23 August 2004 09:35:41 AM CVT_DATASET (C++ version) Generate a CVT dataset. Compiled on Aug 23 2004 at 09:35:07 This program is meant to be used interactively. It is also possible to prepare a simple input file beforehand and use it in batch mode. The program requests input values from the user: * NDIM, the spatial dimension, * N, the number of points to generate, * SEED, a seed to use for random number generation, * INIT, initialize the points: ** file, read data from a file; ** GRID, by picking points from a grid; ** HALTON, from a Halton sequence; ** RANDOM, using FORTRAN RANDOM function; ** UNIFORM, using a simple uniform RNG; * IT_MAX, the maximum number of iterations. * IT_TOL, the iteration tolerance. * SAMPLE, how to conduct the sampling. ** GRID, by picking points from a grid; ** HALTON, from a Halton sequence; ** RANDOM, using FORTRAN RANDOM function; ** UNIFORM, using a simple uniform RNG; * SAMPLE_NUM, the number of sample points. * BATCH, the number of sample points to generate at one time. The program generates the data, writes it to the file cvt_NDIM_N.txt where "NDIM" and "N" are the numeric values specified by the user, and then asks the user for more input. To indicate that no further computations are desired, it is enough to input a nonsensical value, such as -1. * * * Ready to generate a new dataset: * * Enter NDIM, the spatial dimension: (0 or any negative value terminates execution). User input NDIM = 2 Enter N, the number of points to generate: (0 or any negative value terminates execution). User input N = 100 Enter SEED, a seed for the random number generator: (Any negative value terminates execution). User input SEED = 123456789 INIT is the method of initializing the data: file read data from a file; GRID by picking points from a grid; HALTON from a Halton sequence; RANDOM using C++ RANDOM function; UNIFORM using a simple uniform RNG; (A blank value terminates execution). Enter INIT: User input INIT = "grid". IT_MAX is the maximum number of iterations. An iteration carries out the following steps: * the Voronoi region associated with each generator is estimated by sampling; * the centroid of each Voronoi region is estimated. * the generator is replaced by the centroid. If "enough" sampling points are used, and "enough" iterations are taken, this process will converge. (A negative value terminates execution). Enter IT_MAX: User input IT_MAX = 60 IT_TOL is the iteration tolerance. Each iteration replaces the generators by the centroids. The L2 norm of the difference between these two sets of points is an indirect measure of convergence. If this L2 norm falls below IT_TOL, the iteration is presumed to have converged, and is terminated early. A zero value is acceptable, and simply means that early termination will not occur. (A negative value terminates execution). Enter IT_TOL: User input IT_TOL = 0 SAMPLE is the method of sampling the region: GRID by picking points from a grid; HALTON from a Halton sequence; RANDOM using C++ RANDOM function; UNIFORM using a simple uniform RNG; (A blank value terminates execution). Enter SAMPLE: User input SAMPLE = "uniform". SAMPLE_NUM is the number of sample points. The Voronoi regions will be explored by generating SAMPLE_NUM points. For each sample point, the nearest generator is found. Using more points gives a better estimate of these regions. SAMPLE_NUM should be much larger than N, the number of generators. (A zero or negative value terminates execution.) Enter SAMPLE_NUM: User input SAMPLE_NUM = 100000 BATCH is the number of sample points to create at one time. BATCH should be between 1 and SAMPLE_NUM. It is FASTER to set BATCH to SAMPLE_NUM; setting BATCH to 1 requires the least memory. (A zero or negative value terminates execution.) Enter BATCH: User input BATCH = 1000 Step L2-Change 1 0.114444 2 0.13755 3 0.136989 4 0.140933 5 0.135014 6 0.132444 7 0.144876 8 0.137448 9 0.137339 10 0.142506 11 0.133786 12 0.141001 13 0.145135 14 0.150209 15 0.136469 16 0.143602 17 0.151815 18 0.145307 19 0.161458 20 0.162584 21 0.163082 22 0.141542 23 0.139102 24 0.133306 25 0.147193 26 0.134166 27 0.133343 28 0.137144 29 0.135534 30 0.140999 31 0.135537 32 0.133911 33 0.132635 34 0.124643 35 0.124345 36 0.136994 37 0.134897 38 0.132307 39 0.132215 40 0.15024 41 0.14526 42 0.14547 43 0.141859 44 0.127483 45 0.12724 46 0.130497 47 0.131023 48 0.130072 49 0.141258 50 0.133794 51 0.14056 52 0.140994 53 0.121211 54 0.130046 55 0.128887 56 0.14701 57 0.135794 58 0.135745 59 0.123495 60 0.136515 The data was written to the file "cvt_2_100.txt * * * Ready to generate a new dataset: * * Enter NDIM, the spatial dimension: (0 or any negative value terminates execution). User input NDIM = -1 CVT_DATASET The input value of NDIM = -1 is interpreted as a request for termination. Normal end of execution. 23 August 2004 09:36:16 AM