03 March 2008 08:12:40 AM INT_EXACTNESS_CHEBYSHEV2 C++ version Investigate the polynomial exactness of a Gauss-Chebyshev type 2 quadrature rule by integrating weighted monomials up to a given degree over the [-1,+1] interval. INT_EXACTNESS_CHEBYSHEV2: User input: Quadrature rule X file = "cheby2_o8_x.txt". Quadrature rule W file = "cheby2_o8_w.txt". Quadrature rule R file = "cheby2_o8_r.txt". Maximum degree to check = 18 Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a Gauss-Legendre rule ORDER = 8 Standard rule: Integral ( -1 <= x <= +1 ) f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w[ 0] = 0.04083294770910712 w[ 1] = 0.1442256007956728 w[ 2] = 0.2617993877991495 w[ 3] = 0.338540227093519 w[ 4] = 0.338540227093519 w[ 5] = 0.2617993877991494 w[ 6] = 0.1442256007956728 w[ 7] = 0.04083294770910708 Abscissas X: x[ 0] = -0.9396926207859084 x[ 1] = -0.7660444431189779 x[ 2] = -0.4999999999999998 x[ 3] = -0.1736481776669303 x[ 4] = 0.1736481776669304 x[ 5] = 0.5000000000000001 x[ 6] = 0.766044443118978 x[ 7] = 0.9396926207859084 Region R: r[ 0] = -1 r[ 1] = 1 A Gauss-Chebyshev type 2 rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree 1.41357985842823e-16 0 3.469446951953614e-17 1 0 2 8.326672684688674e-17 3 0 4 2.775557561562891e-17 5 1.130863886742584e-16 6 3.469446951953614e-18 7 0 8 3.469446951953614e-18 9 2.154026450938255e-16 10 3.469446951953614e-18 11 2.741488210285052e-16 12 3.469446951953614e-18 13 5.061209003603172e-16 14 3.469446951953614e-18 15 0.0006993006992999631 16 6.938893903907228e-18 17 0.003290826820237859 18 INT_EXACTNESS_CHEBYSHEV2: Normal end of execution. 03 March 2008 08:12:40 AM