# include # include # include # include # include # include using namespace std; # include "monomial_value.hpp" //****************************************************************************80 void i4vec_transpose_print ( int n, int a[], string title ) //****************************************************************************80 // // Purpose: // // I4VEC_TRANSPOSE_PRINT prints an I4VEC "transposed". // // Discussion: // // An I4VEC is a vector of I4's. // // Example: // // A = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 } // TITLE = "My vector: " // // My vector: 1 2 3 4 5 // 6 7 8 9 10 // 11 // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 03 July 2004 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of components of the vector. // // Input, int A[N], the vector to be printed. // // Input, string TITLE, a title. // { int i; int ihi; int ilo; int title_len; title_len = title.length ( ); for ( ilo = 1; ilo <= n; ilo = ilo + 5 ) { ihi = ilo + 5 - 1; if ( n < ihi ) { ihi = n; } if ( ilo == 1 ) { cout << title; } else { for ( i = 1; i <= title_len; i++ ) { cout << " "; } } for ( i = ilo; i <= ihi; i++ ) { cout << setw(12) << a[i-1]; } cout << "\n"; } return; } //****************************************************************************80 int *i4vec_uniform_ab_new ( int n, int a, int b, int &seed ) //****************************************************************************80 // // Purpose: // // I4VEC_UNIFORM_AB_NEW returns a scaled pseudorandom I4VEC. // // Discussion: // // An I4VEC is a vector of I4's. // // The pseudorandom numbers should be uniformly distributed // between A and B. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 24 May 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int N, the dimension of the vector. // // Input, int A, B, the limits of the interval. // // Input/output, int &SEED, the "seed" value, which should NOT be 0. // On output, SEED has been updated. // // Output, int IVEC_UNIFORM_AB_NEW[N], a vector of random values // between A and B. // { int c; int i; const int i4_huge = 2147483647; int k; float r; int value; int *x; if ( seed == 0 ) { cerr << "\n"; cerr << "I4VEC_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } // // Guarantee A <= B. // if ( b < a ) { c = a; a = b; b = c; } x = new int[n]; for ( i = 0; i < n; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r = ( float ) ( seed ) * 4.656612875E-10; // // Scale R to lie between A-0.5 and B+0.5. // r = ( 1.0 - r ) * ( ( float ) a - 0.5 ) + r * ( ( float ) b + 0.5 ); // // Use rounding to convert R to an integer between A and B. // value = round ( r ); // // Guarantee A <= VALUE <= B. // if ( value < a ) { value = a; } if ( b < value ) { value = b; } x[i] = value; } return x; } //****************************************************************************80 double *monomial_value ( int m, int n, int e[], double x[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_VALUE evaluates a monomial. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= i <= m ) x(i)^e(i) // // The combination 0.0^0 is encountered is treated as 1.0. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 August 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int M, the spatial dimension. // // Input, int N, the number of evaluation points. // // Input, int E[M], the exponents. // // Input, double X[M*N], the point coordinates. // // Output, double MONOMIAL_VALUE[N], the monomial values. // { int i; int j; double *v; v = new double[n]; for ( j = 0; j < n; j++) { v[j] = 1.0; } //v = r8vec_ones_new ( n ); for ( i = 0; i < m; i++ ) { if ( 0 != e[i] ) { for ( j = 0; j < n; j++ ) { v[j] = v[j] * pow ( x[i+j*m], e[i] ); } } } return v; } //****************************************************************************80 double *monomial_value_1d ( int n, int e, double x[] ) //****************************************************************************80 // // Purpose: // // MONOMIAL_VALUE_1D evaluates a monomial in 1D. // // Discussion: // // This routine evaluates a monomial of the form // // product ( 1 <= i <= m ) x(i)^e(i) // // where the exponents are nonnegative integers. Note that // if the combination 0^0 is encountered, it should be treated // as 1. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 17 January 2014 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of points at which the // monomial is to be evaluated. // // Input, int E, the exponents. // // Input, double X[N], the point coordinates. // // Output, double MONOMIAL_VALUE_1D[N], the value of the monomial. // { int j; double *v; v = new double[n]; for ( j = 0; j < n; j++ ) { v[j] = pow ( x[j], e ); } return v; } //****************************************************************************80 void r8mat_nint ( int m, int n, double a[] ) //****************************************************************************80 // // Purpose: // // R8MAT_NINT rounds the entries of an R8MAT. // // Discussion: // // An R8MAT is a doubly dimensioned array of R8 values, stored as a vector // in column-major order. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 07 October 2005 // // Author: // // John Burkardt // // Parameters: // // Input, int M, N, the number of rows and columns of A. // // Input/output, double A[M*N], the matrix to be NINT'ed. // { int i; int j; int s; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j*m] < 0.0 ) { s = -1; } else { s = 1; } a[i+j*m] = s * ( int ) ( fabs ( a[i+j*m] ) + 0.5 ); } } return; } //****************************************************************************80 double *r8mat_uniform_ab_new ( int m, int n, double a, double b, int &seed ) //****************************************************************************80 // // Purpose: // // R8MAT_UNIFORM_AB_NEW returns a new scaled pseudorandom R8MAT. // // Discussion: // // An R8MAT is an array of R8's. // // This routine implements the recursion // // seed = ( 16807 * seed ) mod ( 2^31 - 1 ) // u = seed / ( 2^31 - 1 ) // // The integer arithmetic never requires more than 32 bits, // including a sign bit. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 09 April 2012 // // Author: // // John Burkardt // // Reference: // // Paul Bratley, Bennett Fox, Linus Schrage, // A Guide to Simulation, // Second Edition, // Springer, 1987, // ISBN: 0387964673, // LC: QA76.9.C65.B73. // // Bennett Fox, // Algorithm 647: // Implementation and Relative Efficiency of Quasirandom // Sequence Generators, // ACM Transactions on Mathematical Software, // Volume 12, Number 4, December 1986, pages 362-376. // // Pierre L'Ecuyer, // Random Number Generation, // in Handbook of Simulation, // edited by Jerry Banks, // Wiley, 1998, // ISBN: 0471134031, // LC: T57.62.H37. // // Peter Lewis, Allen Goodman, James Miller, // A Pseudo-Random Number Generator for the System/360, // IBM Systems Journal, // Volume 8, Number 2, 1969, pages 136-143. // // Parameters: // // Input, int M, N, the number of rows and columns. // // Input, double A, B, the limits of the pseudorandom values. // // Input/output, int &SEED, the "seed" value. Normally, this // value should not be 0. On output, SEED has // been updated. // // Output, double R8MAT_UNIFORM_AB_NEW[M*N], a matrix of pseudorandom values. // { int i; const int i4_huge = 2147483647; int j; int k; double *r; if ( seed == 0 ) { cerr << "\n"; cerr << "R8MAT_UNIFORM_AB_NEW - Fatal error!\n"; cerr << " Input value of SEED = 0.\n"; exit ( 1 ); } r = new double[m*n]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { k = seed / 127773; seed = 16807 * ( seed - k * 127773 ) - k * 2836; if ( seed < 0 ) { seed = seed + i4_huge; } r[i+j*m] = a + ( b - a ) * ( double ) ( seed ) * 4.656612875E-10; } } return r; } //****************************************************************************80 double *r8vec_ones_new ( int n ) //****************************************************************************80 // // Purpose: // // R8VEC_ONES_NEW creates a vector of 1's. // // Discussion: // // An R8VEC is a vector of R8's. // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 14 March 2011 // // Author: // // John Burkardt // // Parameters: // // Input, int N, the number of entries in the vector. // // Output, double R8VEC_ONES_NEW[N], a vector of 1's. // { double *a; int i; a = new double[n]; for ( i = 0; i < n; i++ ) { a[i] = 1.0; } return a; } //****************************************************************************80 void timestamp ( ) //****************************************************************************80 // // Purpose: // // TIMESTAMP prints the current YMDHMS date as a time stamp. // // Example: // // 31 May 2001 09:45:54 AM // // Licensing: // // This code is distributed under the GNU LGPL license. // // Modified: // // 08 July 2009 // // Author: // // John Burkardt // // Parameters: // // None // { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct std::tm *tm_ptr; std::time_t now; now = std::time ( NULL ); tm_ptr = std::localtime ( &now ); std::strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm_ptr ); std::cout << time_buffer << "\n"; return; # undef TIME_SIZE }