//---------------------------------------------------------------------- // File: kd_tree.cpp // Programmer: Sunil Arya and David Mount // Description: Basic methods for kd-trees. // Last modified: 01/04/05 (Version 1.0) //---------------------------------------------------------------------- // Copyright (c) 1997-2005 University of Maryland and Sunil Arya and // David Mount. All Rights Reserved. // // This software and related documentation is part of the Approximate // Nearest Neighbor Library (ANN). This software is provided under // the provisions of the Lesser GNU Public License (LGPL). See the // file ../ReadMe.txt for further information. // // The University of Maryland (U.M.) and the authors make no // representations about the suitability or fitness of this software for // any purpose. It is provided "as is" without express or implied // warranty. //---------------------------------------------------------------------- // History: // Revision 0.1 03/04/98 // Initial release // Revision 1.0 04/01/05 // Increased aspect ratio bound (ANN_AR_TOOBIG) from 100 to 1000. // Fixed leaf counts to count trivial leaves. // Added optional pa, pi arguments to Skeleton kd_tree constructor // for use in load constructor. // Added annClose() to eliminate KD_TRIVIAL memory leak. //---------------------------------------------------------------------- #include "kd_tree.hpp" // kd-tree declarations #include "kd_split.hpp" // kd-tree splitting rules #include "kd_util.hpp" // kd-tree utilities #include "ann_perf.hpp" // performance evaluation //---------------------------------------------------------------------- // Global data // // For some splitting rules, especially with small bucket sizes, // it is possible to generate a large number of empty leaf nodes. // To save storage we allocate a single trivial leaf node which // contains no points. For messy coding reasons it is convenient // to have it reference a trivial point index. // // KD_TRIVIAL is allocated when the first kd-tree is created. It // must *never* deallocated (since it may be shared by more than // one tree). //---------------------------------------------------------------------- static int IDX_TRIVIAL[] = {0}; // trivial point index ANNkd_leaf *KD_TRIVIAL = NULL; // trivial leaf node //---------------------------------------------------------------------- // Printing the kd-tree // These routines print a kd-tree in reverse inorder (high then // root then low). (This is so that if you look at the output // from the right side it appear from left to right in standard // inorder.) When outputting leaves we output only the point // indices rather than the point coordinates. There is an option // to print the point coordinates separately. // // The tree printing routine calls the printing routines on the // individual nodes of the tree, passing in the level or depth // in the tree. The level in the tree is used to print indentation // for readability. //---------------------------------------------------------------------- void ANNkd_split::print( // print splitting node int level, // depth of node in tree ostream &out) // output stream { child[ANN_HI]->print(level+1, out); // print high child out << " "; for (int i = 0; i < level; i++) // print indentation out << ".."; out << "Split cd=" << cut_dim << " cv=" << cut_val; out << " lbnd=" << cd_bnds[ANN_LO]; out << " hbnd=" << cd_bnds[ANN_HI]; out << "\n"; child[ANN_LO]->print(level+1, out); // print low child } void ANNkd_leaf::print( // print leaf node int level, // depth of node in tree ostream &out) // output stream { out << " "; for (int i = 0; i < level; i++) // print indentation out << ".."; if (this == KD_TRIVIAL) { // canonical trivial leaf node out << "Leaf (trivial)\n"; } else{ out << "Leaf n=" << n_pts << " <"; for (int j = 0; j < n_pts; j++) { out << bkt[j]; if (j < n_pts-1) out << ","; } out << ">\n"; } } void ANNkd_tree::Print( // print entire tree ANNbool with_pts, // print points as well? ostream &out) // output stream { out << "ANN Version " << ANNversion << "\n"; if (with_pts) { // print point coordinates out << " Points:\n"; for (int i = 0; i < n_pts; i++) { out << "\t" << i << ": "; annPrintPt(pts[i], dim, out); out << "\n"; } } if (root == NULL) // empty tree? out << " Null tree.