n-2]; for ( k = n-2; 1 <= k; k-- ) { x[k-1] = ( x[k-1] - d[k-1] * x[k] - e[k-1] * x[k+1] ) / c[k-1]; } } return x; } //****************************************************************************80 void r83v_fs_test ( ) //****************************************************************************80 // // Purpose: // // R83V_FS_TEST tests R83V_FS_SL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a1; double *a2; double *a3; double *b; int n = 10; double *x1; double *x2; cout << "\n"; cout << "R83V_FS_TEST\n"; cout << " R83V_FS factors and solves a linear system\n"; cout << " for an R83V matrix.\n"; cout << "\n"; cout << " Matrix order N = " << n << "\n"; // // Set the matrix values. // a1 = new double[n-1]; a2 = new double[n]; a3 = new double[n-1]; r83v_dif2 ( n, n, a1, a2, a3 ); // // Set the desired solution. // x1 = r8vec_indicator1_new ( n ); // // Compute the corresponding right hand side. // b = r83v_mv ( n, n, a1, a2, a3, x1 ); r8vec_print ( n, b, " The right hand side:" ); // // Solve the linear system. // x2 = r83v_fs ( n, a1, a2, a3, b ); if ( ! x2 ) { cout << "\n"; cout << " R83V_FS failed.\n"; } else { r8vec_print ( n, x2, " Solution:" ); } // // Free memory. // delete [] a1; delete [] a2; delete [] a3; delete [] b; delete [] x1; delete [] x2; return; } //****************************************************************************80 void r83v_gs_sl ( int n, double a1[], double a2[], double a3[], double b[], double x[], int it_max ) //****************************************************************************80 // // Purpose: // // R83V_GS_SL solves an R83V system using Gauss Seidel iteration. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A1(N-1), A2(N), A3(N-1), the R83V matrix. // // Input, double B[N], the right hand side of the linear system. // // Input/output, double X[N], an approximate solution to the system. // // Input, int IT_MAX, the maximum number of iterations to take. // { int i; int it_num; double *x_new; // // No diagonal matrix entry can be zero. // for ( i = 0; i < n; i++ ) { if ( a2[i] == 0.0 ) { cerr << "\n"; cerr << "R83V_GS_SL - Fatal error!\n"; cerr << " Zero diagonal entry, index = " << i << "\n"; exit ( 1 ); } } x_new = new double[n]; for ( it_num = 1; it_num <= it_max; it_num++ ) { x_new[0] = ( b[0] - a3[0] * x[1] ) / a2[0]; for ( i = 1; i < n - 1; i++ ) { x_new[i] = ( b[i] - a1[i-1] * x_new[i-1] - a3[i] * x[i+1] ) / a2[i]; } x_new[n-1] = ( b[n-1] - a1[n-2] * x_new[n-2] ) / a2[n-1]; for ( i = 0; i < n; i++ ) { x[i] = x_new[i]; } } delete [] x_new; return; } //****************************************************************************80 void r83v_gs_sl_test ( ) //****************************************************************************80 // // Purpose: // // R83V_GS_SL_TEST tests R83V_GS_SL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a1; double *a2; double *a3; double *b; int i; int maxit = 25; int n = 10; double *x; cout << "\n"; cout << "R83V_GS_SL_TEST\n"; cout << " R83V_GS_SL solves a linear system using Gauss-Seidel\n"; cout << " iteration for an R83V matrix.\n"; cout << "\n"; cout << " Matrix order N = " << n << "\n"; cout << " Iterations per call = " << maxit << "\n"; // // Set the matrix values. // a1 = new double[n-1]; a2 = new double[n]; a3 = new double[n-1]; r83v_dif2 ( n, n, a1, a2, a3 ); // // Set the desired solution. // x = r8vec_indicator1_new ( n ); // // Compute the corresponding right hand side. // b = r83v_mv ( n, n, a1, a2, a3, x ); r8vec_print ( n, b, " The right hand side:" ); // // Set the starting solution. // for ( i = 0; i < n; i++ ) { x[i] = 0.0; } // // Solve the linear system. // for ( i = 1; i <= 3; i++ ) { r83v_gs_sl ( n, a1, a2, a3, b, x, maxit ); r8vec_print ( n, x, " Current estimated solution:" ); } delete [] a1; delete [] a2; delete [] a3; delete [] b; delete [] x; return; } //****************************************************************************80 void r83v_indicator ( int m, int n, double a[], double b[], double c[] ) //****************************************************************************80 // // Purpose: // // R83V_INDICATOR sets up an R83V indicator matrix. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A(min(M-1,N)), B(min(M,N)), C(min(M,N-1)), the matrix. // { int ahi; int bhi; int chi; int fac; int i; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( i = 0; i < ahi; i++ ) { a[i] = ( double ) ( fac * ( i + 2 ) + i + 1 ); } for ( i = 0; i < bhi; i++ ) { b[i] = ( double ) ( fac * ( i + 1 ) + i + 1 ); } for ( i = 0; i < chi; i++ ) { c[i] = ( double ) ( fac * ( i + 1 ) + i + 2 ); } return; } //****************************************************************************80 void r83v_indicator_test ( ) //****************************************************************************80 // // Purpose: // // R83V_INDICATOR_TEST tests R83V_INDICATOR. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; int ahi; double *b; int bhi; double *c; int chi; int i; int m; int n; cout << "\n"; cout << "R83V_INDICATOR_TEST\n"; cout << " R83V_INDICATOR sets up an R83V indicator matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[ahi]; b = new double[bhi]; c = new double[chi]; r83v_indicator ( m, n, a, b, c ); r83v_print ( m, n, a, b, c, " The R83V indicator matrix:" ); delete [] a; delete [] b; delete [] c; } return; } //****************************************************************************80 void r83v_jac_sl ( int n, double a1[], double a2[], double a3[], double b[], double x[], int it_max ) //****************************************************************************80 // // Purpose: // // R83V_JAC_SL solves an R83V system using Jacobi iteration. