03 March 2008 09:12:46 AM INT_EXACTNESS_GEGENBAUER C++ version Investigate the polynomial exactness of a Gauss-Gegenbauer quadrature rule by integrating exponentially weighted monomials up to a given degree over the (-oo,+oo) interval. INT_EXACTNESS_GEGENBAUER: User input: Quadrature rule X file = "gegen_o8_a0.5_x.txt". Quadrature rule W file = "gegen_o8_a0.5_w.txt". Quadrature rule R file = "gegen_o8_a0.5_r.txt". Maximum degree to check = 18 Exponent of (1-x^2), ALPHA = 0.5 Spatial dimension = 1 Number of points = 8 The quadrature rule to be tested is a Gauss-Gegenbauer rule ORDER = 8 ALPHA = 0.5 Standard rule: Integral ( -1 <= x <= +1 ) (1-x^2)^alpha f(x) dx is to be approximated by sum ( 1 <= I <= ORDER ) w(i) * f(x(i)). Weights W: w[ 0] = 0.04083294770910693 w[ 1] = 0.1442256007956728 w[ 2] = 0.2617993877991495 w[ 3] = 0.3385402270935191 w[ 4] = 0.3385402270935191 w[ 5] = 0.2617993877991495 w[ 6] = 0.1442256007956728 w[ 7] = 0.04083294770910754 Abscissas X: x[ 0] = -0.9396926207859084 x[ 1] = -0.766044443118978 x[ 2] = -0.5 x[ 3] = -0.1736481776669303 x[ 4] = 0.1736481776669303 x[ 5] = 0.5 x[ 6] = 0.766044443118978 x[ 7] = 0.9396926207859084 Region R: r[ 0] = -1 r[ 1] = 1 A Gauss-Gegenbauer rule would be able to exactly integrate monomials up to and including degree = 15 Error Degree 2.827159716856457e-16 0 6.106226635438361e-16 1 8.481479150569377e-16 2 5.204170427930421e-16 3 9.895059008997603e-16 4 4.40619762898109e-16 5 1.583209441439617e-15 6 3.95516952522712e-16 7 2.100175789664798e-15 8 3.469446951953614e-16 9 5.169663482251825e-15 10 3.087807787238717e-16 11 1.261084576731136e-14 12 2.706168622523819e-16 13 2.193190568228038e-15 14 2.393918396847994e-16 15 0.000699300699301984 16 2.133709875451473e-16 17 0.003290826820234406 18 INT_EXACTNESS_GEGENBAUER: Normal end of execution. 03 March 2008 09:12:46 AM