\n"; else { root->print(0, out); // invoke printing at root } } //---------------------------------------------------------------------- // kd_tree statistics (for performance evaluation) // This routine compute various statistics information for // a kd-tree. It is used by the implementors for performance // evaluation of the data structure. //---------------------------------------------------------------------- #define MAX(a,b) ((a) > (b) ? (a) : (b)) void ANNkdStats::merge(const ANNkdStats &st) // merge stats from child { n_lf += st.n_lf; n_tl += st.n_tl; n_spl += st.n_spl; n_shr += st.n_shr; depth = MAX(depth, st.depth); sum_ar += st.sum_ar; } //---------------------------------------------------------------------- // Update statistics for nodes //---------------------------------------------------------------------- const double ANN_AR_TOOBIG = 1000; // too big an aspect ratio void ANNkd_leaf::getStats( // get subtree statistics int dim, // dimension of space ANNkdStats &st, // stats (modified) ANNorthRect &bnd_box) // bounding box { st.reset(); st.n_lf = 1; // count this leaf if (this == KD_TRIVIAL) st.n_tl = 1; // count trivial leaf double ar = annAspectRatio(dim, bnd_box); // aspect ratio of leaf // incr sum (ignore outliers) st.sum_ar += float(ar < ANN_AR_TOOBIG ? ar : ANN_AR_TOOBIG); } void ANNkd_split::getStats( // get subtree statistics int dim, // dimension of space ANNkdStats &st, // stats (modified) ANNorthRect &bnd_box) // bounding box { ANNkdStats ch_stats; // stats for children // get stats for low child ANNcoord hv = bnd_box.hi[cut_dim]; // save box bounds bnd_box.hi[cut_dim] = cut_val; // upper bound for low child ch_stats.reset(); // reset child[ANN_LO]->getStats(dim, ch_stats, bnd_box); st.merge(ch_stats); // merge them bnd_box.hi[cut_dim] = hv; // restore bound // get stats for high child ANNcoord lv = bnd_box.lo[cut_dim]; // save box bounds bnd_box.lo[cut_dim] = cut_val; // lower bound for high child ch_stats.reset(); // reset child[ANN_HI]->getStats(dim, ch_stats, bnd_box); st.merge(ch_stats); // merge them bnd_box.lo[cut_dim] = lv; // restore bound st.depth++; // increment depth st.n_spl++; // increment number of splits } //---------------------------------------------------------------------- // getStats // Collects a number of statistics related to kd_tree or // bd_tree. //---------------------------------------------------------------------- void ANNkd_tree::getStats( // get tree statistics ANNkdStats &st) // stats (modified) { st.reset(dim, n_pts, bkt_size); // reset stats // create bounding box ANNorthRect bnd_box(dim, bnd_box_lo, bnd_box_hi); if (root != NULL) { // if nonempty tree root->getStats(dim, st, bnd_box); // get statistics st.avg_ar = st.sum_ar / st.n_lf; // average leaf asp ratio } } //---------------------------------------------------------------------- // kd_tree destructor // The destructor just frees the various elements that were // allocated in the construction process. //---------------------------------------------------------------------- ANNkd_tree::~ANNkd_tree() // tree destructor { if (root != NULL) delete root; if (pidx != NULL) delete [] pidx; if (bnd_box_lo != NULL) annDeallocPt(bnd_box_lo); if (bnd_box_hi != NULL) annDeallocPt(bnd_box_hi); } //---------------------------------------------------------------------- // This is called with all use of ANN is finished. It eliminates the // minor memory leak caused by the allocation of KD_TRIVIAL. //---------------------------------------------------------------------- void annClose() // close use of ANN { if (KD_TRIVIAL != NULL) { delete KD_TRIVIAL; KD_TRIVIAL = NULL; } } //---------------------------------------------------------------------- // kd_tree constructors // There is a skeleton kd-tree constructor which sets up a // trivial empty tree. The last optional argument allows // the routine to be passed a point index array which is // assumed to be of the proper size (n). Otherwise, one is // allocated and initialized to the identity. Warning: In // either case the destructor will deallocate this array. // // As a kludge, we need to allocate KD_TRIVIAL if one has not // already been allocated. (This is because I'm too dumb to // figure out how to cause a pointer to be allocated at load // time.) //---------------------------------------------------------------------- void ANNkd_tree::SkeletonTree( // construct skeleton tree int n, // number of points int dd, // dimension int bs, // bucket size ANNpointArray pa, // point array ANNidxArray pi) // point indices { dim = dd; // initialize basic elements n_pts = n; bkt_size = bs; pts = pa; // initialize points array root = NULL; // no associated tree yet if (pi == NULL) { // point indices provided? pidx = new ANNidx[n]; // no, allocate space for point indices for (int i = 0; i < n; i++) { pidx[i] = i; // initially identity } } else { pidx = pi; // yes, use them } bnd_box_lo = bnd_box_hi = NULL; // bounding box is nonexistent if (KD_TRIVIAL == NULL) // no trivial leaf node yet? KD_TRIVIAL = new ANNkd_leaf(0, IDX_TRIVIAL); // allocate it } ANNkd_tree::ANNkd_tree( // basic constructor int n, // number of points int dd, // dimension int bs) // bucket size { SkeletonTree(n, dd, bs); } // construct skeleton tree //---------------------------------------------------------------------- // rkd_tree - recursive procedure to build a kd-tree // // Builds a kd-tree for points in pa as indexed through the // array pidx[0..n-1] (typically a subarray of the array used in // the top-level call). This routine permutes the array pidx, // but does not alter pa[]. // // The construction is based on a standard algorithm for constructing // the kd-tree (see Friedman, Bentley, and Finkel, ``An algorithm for // finding best matches in logarithmic expected time,'' ACM Transactions // on Mathematical Software, 3(3):209-226, 1977). The procedure // operates by a simple divide-and-conquer strategy, which determines // an appropriate orthogonal cutting plane (see below), and splits // the points. When the number of points falls below the bucket size, // we simply store the points in a leaf node's bucket. // // One of the arguments is a pointer to a splitting routine, // whose prototype is: // // void split( // ANNpointArray pa, // complete point array // ANNidxArray pidx, // point array (permuted on return) // ANNorthRect &bnds, // bounds of current cell // int n, // number of points // int dim, // dimension of space // int &cut_dim, // cutting dimension // ANNcoord &cut_val, // cutting value // int &n_lo) // no. of points on low side of cut // // This procedure selects a cutting dimension and cutting value, // partitions pa about these values, and returns the number of // points on the low side of the cut. //---------------------------------------------------------------------- ANNkd_ptr rkd_tree( // recursive construction of kd-tree ANNpointArray pa, // point array ANNidxArray pidx, // point indices to store in subtree int n, // number of points int dim, // dimension of space int bsp, // bucket space ANNorthRect &bnd_box, // bounding box for current node ANNkd_splitter splitter) // splitting routine { if (n <= bsp) { // n small, make a leaf node if (n == 0) // empty leaf node return KD_TRIVIAL; // return (canonical) empty leaf else // construct the node and return return new ANNkd_leaf(n, pidx); } else { // n large, make a splitting node int cd; // cutting dimension ANNcoord cv; // cutting value int n_lo; // number on low side of cut ANNkd_node *lo, *hi; // low and high children // invoke splitting procedure (*splitter)(pa, pidx, bnd_box, n, dim, cd, cv, n_lo); ANNcoord lv = bnd_box.lo[cd]; // save bounds for cutting dimension ANNcoord hv = bnd_box.hi[cd]; bnd_box.hi[cd] = cv; // modify bounds for left subtree lo = rkd_tree( // build left subtree pa, pidx, n_lo, // ...from pidx[0..n_lo-1] dim, bsp, bnd_box, splitter); bnd_box.hi[cd] = hv; // restore bounds bnd_box.lo[cd] = cv; // modify bounds for right subtree hi = rkd_tree( // build right subtree pa, pidx + n_lo, n-n_lo,// ...from pidx[n_lo..n-1] dim, bsp, bnd_box, splitter); bnd_box.lo[cd] = lv; // restore bounds // create the splitting node ANNkd_split *ptr = new ANNkd_split(cd, cv, lv, hv, lo, hi); return ptr; // return pointer to this node } } //---------------------------------------------------------------------- // kd-tree constructor // This is the main constructor for kd-trees given a set of points. // It first builds a skeleton tree, then computes the bounding box // of the data points, and then invokes rkd_tree() to actually // build the tree, passing it the appropriate splitting routine. //---------------------------------------------------------------------- ANNkd_tree::ANNkd_tree( // construct from point array ANNpointArray pa, // point array (with at least n pts) int n, // number of points int dd, // dimension int bs, // bucket size ANNsplitRule split) // splitting method { SkeletonTree(n, dd, bs); // set up the basic stuff pts = pa; // where the points are if (n == 0) return; // no points--no sweat ANNorthRect bnd_box(dd); // bounding box for points annEnclRect(pa, pidx, n, dd, bnd_box);// construct bounding rectangle // copy to tree structure bnd_box_lo = annCopyPt(dd, bnd_box.lo); bnd_box_hi = annCopyPt(dd, bnd_box.hi); switch (split) { // build by rule case ANN_KD_STD: // standard kd-splitting rule root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, kd_split); break; case ANN_KD_MIDPT: // midpoint split root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, midpt_split); break; case ANN_KD_FAIR: // fair split root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, fair_split); break; case ANN_KD_SUGGEST: // best (in our opinion) case ANN_KD_SL_MIDPT: // sliding midpoint split root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_midpt_split); break; case ANN_KD_SL_FAIR: // sliding fair split root = rkd_tree(pa, pidx, n, dd, bs, bnd_box, sl_fair_split); break; default: annError("Illegal splitting method", ANNabort); } }