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // // Input, double A1(N-1), A2(N), A3(N-1), the R83V matrix. // // Input, double B[N], the right hand side of the linear system. // // Input/output, double X[N], an approximate solution to the system. // // Input, int IT_MAX, the maximum number of iterations to take. // { int i; int it_num; double *x_new; x_new = new double[n]; // // No diagonal matrix entry can be zero. // for ( i = 0; i < n; i++ ) { if ( a2[i] == 0.0 ) { cerr << "\n"; cerr << "R83V_JAC_SL - Fatal error!\n"; cerr << " Zero diagonal entry, index = " << i << "\n"; exit ( 1 ); } } for ( it_num = 1; it_num <= it_max; it_num++ ) { // // Solve A*x=b: // for ( i = 0; i < n; i++ ) { x_new[i] = b[i]; } for ( i = 0; i < n - 1; i++ ) { x_new[i] = x_new[i] - a3[i] * x[i+1]; } for ( i = 0; i < n - 1; i++ ) { x_new[i+1] = x_new[i+1] - a1[i] * x[i]; } // // Divide by the diagonal term, and overwrite X. // for ( i = 0; i < n; i++ ) { x[i] = x_new[i] / a2[i]; } } delete [] x_new; return; } //****************************************************************************80 void r83v_jac_sl_test ( ) //****************************************************************************80 // // Purpose: // // R83V_JAC_SL_TEST tests R83V_JAC_SL. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a1; double *a2; double *a3; double *b; int i; int maxit = 25; int n = 10; double *x; cout << "\n"; cout << "R83V_JAC_SL_TEST\n"; cout << " R83V_JAC_SL solves a linear system using Jacobi iteration,\n"; cout << " for an R83V matrix.\n"; cout << "\n"; cout << " Matrix order N = " << n << "\n"; cout << " Iterations per call = " << maxit << "\n"; // // Set the matrix values. // a1 = new double[( n - 1 )]; a2 = new double[ n ]; a3 = new double[( n - 1 )]; r83v_dif2 ( n, n, a1, a2, a3 ); // // Set the desired solution. // x = r8vec_indicator1_new ( n ); // // Compute the corresponding right hand side. // b = r83v_mv ( n, n, a1, a2, a3, x ); r8vec_print ( n, b, " The right hand side:" ); // // Set the starting solution. // for ( i = 0; i < n; i++ ) { x[i] = 0.0; } // // Solve the linear system. // for ( i = 1; i <= 3; i++ ) { r83v_jac_sl ( n, a1, a2, a3, b, x, maxit ); r8vec_print ( n, x, " Current estimated solution:" ); } delete [] a1; delete [] a2; delete [] a3; delete [] b; delete [] x; return; } //****************************************************************************80 double *r83v_mtv ( int m, int n, double a1[], double a2[], double a3[], double x[] ) //****************************************************************************80 // // Purpose: // // R83V_MTV multiplies a vector times an R83V matrix. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the linear system. // // Input, double A1(min(M-1,N)), A2(min(M,N)), A3(min(M,N-1)), the matrix. // // Input, double X[M], the vector to be multiplied. // // Output, double R83V_MTV[N], the product A'*x. // { int ahi; double *b; int bhi; int chi; int j; b = new double[n]; for ( j = 0; j < n; j++ ) { b[j] = 0.0; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( j = 0; j < ahi; j++ ) { b[j] = b[j] + a1[j] * x[j+1]; } for ( j = 0; j < bhi; j++ ) { b[j] = b[j] + a2[j] * x[j]; } for ( j = 0; j < chi; j++ ) { b[j+1] = b[j+1] + a3[j] * x[j]; } return b; } //****************************************************************************80 void r83v_mtv_test ( ) //****************************************************************************80 // // Purpose: // // R83V_MTV_TEST tests R83V_MTV. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a_ge; double *a1; double *a2; double *a3; int ahi; double *ax; double *ax_ge; int bhi; int chi; int i; int m; int n; int seed; double *x; cout << "\n"; cout << "R83V_MTV_TEST\n"; cout << " R83V_MTV computes b=A'*x, where A is an R83V matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a1 = new double[ahi]; a2 = new double[bhi]; a3 = new double[chi]; seed = 123456789; r83v_random ( m, n, seed, a1, a2, a3 ); x = r8vec_indicator1_new ( m ); ax = r83v_mtv ( m, n, a1, a2, a3, x ); a_ge = r83v_to_r8ge ( m, n, a1, a2, a3 ); ax_ge = r8ge_mtv ( m, n, a_ge, x ); r8vec2_print ( n, ax, ax_ge, " Product comparison:" ); delete [] a_ge; delete [] a1; delete [] a2; delete [] a3; delete [] ax; delete [] ax_ge; delete [] x; } return; } //****************************************************************************80 double *r83v_mv ( int m, int n, double a[], double b[], double c[], double x[] ) //****************************************************************************80 // // Purpose: // // R83V_MV multiplies an R83V matrix times a vector. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the linear system. // // Input, double A(min(M-1,N)), B(min(M,N)), C(min(M,N-1)), the R83V matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R83V_MV[M], the product A * x. // { int ahi; double *ax; int bhi; int chi; int i; ax = new double[m]; for ( i = 0; i < m; i++ ) { ax[i] = 0.0; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( i = 0; i < ahi; i++ ) { ax[i+1] = ax[i+1] + a[i] * x[i]; } for ( i = 0; i < bhi; i++ ) { ax[i] = ax[i] + b[i] * x[i]; } for ( i = 0; i < chi; i++ ) { ax[i] = ax[i] + c[i] * x[i+1]; } return ax; } //****************************************************************************80 void r83v_mv_test ( ) //****************************************************************************80 // // Purpose: // // R83V_MV_TEST tests R83_MV. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; double *a_ge; int ahi; double *ax; double *ax_ge; double *b; int bhi; double *c; int chi; int i; int m; int n; int seed; double *x; cout << "\n"; cout << "R83V_MV_TEST\n"; cout << " R83V_MV computes b=A*x, where A is an R83V matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[ahi]; b = new double[bhi]; c = new double[chi]; seed = 123456789; r83v_random ( m, n, seed, a, b, c ); x = r8vec_indicator1_new ( n ); ax = r83v_mv ( m, n, a, b, c, x ); a_ge = r83v_to_r8ge ( m, n, a, b, c ); ax_ge = r8ge_mv ( m, n, a_ge, x ); r8vec2_print ( m, ax, ax_ge, " Product comparison:" ); delete [] a; delete [] a_ge; delete [] ax; delete [] ax_ge; delete [] b; delete [] c; delete [] x; } return; } //****************************************************************************80 void r83v_print ( int m, int n, double a[], double b[], double c[], string title ) //****************************************************************************80 // // Purpose: // // R83V_PRINT prints an R83V matrix. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A(min(M-1,N)), B(min(M,N)), C(min(M,N-1)), the R83V matrix. // // Input, string TITLE, a title. // { r83v_print_some ( m, n, a, b, c, 1, 1, m, n, title ); return; } //****************************************************************************80 void r83v_print_test ( ) //****************************************************************************80 // // Purpose: // // R83V_PRINT_TEST tests R83V_PRINT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; int ahi; double *b; int bhi; double *c; int chi; int m; int n; cout << "\n"; cout << "R83V_PRINT_TEST\n"; cout << " R83V_PRINT prints an R83V matrix.\n"; m = 5; n = 5; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[ahi]; b = new double[bhi]; c = new double[chi]; r83v_indicator ( m, n, a, b, c ); r83v_print ( m, n, a, b, c, " The R83V matrix:" ); delete [] a; delete [] b; delete [] c; return; } //****************************************************************************80 void r83v_print_some ( int m, int n, double a[], double b[], double c[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R83V_PRINT_SOME prints some of an R83V matrix. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A(min(M-1,N)), B(min(M,N)), C(min(M+1,N)), the R83V matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column, to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int inc; int j; int j2; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { j2 = j + 1 - j2lo; cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2lo = i4_max ( i2lo, j2lo - 1 ); i2hi = i4_min ( ihi, m ); i2hi = i4_min ( i2hi, j2hi + 1 ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(6) << i << " "; for ( j2 = 1; j2 <= inc; j2++ ) { j = j2lo - 1 + j2; if ( i - j + 1 < 0 || 2 < i - j + 1 ) { cout << " "; } else if ( j == i - 1 ) { cout << " " << setw(12) << a[i-2]; } else if ( j == i ) { cout << " " << setw(12) << b[i-1]; } else if ( j == i + 1 ) { cout << " " << setw(12) << c[i-1]; } } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r83v_print_some_test ( ) //****************************************************************************80 // // Purpose: // // R83V_PRINT_SOME_TEST tests R83V_PRINT_SOME. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; int ahi; double *b; int bhi; double *c; int chi; int m; int n; cout << "\n"; cout << "R83V_PRINT_SOME_TEST\n"; cout << " R83V_PRINT_SOME prints some of an R83V matrix.\n"; m = 5; n = 5; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[ahi]; b = new double[bhi]; c = new double[chi]; r83v_indicator ( m, n, a, b, c ); r83v_print_some ( m, n, a, b, c, 2, 2, 5, 4, " Rows 2-5, Cols 2-4:" ); delete [] a; delete [] b; delete [] c; return; } //****************************************************************************80 void r83v_random ( int m, int n, int &seed, double a[], double b[], double c[] ) //****************************************************************************80 // // Purpose: // // R83V_RANDOM returns a random matrix in R83V format. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double A(min(M-1,N)), B(min(M,N)), C(min(M,N-1)), the matrix. // { int ahi; int bhi; int chi; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); r8vec_uniform_01 ( ahi, seed, a ); r8vec_uniform_01 ( bhi, seed, b ); r8vec_uniform_01 ( chi, seed, c ); return; } //****************************************************************************80 void r83v_random_test ( ) //****************************************************************************80 // // Purpose: // // R83V_RANDOM_TEST tests R83V_RANDOM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; int ahi; double *b; int bhi; double *c; int chi; int i; int m; int n; int seed; cout << "\n"; cout << "R83V_RANDOM_TEST\n"; cout << " R83V_RANDOM sets up an R83V random matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { seed = 123456789; if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[ahi]; b = new double[bhi]; c = new double[chi]; r83v_random ( m, n, seed, a, b, c ); r83v_print ( m, n, a, b, c, " The R83V random matrix:" ); delete [] a; delete [] b; delete [] c; } return; } //****************************************************************************80 double *r83v_res ( int m, int n, double a[], double b[], double c[], double x[], double ax[] ) //****************************************************************************80 // // Purpose: // // R83V_RES computes the residual R = B-A*X for R83V matrices. