# include # include # include # include # include using namespace std; # include "r83_np.hpp" //****************************************************************************80 int i4_max ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MAX returns the maximum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, are two integers to be compared. // // Output, int I4_MAX, the larger of I1 and I2. // { int value; if ( i2 < i1 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 int i4_min ( int i1, int i2 ) //****************************************************************************80 // // Purpose: // // I4_MIN returns the minimum of two I4's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 October 1998 // // Author: // // John Burkardt // // Parameters: // // Input, int I1, I2, two integers to be compared. // // Output, int I4_MIN, the smaller of I1 and I2. // { int value; if ( i1 < i2 ) { value = i1; } else { value = i2; } return value; } //****************************************************************************80 double r8_uniform_01 ( int &seed ) //****************************************************************************80 // // Purpose: // // R8_UNIFORM_01 returns a unit pseudorandom R8. // // Discussion: // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // If the initial seed is 12345, then the first three computations are // // Input Output R8_UNIFORM_01 // SEED SEED // // 12345 207482415 0.096616 // 207482415 1790989824 0.833995 // 1790989824 2035175616 0.947702 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has been updated. // // Output, double R8_UNIFORM_01, a new pseudorandom variate, // strictly between 0 and 1. // { const int i4_huge = 2147483647; int k; double r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8_UNIFORM_01 - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( double ) ( seed ) * 4.656612875E-10; return r; } //****************************************************************************80 double *r83_dif2 ( int m, int n ) //****************************************************************************80 // // Purpose: // // R83_DIF2 returns the DIF2 matrix in R83 format. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // R8GE A(I,J) = R83 A[I-J+1+J*3] (0 based indexing). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Properties: // // A is banded, with bandwidth 3. // // A is tridiagonal. // // Because A is tridiagonal, it has property A (bipartite). // // A is a special case of the TRIS or tridiagonal scalar matrix. // // A is integral, therefore det ( A ) is integral, and // det ( A ) * inverse ( A ) is integral. // // A is Toeplitz: constant along diagonals. // // A is symmetric: A' = A. // // Because A is symmetric, it is normal. // // Because A is normal, it is diagonalizable. // // A is persymmetric: A(I,J) = A(N+1-J,N+1-I). // // A is positive definite. // // A is an M matrix. // // A is weakly diagonally dominant, but not strictly diagonally dominant. // // A has an LU factorization A = L * U, without pivoting. // // The matrix L is lower bidiagonal with subdiagonal elements: // // L(I+1,I) = -I/(I+1) // // The matrix U is upper bidiagonal, with diagonal elements // // U(I,I) = (I+1)/I // // and superdiagonal elements which are all -1. // // A has a Cholesky factorization A = L * L', with L lower bidiagonal. // // L(I,I) = sqrt ( (I+1) / I ) // L(I,I-1) = -sqrt ( (I-1) / I ) // // The eigenvalues are // // LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) // = 4 SIN^2(I*PI/(2*N+2)) // // The corresponding eigenvector X(I) has entries // // X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). // // Simple linear systems: // // x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) // // x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) // // det ( A ) = N + 1. // // The value of the determinant can be seen by induction, // and expanding the determinant across the first row: // // det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) // = 2 * N - (N-1) // = N + 1 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 04 June 2014 // // Author: // // John Burkardt // // Reference: // // Robert Gregory, David Karney, // A Collection of Matrices for Testing Computational Algorithms, // Wiley, 1969, // ISBN: 0882756494, // LC: QA263.68 // // Morris Newman, John Todd, // Example A8, // The evaluation of matrix inversion programs, // Journal of the Society for Industrial and Applied Mathematics, // Volume 6, Number 4, pages 466-476, 1958. // // John Todd, // Basic Numerical Mathematics, // Volume 2: Numerical Algebra, // Birkhauser, 1980, // ISBN: 0817608117, // LC: QA297.T58. // // Joan Westlake, // A Handbook of Numerical Matrix Inversion and Solution of // Linear Equations, // John Wiley, 1968, // ISBN13: 978-0471936756, // LC: QA263.W47. // // Parameters: // // Input, int M, N, the order of the matrix. // // Output, double A[3*N], the matrix. // { double *a; int i; int i_hi; int i_lo; int j; a = r8vec_zeros_new ( 3 * n ); for ( j = 0; j < n; j++ ) { i_lo = i4_max ( 0, j - 1 ); i_hi = i4_min ( m - 1, j + 1 ); for ( i = i_lo; i <= i_hi; i++ ) { if ( i == j - 1 ) { a[i-j+1+j*3] = -1.0; } else if ( i == j ) { a[i-j+1+j*3] = +2.0; } else if ( i == j + 1 ) { a[i-j+1+j*3] = -1.0; } } } return a; } //****************************************************************************80 double *r83_mtv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R83_MTV multiplies a vector times an R83 matrix. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the linear system. // // Input, double A[3*N], the R83 matrix. // // Input, double X[M], the vector to be multiplied by A'. // // Output, double R83_MTV[N], the product A' * x. // { double *b; int i; int i_hi; int i_lo; int j; b = r8vec_zeros_new ( n ); for ( j = 0; j < n; j++ ) { i_lo = i4_max ( 0, j - 1 ); i_hi = i4_min ( m - 1, j + 1 ); for ( i = i_lo; i <= i_hi; i++ ) { b[j] = b[j] + x[i] * a[i-j+1+j*3]; } } return b; } //****************************************************************************80 double *r83_mv ( int m, int n, double a[], double x[] ) //****************************************************************************80 // // Purpose: // // R83_MV multiplies an R83 matrix times a vector. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the linear system. // // Input, double A[3*N], the R83 matrix. // // Input, double X[N], the vector to be multiplied by A. // // Output, double R83_MV[M], the product A * x. // { double *b; int i; int i_hi; int i_lo; int j; b = r8vec_zeros_new ( m ); for ( j = 0; j < n; j++ ) { i_lo = i4_max ( 0, j - 1 ); i_hi = i4_min ( m - 1, j + 1 ); for ( i = i_lo; i <= i_hi; i++ ) { b[i] = b[i] + a[i-j+1+j*3] * x[j]; } } return b; } //****************************************************************************80 void r83_print ( int m, int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R83_PRINT prints an R83 matrix. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // A21 A32 A43 A54 * // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[3*N], the R83 matrix. // // Input, string TITLE, a title. // { r83_print_some ( m, n, a, 1, 1, m, n, title ); return; } //****************************************************************************80 void r83_print_some ( int m, int n, double a[], int ilo, int jlo, int ihi, int jhi, string title ) //****************************************************************************80 // // Purpose: // // R83_PRINT_SOME prints some of an R83 matrix. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the matrix. // // Input, double A[3*N], the R83 matrix. // // Input, int ILO, JLO, IHI, JHI, designate the first row and // column, and the last row and column, to be printed. // // Input, string TITLE, a title. // { # define INCX 5 int i; int i2hi; int i2lo; int inc; int j; int j2; int j2hi; int j2lo; cout << "\n"; cout << title << "\n"; // // Print the columns of the matrix, in strips of 5. // for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX ) { j2hi = j2lo + INCX - 1; j2hi = i4_min ( j2hi, n ); j2hi = i4_min ( j2hi, jhi ); inc = j2hi + 1 - j2lo; cout << "\n"; cout << " Col: "; for ( j = j2lo; j <= j2hi; j++ ) { j2 = j + 1 - j2lo; cout << setw(7) << j << " "; } cout << "\n"; cout << " Row\n"; cout << " ---\n"; // // Determine the range of the rows in this strip. // i2lo = i4_max ( ilo, 1 ); i2lo = i4_max ( i2lo, j2lo - 1 ); i2hi = i4_min ( ihi, m ); i2hi = i4_min ( i2hi, j2hi + 1 ); for ( i = i2lo; i <= i2hi; i++ ) { // // Print out (up to) 5 entries in row I, that lie in the current strip. // cout << setw(6) << i << ": "; for ( j2 = 1; j2 <= inc; j2++ ) { j = j2lo - 1 + j2; if ( 1 < i - j || 1 < j - i ) { cout << " "; } else if ( j == i + 1 ) { cout << setw(12) << a[0+(j-1)*3] << " "; } else if ( j == i ) { cout << setw(12) << a[1+(j-1)*3] << " "; } else if ( j == i - 1 ) { cout << setw(12) << a[2+(j-1)*3] << " "; } } cout << "\n"; } } return; # undef INCX } //****************************************************************************80 double *r83_random ( int m, int n, int &seed ) //****************************************************************************80 // // Purpose: // // R83_RANDOM randomizes an R83 matrix. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 02 September 2015 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the order of the linear system. // // Input/output, int &SEED, a seed for the random number generator. // // Output, double R83_RANDOM[3*N], the R83 matrix. // { double *a; int i; int i_hi; int i_lo; int j; a = new double[3*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < 3; i++ ) { a[i+j*3] = 0.0; } } for ( j = 0; j < n; j++ ) { i_lo = i4_max ( 0, j - 1 ); i_hi = i4_min ( m - 1, j + 1 ); for ( i = i_lo; i <= i_hi; i++ ) { a[i-j+1+j*3] = r8_uniform_01 ( seed ); } } return a; } //****************************************************************************80 double r83_np_det ( int n, double a_lu[] ) //****************************************************************************80 // // Purpose: // // R83_NP_DET: determinant of a tridiagonal system factored by R83_NP_FA. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 25 March 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be at least 2. // // Input, double A_LU[3*N], the LU factors from R83_NP_FA. // // Output, double R83_NP_DET, the determinant of the matrix. // { double det; int j; det = 1.0; for ( j = 0; j < n; j++ ) { det = det * a_lu[1+j*3]; } return det; } //****************************************************************************80 int r83_np_fa ( int n, double a[] ) //****************************************************************************80 // // Purpose: // // R83_NP_FA factors an R83 system without pivoting. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Because this routine does not use pivoting, it can fail even when // the matrix is not singular, and it is liable to make larger // errors. // // R83_NP_FA and R83_NP_SL may be preferable to the corresponding // LINPACK routine SGTSL for tridiagonal systems, which factors and solves // in one step, and does not save the factorization. // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 11 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be at least 2. // // Input/output, double A[3*N]. // On input, the tridiagonal matrix. On output, factorization information. // // Output, int R83_NP_FA, singularity flag. // 0, no singularity detected. // nonzero, the factorization failed on the INFO-th step. // { int i; for ( i = 1; i <= n-1; i++ ) { if ( a[1+(i-1)*3] == 0.0 ) { cerr << "\n"; cerr << "R83_NP_FA - Fatal error!\n"; cerr << " Zero pivot on step " << i << "\n"; exit ( 1 ); } // // Store the multiplier in L. // a[2+(i-1)*3] = a[2+(i-1)*3] / a[1+(i-1)*3]; // // Modify the diagonal entry in the next column. // a[1+i*3] = a[1+i*3] - a[2+(i-1)*3] * a[0+i*3]; } if ( a[1+(n-1)*3] == 0.0 ) { cerr << "\n"; cerr << "R83_NP_FA - Fatal error!\n"; cerr << " Zero pivot on step " << n << "\n"; exit ( 1 ); } return 0; } //****************************************************************************80 double *r83_np_fs ( int n, double a[], double b[] ) //****************************************************************************80 // // Purpose: // // R83_NP_FS factors and solves an R83 system. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // This algorithm requires that each diagonal entry be nonzero. // It does not use pivoting, and so can fail on systems that // are actually nonsingular. // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 15 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the linear system. // // Input/output, double A[3*N]. // On input, the nonzero diagonals of the linear system. // On output, the data in these vectors has been overwritten // by factorization information. // // Input, double B[N], the right hand side. // // Output, double R83_NP_FS[N], the solution of the linear system. // This is NULL if there was an error because one of the diagonal // entries was zero. // { int i; double *x; double xmult; // // Check. // for ( i = 0; i < n; i++ ) { if ( a[1+i*3] == 0.0 ) { return NULL; } } x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = b[i]; } for ( i = 1; i < n; i++ ) { xmult = a[2+(i-1)*3] / a[1+(i-1)*3]; a[1+i*3] = a[1+i*3] - xmult * a[0+i*3]; x[i] = x[i] - xmult * x[i-1]; } x[n-1] = x[n-1] / a[1+(n-1)*3]; for ( i = n-2; 0 <= i; i-- ) { x[i] = ( x[i] - a[0+(i+1)*3] * x[i+1] ) / a[1+i*3]; } return x; } //****************************************************************************80 double *r83_np_ml ( int n, double a_lu[], double x[], int job ) //****************************************************************************80 // // Purpose: // // R83_NP_ML computes Ax or xA, where A has been factored by R83_NP_FA. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be at least 2. // // Input, double A_LU[3*N], the LU factors from R83_FA. // // Input, double X[N], the vector to be multiplied by A. // // Output, double B[N], the product. // // Input, int JOB, specifies the product to find. // 0, compute A * x. // nonzero, compute A' * x. // { double *b; int i; b = new double[n]; for ( i = 0; i < n; i++ ) { b[i] = x[i]; } if ( job == 0 ) { // // Compute X := U * X // for ( i = 1; i <= n; i++ ) { b[i-1] = a_lu[1+(i-1)*3] * b[i-1]; if ( i < n ) { b[i-1] = b[i-1] + a_lu[0+i*3] * b[i]; } } // // Compute X: = L * X. // for ( i = n; 2 <= i; i-- ) { b[i-1] = b[i-1] + a_lu[2+(i-2)*3] * b[i-2]; } } else { // // Compute X: = L' * X. // for ( i = 1; i <= n-1; i++ ) { b[i-1] = b[i-1] + a_lu[2+(i-1)*3] * b[i]; } // // Compute X: = U' * X. // for ( i = n; 1 <= i; i-- ) { b[i-1] = a_lu[1+(i-1)*3] * b[i-1]; if ( 1 < i ) { b[i-1] = b[i-1] + a_lu[0+(i-1)*3] * b[i-2]; } } } return b; } //****************************************************************************80 double *r83_np_sl ( int n, double a_lu[], double b[], int job ) //****************************************************************************80 // // Purpose: // // R83_NP_SL solves an R83 system factored by R83_NP_FA. // // Discussion: // // The R83 storage format is used for a tridiagonal matrix. // The superdiagonal is stored in entries (1,2:min(M+1,N)). // The diagonal in entries (2,1:min(M,N)). // The subdiagonal in (3,min(M-1,N)). // // Example: // // An R83 matrix of order 3x5 would be stored: // // * A12 A23 A34 * // A11 A22 A33 * * // A21 A32 * * * // // An R83 matrix of order 5x5 would be stored: // // * A12 A23 A34 A45 // A11 A22 A33 A44 A55 // A21 A32 A43 A54 * // // An R83 matrix of order 5x3 would be stored: // // * A12 A23 // A11 A22 A33 // A21 A32 A43 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 12 January 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the order of the matrix. // N must be at least 2. // // Input, double A_LU[3*N], the LU factors from R83_NP_FA. // // Input, double B[N], the right hand side of the linear system. // On output, B contains the solution of the linear system. // // Input, int JOB, specifies the system to solve. // 0, solve A * x = b. // nonzero, solve A' * x = b. // // Output, double R83_NP_SL[N], the solution of the linear system. // { int i; double *x; x = new double[n]; for ( i = 0; i < n; i++ ) { x[i] = b[i]; } if ( job == 0 ) { // // Solve L * Y = B. // for ( i = 1; i < n; i++ ) { x[i] = x[i] - a_lu[2+(i-1)*3] * x[i-1]; } // // Solve U * X = Y. // for ( i = n; 1 <= i; i-- ) { x[i-1] = x[i-1] / a_lu[1+(i-1)*3]; if ( 1 < i ) { x[i-2] = x[i-2] - a_lu[0+(i-1)*3] * x[i-1]; } } } else { // // Solve U' * Y = B // for ( i = 1; i <= n; i++ ) { x[i-1] = x[i-1] / a_lu[1+(i-1)*3]; if ( i < n ) { x[i] = x[i] - a_lu[0+i*3] * x[i-1]; } } // // Solve L' * X = Y. // for ( i = n-1; 1 <= i; i-- ) { x[i-1] = x[i-1] - a_lu[2+(i-1)*3] * x[i]; } } return x; } //****************************************************************************80 double *r8vec_indicator1_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_INDICATOR1_NEW sets an R8VEC to the indicator1 vector {1,2,3...}. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 20 September 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of elements of A. // // Output, double R8VEC_INDICATOR1_NEW[N], the array to be initialized. // { double *a; int i; a = new double[n]; for ( i = 0; i <= n-1; i++ ) { a[i] = ( double ) ( i + 1 ); } return a; } //****************************************************************************80 void r8vec_print ( int n, double a[], string title ) //****************************************************************************80 // // Purpose: // // R8VEC_PRINT prints an R8VEC. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, double A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; cout << "\n"; cout << title << "\n"; cout << "\n"; for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << a[i] << "\n"; } return; } //****************************************************************************80 double *r8vec_zeros_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ZEROS_NEW creates and zeroes an R8VEC. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 10 July 2008 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ZEROS_NEW[N], a vector of zeroes. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 0.0; } return a; } //****************************************************************************80 void r8vec2_print_some ( int n, double x1[], double x2[], int max_print, string title ) //****************************************************************************80 // // Purpose: // // R8VEC2_PRINT_SOME prints "some" of two real vectors. // // Discussion: // // The user specifies MAX_PRINT, the maximum number of lines to print. // // If N, the size of the vectors, is no more than MAX_PRINT, then // the entire vectors are printed, one entry of each per line. // // Otherwise, if possible, the first MAX_PRINT-2 entries are printed, // followed by a line of periods suggesting an omission, // and the last entry. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 13 November 2003 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries of the vectors. // // Input, double X1[N], X2[N], the vector to be printed. // // Input, int MAX_PRINT, the maximum number of lines to print. // // Input, string TITLE, a title. // { int i; if ( max_print <= 0 ) { return; } if ( n <= 0 ) { return; } cout << "\n"; cout << title << "\n"; cout << "\n"; if ( n <= max_print ) { for ( i = 0; i < n; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } } else if ( 3 <= max_print ) { for ( i = 0; i < max_print-2; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } cout << "...... .............. ..............\n"; i = n - 1; cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } else { for ( i = 0; i < max_print - 1; i++ ) { cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "\n"; } i = max_print - 1; cout << setw(6) << i + 1 << " " << setw(14) << x1[i] << " " << setw(14) << x2[i] << "...more entries...\n"; } return; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }