09 February 2008 05:12:59 PM INT_EXACTNESS_JACOBI C++ version Investigate the polynomial exactness of a Gauss-Jacobi quadrature rule by integrating exponentially weighted monomials up to a given degree over the (-oo,+oo) interval. INT_EXACTNESS_JACOBI: User input: Quadrature rule X file = "jac_o8_a0.5_b1.5_x.txt". Quadrature rule W file = "jac_o8_a0.5_b1.5_w.txt". Quadrature rule R file = "jac_o8_a0.5_b1.5_r.txt". Maximum degree to check = 18 Exponent of (1-x), ALPHA = 0.5 Exponent of (1+x), BETA = 1.5 Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a Gauss-Jacobi rule ORDER = 8 ALPHA = 0.5 BETA = 1.5 Standard rule: Integral ( -1 <= x <= +1 ) (1-x)^alplha (1+x)^beta f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w[ 0] = 0.007943251383316998 w[ 1] = 0.05574150057932281 w[ 2] = 0.1640573457854426 w[ 3] = 0.3008492695346398 w[ 4] = 0.3883180543538824 w[ 5] = 0.3606436566318294 w[ 6] = 0.2248513392666373 w[ 7] = 0.0683919092594677 Abscissas X: x[ 0] = -0.8900098006603341 x[ 1] = -0.6866356906720188 x[ 2] = -0.4095019972429185 x[ 3] = -0.08860534544266939 x[ 4] = 0.2412867334092741 x[ 5] = 0.5444273641737976 x[ 6] = 0.7879673764819101 x[ 7] = 0.9455158043974036 Region R: r[ 0] = -1 r[ 1] = 1 A Gauss-Jacobi rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree 2.273036412352594e-13 0 2.274449992211022e-13 1 2.270209252635738e-13 2 2.263141353343597e-13 3 2.263141353343597e-13 4 2.26285863737191e-13 5 2.262858637371911e-13 6 2.256881213970557e-13 7 2.258496733808761e-13 8 2.259573747034229e-13 9 2.231571403172038e-13 10 2.263098517590307e-13 11 2.163034197914925e-13 12 2.264047494278482e-13 13 2.260673354942748e-13 14 2.208711609172432e-13 15 0.0003885003887300939 16 0.0004088141345338994 17 0.001921059655487914 18 INT_EXACTNESS_JACOBI: Normal end of execution. 09 February 2008 05:12:59 PM