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // // Input, int N, the number of columns of the matrix. // // Input, double A(min(M-1,N)), B(min(M,N)), C(min(M,N-1)), the matrix. // // Input, double X[N], the vector to be multiplied. // // Input, double AX[M], the desired result A * x. // // Output, double R83V_RES[M], the residual R = AX - A * X. // { int i; double *r; r = r83v_mv ( m, n, a, b, c, x ); for ( i = 0; i < m; i++ ) { r[i] = ax[i] - r[i]; } return r; } //****************************************************************************80 void r83v_res_test ( ) //****************************************************************************80 // // Purpose: // // R83V_RES_TEST tests R83V_RES. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; int ahi; double *ax; double *b; int bhi; double *c; int chi; int i; int m; int n; double *r; int seed; double *x; cout << "\n"; cout << "R83V_RES_TEST\n"; cout << " R83V_RES computes b-A*x, where A is an R83V matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[ahi]; b = new double[bhi]; c = new double[chi]; seed = 123456789; r83v_random ( m, n, seed, a, b, c ); x = r8vec_indicator1_new ( n ); ax = r83v_mv ( m, n, a, b, c, x ); r = r83v_res ( m, n, a, b, c, x, ax ); r8vec_print ( m, r, " Residual A*x-b:" ); delete [] a; delete [] ax; delete [] b; delete [] c; delete [] r; delete [] x; } return; } //****************************************************************************80 double *r83v_to_r8ge ( int m, int n, double a1[], double a2[], double a3[] ) //****************************************************************************80 // // Purpose: // // R83V_TO_R8GE copies an R83V matrix to an R8GE matrix. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A1(min(M-1,N)), A2(min(M,N)), A3(min(M,N-1)), the matrix. // // Output, double R83V_TO_R8GE(M,N), the R8GE matrix. // { double *a; int ahi; int bhi; int chi; int i; int j; int k; a = new double[m * n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = 0.0; } } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( k = 0; k < ahi; k++ ) { a[k+1+k*m] = a1[k]; } for ( k = 0; k < bhi; k++ ) { a[k+k*m] = a2[k]; } for ( k = 0; k < chi; k++ ) { a[k+(k+1)*m] = a3[k]; } return a; } //****************************************************************************80 void r83v_to_r8ge_test ( ) //****************************************************************************80 // // Purpose: // // R83V_TO_R8GE_TEST tests R83V_TO_R8GE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; double *a1; double *a2; double *a3; int ahi; int bhi; int chi; int i; int m; int n; cout << "\n"; cout << "R83V_TO_R8GE_TEST\n"; cout << " R83V_TO_R8GE copies an R83V matrix to an R8GE matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a1 = new double[ahi]; a2 = new double[bhi]; a3 = new double[chi]; r83v_indicator ( m, n, a1, a2, a3 ); r83v_print ( m, n, a1, a2, a3, " R83V matrix A:" ); a = r83v_to_r8ge ( m, n, a1, a2, a3 ); r8ge_print ( m, n, a, " R8GE version of A:" ); delete [] a; delete [] a1; delete [] a2; delete [] a3; } return; } //****************************************************************************80 double *r83v_to_r8vec ( int m, int n, double a1[], double a2[], double a3[] ) //****************************************************************************80 // // Purpose: // // R83V_TO_R8VEC copies an R83V matrix to an R8VEC. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A1(min(M-1,N)), A2(min(M,N)), A3(min(M,N-1)), the matrix. // // Output, double R83V_TO_R8VEC(min(N-1,M)+min(N,M)+min(N,M-1)), the vector. // { double *a; int ahi; int bhi; int chi; int j; int k; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[( ahi + bhi + chi )]; k = 0; for ( j = 0; j < n; j++ ) { if ( j < m + 1 && 1 <= j ) { a[k] = a3[j-1]; k = k + 1; } if ( j < m ) { a[k] = a2[j]; k = k + 1; } if ( j < m - 1 ) { a[k] = a1[j]; k = k + 1; } } return a; } //****************************************************************************80 void r83v_to_r8vec_test ( ) //****************************************************************************80 // // Purpose: // // R83V_TO_R8VEC_TEST tests R83V_TO_R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; double *a1; double *a2; double *a3; int ahi; int bhi; int chi; int i; int m; int n; cout << "\n"; cout << "R83V_TO_R8VEC_TEST\n"; cout << " R83V_TO_R8VEC copies an R83V matrix to an R8VEC.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a1 = new double[ahi]; a2 = new double[bhi]; a3 = new double[chi]; r83v_indicator ( m, n, a1, a2, a3 ); r83v_print ( m, n, a1, a2, a3, " R83V matrix A:" ); a = r83v_to_r8vec ( m, n, a1, a2, a3 ); r8vec_print ( ahi + bhi + chi, a, " Vector version of A:" ); delete [] a; delete [] a1; delete [] a2; delete [] a3; } return; } //****************************************************************************80 void r83v_transpose ( int m, int n, double a1[], double a2[], double a3[], double b1[], double b2[], double b3[] ) //****************************************************************************80 // // Purpose: // // R83V_TRANSPOSE makes a transposed copy of an R83V matrix. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A1(min(M-1,N)), A2(min(M,N)), A3(min(M,N-1)), the matrix. // // Output, double B1(min(N-1,M)), B2(min(N,M)), B3(min(N,M-1)), the copy. // { int ahi; int bhi; int chi; int i; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( i = 0; i < ahi; i++ ) { b3[i] = a1[i]; } for ( i = 0; i < bhi; i++ ) { b2[i] = a2[i]; } for ( i = 0; i < chi; i++ ) { b1[i] = a3[i]; } return; } //****************************************************************************80 void r83v_transpose_test ( ) //****************************************************************************80 // // Purpose: // // R83V_TRANSPOSE_TEST tests R83V_TRANSPOSE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a1; double *a2; double *a3; int ahi; double *b1; double *b2; double *b3; int bhi; int chi; int i; int m; int n; cout << "\n"; cout << "R83V_TRANSPOSE_TEST\n"; cout << " R83V_TRANSPOSE makes a transposed copy of an R83V matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a1 = new double[ahi]; a2 = new double[bhi]; a3 = new double[chi]; r83v_indicator ( m, n, a1, a2, a3 ); r83v_print ( m, n, a1, a2, a3, " R83V matrix A:" ); b1 = new double[chi]; b2 = new double[bhi]; b3 = new double[ahi]; r83v_transpose ( m, n, a1, a2, a3, b1, b2, b3 ); r83v_print ( n, m, b1, b2, b3, " B = copy of A:" ); delete [] a1; delete [] a2; delete [] a3; delete [] b1; delete [] b2; delete [] b3; } return; } //****************************************************************************80 void r83v_zeros ( int m, int n, double a[], double b[], double c[] ) //****************************************************************************80 // // Purpose: // // R83V_ZEROS returns the zero matrix in R83V format. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A(min(M-1,N)), B(min(M,N)), C(min(M,N-1)), the matrix. // { int ahi; int bhi; int chi; int i; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( i = 0; i < ahi; i++ ) { a[i] = 0.0; } for ( i = 0; i < bhi; i++ ) { b[i] = 0.0; } for ( i = 0; i < chi; i++ ) { c[i] = 0.0; } return; } //****************************************************************************80 void r83v_zeros_test ( ) //****************************************************************************80 // // Purpose: // // R83V_ZEROS_TEST tests R83V_ZEROS. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; int ahi; double *b; int bhi; double *c; int chi; int i; int m; int n; cout << "\n"; cout << "R83V_ZEROS_TEST\n"; cout << " R83V_ZEROS sets up an R83V zero matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = new double[ahi]; b = new double[bhi]; c = new double[chi]; r83v_zeros ( m, n, a, b, c ); r83v_print ( m, n, a, b, c, " The R83V zero matrix:" ); delete [] a; delete [] b; delete [] c; } return; } //****************************************************************************80 double *r8ge_indicator ( int m, int n ) //****************************************************************************80 // // Purpose: // // R8GE_INDICATOR sets up an R8GE indicator matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 January 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Output, double R8GE_INDICATOR[M*N], the R8GE matrix. // { double *a; int fac; int i; int j; a = new double[m*n]; fac = i4_power ( 10, i4_log_10 ( n ) + 1 ); for ( i = 1; i <= m; i++ ) { for ( j = 1; j <= n; j++ ) { a[i-1+(j-1)*m] = ( double ) ( fac * i + j ); } } return a; } //****************************************************************************80 void r8ge_indicator_test ( ) //****************************************************************************80 // // Purpose: // // R8GE_INDICATOR_TEST tests R8GE_INDICATOR. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2006 // // Author: // // John Burkardt // { double *a; int m = 7; int n = 5; cout << "\n"; cout << "R8GE_INDICATOR_TEST\n"; cout << " R8GE_INDICATOR sets up an indicator matrix.\n"; cout << "\n"; cout << " Matrix rows M = " << m << "\n"; cout << " Matrix columns N = " << n << "\n"; a = r8ge_indicator ( m, n ); r8ge_print ( m, n, a, " The R8GE indicator matrix:" ); delete [] a; return; } //****************************************************************************80 double *r8ge_mtv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8GE_MTV multiplies a vector times an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, double X[M], the vector to be multiplied by A. // // Output, double R8GE_MTV[N], the product A' * x. // { double *b; int i; int j; b = r8vec_zeros_new ( n ); for ( i = 0; i < n; i++ ) { for ( j = 0; j < m; j++ ) { b[i] = b[i] + a[j+i*m] * x[j]; } } return b; } //****************************************************************************80 void r8ge_mtv_test ( ) //****************************************************************************80 // // Purpose: // // R8GE_MTV_TEST tests R8GE_MTV // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2016 // // Author: // // John Burkardt // { double *a; double *b; int m = 5; int n = 4; double *x; cout << "\n"; cout << "R8GE_MTV_TEST\n"; cout << " R8GE_MTV computes a product b=A'*x for an R8GE matrix.\n"; a = r8ge_indicator ( m, n ); r8ge_print ( m, n, a, " The R8GE matrix A:" ); x = r8vec_indicator1_new ( m ); r8vec_print ( m, x, " Vector x:" ); b = r8ge_mtv ( m, n, a, x ); r8vec_print ( n, b, " Vector b = A'*x:" ); delete [] a; delete [] b; delete [] x; return; } //****************************************************************************80 double *r8ge_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R8GE_MV multiplies an R8GE matrix times a vector. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R8GE_MV[M], the product A * x. // { double *b; int i; int j; b = r8vec_zeros_new ( m ); for ( i = 0; i < m; i++ ) { for ( j = 0; j < n; j++ ) { b[i] = b[i] + a[i+j*m] * x[j]; } } return b; } //****************************************************************************80 void r8ge_mv_test ( ) //****************************************************************************80 // // Purpose: // // R8GE_MV_TEST tests R8GE_MV // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2016 // // Author: // // John Burkardt // { double *a; double *b; int m = 5; int n = 4; double *x; cout << "\n"; cout << "R8GE_MV_TEST\n"; cout << " R8GE_MV computes a product b=A*x for an R8GE matrix.\n"; a = r8ge_indicator ( m, n ); r8ge_print ( m, n, a, " The R8GE matrix A:" ); x = r8vec_indicator1_new ( n ); r8vec_print ( n, x, " Vector x:" ); b = r8ge_mv ( m, n, a, x ); r8vec_print ( m, b, " Vector b = A*x:" ); delete [] a; delete [] b; delete [] x; return; } //****************************************************************************80 void r8ge_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT prints an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, string TITLE, a title. // { r8ge_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r8ge_print_test ( ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_TEST tests R8GE_PRINT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2014 // // Author: // // John Burkardt // { # define M 6 # define N 4 double a[M*N]; int i; int j; int m = M; int n = N; cout << "\n"; cout << "R8GE_PRINT_TEST\n"; cout << " R8GE_PRINT prints an R8GE.\n"; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( ( i + 1 ) * 10 + ( j + 1 ) ); } } r8ge_print ( m, n, a, " The R8GE:" ); return; # undef M # undef N } //****************************************************************************80 void r8ge_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME prints some of an R8GE matrix. // // Discussion: // // The R8GE storage format is used for a "general" M by N matrix. // A physical storage space is made for each logical entry. The two // dimensional logical array is mapped to a vector, in which storage is // by columns. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 06 April 2006 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the number of rows of the matrix. // M must be positive. // // Input, int N, the number of columns of the matrix. // N must be positive. // // Input, double A[M*N], the R8GE matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int j; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); cout << "\n"; // // For each column J in the current range... // // Write the header. // cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2hi = i4_min ( ihi, m ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(5) << i << " "; for ( j = j2lo; j <= j2hi; j++ ) { cout << setw(12) << a[i-1+(j-1)*m] << " "; } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 void r8ge_print_some_test ( ) //****************************************************************************80 // // Purpose: // // R8GE_PRINT_SOME_TEST tests R8GE_PRINT_SOME. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2014 // // Author: // // John Burkardt // { # define M 6 # define N 4 double a[M*N]; int i; int j; int m = M; int n = N; cout << "\n"; cout << "R8GE_PRINT_SOME_TEST\n"; cout << " R8GE_PRINT_SOME prints some of an R8GE.\n"; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { a[i+j*m] = ( double ) ( ( i + 1 ) * 10 + ( j + 1 ) ); } } r8ge_print_some ( m, n, a, 2, 1, 4, 2, " The R8GE, rows 2:4, cols 1:2:" ); return; # undef M # undef N } //****************************************************************************80 void r8ge_to_r83v ( int m, int n, double a[], double a1[], double a2[], double a3[] ) //****************************************************************************80 // // Purpose: // // R8GE_TO_R83V copies (some of) an R8GE matrix to an R83V matrix. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A(M,N), the R8GE matrix. // // Output, double A1(min(M-1,N)), A2(min(M,N)), A3(min(M,N-1)), // the R83V matrix. // { int ahi; int bhi; int chi; int k; ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); for ( k = 0; k < ahi; k++ ) { a1[k] = a[k+1+k*m]; } for ( k = 0; k < bhi; k++ ) { a2[k] = a[k+k*m]; } for ( k = 0; k < chi; k++ ) { a3[k] = a[k+(k+1)*m]; } return; } //****************************************************************************80 void r8ge_to_r83v_test ( ) //****************************************************************************80 // // Purpose: // // R8GE_TO_R83V_TEST tests R8GE_TO_R83V. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; double *a1; double *a2; double *a3; int ahi; int bhi; int chi; int i; int m; int n; cout << "\n"; cout << "R8GE_TO_R83V_TEST\n"; cout << " R8GE_TO_R83V copies an R8GE matrix to an R83V matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } a = r8ge_indicator ( m, n ); r8ge_print ( m, n, a, " R8GE matrix A:" ); ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a1 = new double[ahi]; a2 = new double[bhi]; a3 = new double[chi]; r8ge_to_r83v ( m, n, a, a1, a2, a3 ); r83v_print ( m, n, a1, a2, a3, " R83V copy of (some of ) matrix A:" ); delete [] a; delete [] a1; delete [] a2; delete [] a3; } return; } //****************************************************************************80 double r8vec_dot_product ( int n, double x[], double y[] ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT computes the dot product of two R8VEC's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 22 October 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements in the vectors. // // Input, double X[N], Y[N], the two vectors. // // Output, double R8VEC_DOT_PRODUCT, the dot product of the vectors. // { double dot; int i; dot = 0.0; for ( i = 0; i < n; i++ ) { dot = dot + x[i] * y[i]; } return dot; } //****************************************************************************80 void r8vec_dot_product_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_DOT_PRODUCT_TEST tests R8VEC_DOT_PRODUCT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 February 2016 // // Author: // // John Burkardt // { int n; int seed; double *v1; double *v2; double value; cout << "\n"; cout << "R8VEC_DOT_PRODUCT_TEST\n"; cout << " R8VEC_DOT_PRODUCT computes the dot product of two R8VEC's.\n"; n = 10; seed = 123456789; v1 = r8vec_uniform_01_new ( n, seed ); v2 = r8vec_uniform_01_new ( n, seed ); r8vec2_print ( n, v1, v2, " V1 and V2:" ); value = r8vec_dot_product ( n, v1, v2 ); cout << "\n"; cout << " V1 dot V2 = " << value << "\n"; delete [] v1; delete [] v2; return; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_indicator1_new_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW_TEST tests R8VEC_INDICATOR1_NEW. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 September 2014 // // Author: // // John Burkardt // { int n; double *v; cout << "\n"; cout << "R8VEC_INDICATOR1_NEW_TEST\n"; cout << " R8VEC_INDICATOR1_NEW returns an indicator1 vector.\n"; n = 10; v = r8vec_indicator1_new ( n ); r8vec_print ( n, v, " Indicator1 vector:" ); delete [] v; return; } //****************************************************************************80 double r8vec_norm ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM returns the L2 norm of an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // The vector L2 norm is defined as: // // R8VEC_NORM = sqrt ( sum ( 1 <= I <= N ) A(I)^2 ). // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 01 March 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in A. // // Input, double A[N], the vector whose L2 norm is desired. // // Output, double R8VEC_NORM, the L2 norm of A. // { int i; double v; v = 0.0; for ( i = 0; i < n; i++ ) { v = v + a[i] * a[i]; } v = sqrt ( v ); return v; } //****************************************************************************80 void r8vec_norm_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM_TEST tests R8VEC_NORM. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 26 September 2005 // // Author: // // John Burkardt // { double *a; int n; int seed; cout << "\n"; cout << "R8VEC_NORM_TEST\n"; cout << " R8VEC_NORM computes the L2 norm of an R8VEC.\n"; n = 10; seed = 123456789; a = r8vec_uniform_01_new ( n, seed ); r8vec_print ( n, a, " Input vector:" ); cout << "\n"; cout << " L2 norm: " << r8vec_norm ( n, a ) << "\n"; delete [] a; return; } //****************************************************************************80 double r8vec_norm_affine ( int n, double v0[], double v1[] ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM_AFFINE returns the affine L2 norm of an R8VEC. // // Discussion: // // The affine vector L2 norm is defined as: // // R8VEC_NORM_AFFINE(V0,V1) // = sqrt ( sum ( 1 <= I <= N ) ( V1(I) - V0(I) )^2 ) // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 27 October 2010 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the dimension of the vectors. // // Input, double V0[N], the base vector. // // Input, double V1[N], the vector. // // Output, double R8VEC_NORM_AFFINE, the affine L2 norm. // { int i; double value; value = 0.0; for ( i = 0; i < n; i++ ) { value = value + ( v1[i] - v0[i] ) * ( v1[i] - v0[i] ); } value = sqrt ( value ); return value; } //****************************************************************************80 void r8vec_norm_affine_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_NORM_AFFINE_TEST tests R8VEC_NORM_AFFINE. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 30 June 2015 // // Author: // // John Burkardt // { int i; int n = 10; int seed; double *x; double *y; double *z; cout << "\n"; cout << "R8VEC_NORM_AFFINE_TEST\n"; cout << " R8VEC_NORM_AFFINE computes the L2 norm of\n"; cout << " the difference of two R8VECs.\n"; seed = 123456789; x = r8vec_uniform_01_new ( n, seed ); y = r8vec_uniform_01_new ( n, seed ); z = new double[n]; for ( i = 0; i < n; i++ ) { z[i] = x[i] - y[i]; } cout << "\n"; cout << " R8VEC_NORM_AFFINE(X,Y) = " << r8vec_norm_affine ( n, x, y ) << "\n"; cout << " R8VEC_NORM(X-Y) = " << r8vec_norm ( n, z ) << "\n"; delete [] x; delete [] y; delete [] z; return; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 void r8vec_print_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT_TEST tests R8VEC_PRINT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 31 August 2014 // // Author: // // John Burkardt // { double a[4] = { 123.456, 0.000005, -1.0E+06, 3.14159265 }; int n = 4; cout << "\n"; cout << "R8VEC_PRINT_TEST\n"; cout << " R8VEC_PRINT prints an R8VEC.\n"; r8vec_print ( n, a, " The R8VEC:" ); return; } //****************************************************************************80 void r8vec_to_r83v ( int m, int n, double a[], double a1[], double a2[], double a3[] ) //****************************************************************************80 // // Purpose: // // R8VEC_TO_R83V copies an R8VEC to an R83V matrix. // // Discussion: // // The R83V storage format is used for a tridiagonal matrix. // The subdiagonal is in A(min(M-1,N)). // The diagonal is in B(min(M,N)). // The superdiagonal is in C(min(M,N-1)). // // Example: // // An R83V matrix of order 3x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // // An R83 matrix of order 5x5 would be stored: // // B1 C1 ** ** ** // A1 B2 C2 ** ** // ** A2 B3 C3 ** // ** ** A3 B4 C4 // ** ** ** A4 B5 // // An R83 matrix of order 5x3 would be stored: // // B1 C1 ** // A1 B2 C2 // ** A2 B3 // ** ** A3 // ** ** ** // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A(min(N-1,M)+min(N,M)+min(N,M-1)), the vector. // // Output, double A1(min(M-1,N)), A2(min(M,N)), A3(min(M,N-1)), the matrix. // { int j; int k; k = 0; for ( j = 0; j < n; j++ ) { if ( j < m + 1 && 1 <= j ) { a3[j-1] = a[k]; k = k + 1; } if ( j < m ) { a2[j] = a[k]; k = k + 1; } if ( j < m - 1 ) { a1[j] = a[k]; k = k + 1; } } return; } //****************************************************************************80 void r8vec_to_r83v_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_TO_R83V_TEST tests R8VEC_TO_R83V. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 February 2016 // // Author: // // John Burkardt // { double *a; double *a1; double *a2; double *a3; int ahi; int bhi; int chi; int i; int m; int n; cout << "\n"; cout << "R8VEC_TO_R83V_TEST\n"; cout << " R8VEC_TO_R83V copies an R8VEC to an R83V matrix.\n"; cout << " We check three cases, MN.\n"; for ( i = 1; i <= 3; i++ ) { if ( i == 1 ) { m = 3; n = 5; } else if ( i == 2 ) { m = 5; n = 5; } else if ( i == 3 ) { m = 5; n = 3; } ahi = i4_min ( m - 1, n ); bhi = i4_min ( m, n ); chi = i4_min ( m, n - 1 ); a = r8vec_indicator1_new ( ahi + bhi + chi ); r8vec_print ( ahi + bhi + chi, a, " R8VEC:" ); a1 = new double[ahi]; a2 = new double[bhi]; a3 = new double[chi]; r8vec_to_r83v ( m, n, a, a1, a2, a3 ); r83v_print ( m, n, a1, a2, a3, " R83V matrix:" ); delete [] a; delete [] a1; delete [] a2; delete [] a3; } return; } //****************************************************************************80 void r8vec_uniform_01 ( int n, int &seed, double r[] ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01 returns a unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return; } //****************************************************************************80 void r8vec_uniform_01_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_TEST tests R8VEC_UNIFORM_01. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 February 2016 // // Author: // // John Burkardt // { int j; int n; double *r; int seed; cout << "\n"; cout << "R8VEC_UNIFORM_01_TEST\n"; cout << " R8VEC_UNIFORM_01 returns a random R8VEC\n"; cout << " with entries in [ 0.0, 1.0 ]\n"; n = 10; seed = 123456789; r = ( double * ) malloc ( n * sizeof ( double ) ); for ( j = 1; j <= 3; j++ ) { cout << "\n"; cout << " Input SEED = " << seed << "\n"; cout << "\n"; r8vec_uniform_01 ( n, seed, r ); r8vec_print ( n, r, " Random R8VEC:" ); } delete [] r; return; } //****************************************************************************80 double *r8vec_uniform_01_new ( int n, int &seed ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW returns a new unit pseudorandom R8VEC. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: //edit // 19 August 2004 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the number of entries in the vector. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R8VEC_UNIFORM_01_NEW[N], the vector of pseudorandom values. // { int i; const int i4_huge = 2147483647; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8VEC_UNIFORM_01_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i] = ( double ) ( seed ) * 4.656612875E-10; } return r; } //****************************************************************************80 void r8vec_uniform_01_new_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_UNIFORM_01_NEW_TEST tests R8VEC_UNIFORM_01_NEW. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 16 October 2006 // // Author: // // John Burkardt // { # define N 10 int j; double *r; int seed; cout << "\n"; cout << "R8VEC_UNIFORM_01_NEW_TEST\n"; cout << " R8VEC_UNIFORM_01_NEW returns a random R8VEC\n"; cout << " with entries in [ 0.0, 1.0 ]\n"; cout << "\n"; seed = 123456789; for ( j = 1; j <= 3; j++ ) { cout << "\n"; cout << " Input SEED = " << seed << "\n"; cout << "\n"; r = r8vec_uniform_01_new ( N, seed ); r8vec_print ( N, r, " Random R8VEC:" ); delete [] r; } return; # undef N } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void r8vec_zeros_new_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW_TEST tests R8VEC_ZEROS_NEW. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 February 2016 // // Author: // // John Burkardt // { int n = 10; double *x; cout << "\n"; cout << "R8VEC_ZEROS_NEW_TEST\n"; cout << " R8VEC_ZEROS returns a zero R8VEC\n"; cout << "\n"; x = r8vec_zeros_new ( n ); r8vec_print ( n, x, " Random R8VEC:" ); delete [] x; return; } //****************************************************************************80 void r8vec2_print ( int n, double a1[], double a2[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT prints an R8VEC2. // // Discussion: // // An R8VEC2 is a dataset consisting of N pairs of real values, stored // as two separate vectors A1 and A2. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 19 November 2002 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A1[N], double A2[N], the vectors to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i <= n - 1; i++ ) { cout << setw(6) << i << ": " << setw(14) << a1[i] << " " << setw(14) << a2[i] << "\n"; } return; } //****************************************************************************80 void r8vec2_print_test ( ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT_TEST tests R8VEC2_PRINT. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 January 2016 // // Author: // // John Burkardt // { double a[5] = { 1.0, 2.0, 3.0, 4.0, 5.0 }; double b[5]; double c[5]; int i; int n = 5; cout << "\n"; cout << "R8VEC2_PRINT_TEST\n"; cout << " R8VEC2_PRINT prints a pair of R8VEC's.\n"; for ( i = 0; i < n; i++ ) { b[i] = a[i] * a[i]; c[i] = sqrt ( a[i] ); } r8vec2_print ( n, b, c, " Squares and square roots:" ); return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }