//---------------------------------------------------------------------- // File: kd_pr_search.cpp // Programmer: Sunil Arya and David Mount // Description: Priority search for kd-trees // Last modified: 01/04/05 (Version 1.0) //---------------------------------------------------------------------- // Copyright (c) 1997-2005 University of Maryland and Sunil Arya and // David Mount. All Rights Reserved. // // This software and related documentation is part of the Approximate // Nearest Neighbor Library (ANN). This software is provided under // the provisions of the Lesser GNU Public License (LGPL). See the // file ../ReadMe.txt for further information. // // The University of Maryland (U.M.) and the authors make no // representations about the suitability or fitness of this software for // any purpose. It is provided "as is" without express or implied // warranty. //---------------------------------------------------------------------- // History: // Revision 0.1 03/04/98 // Initial release //---------------------------------------------------------------------- #include "kd_pr_search.hpp" // kd priority search declarations //---------------------------------------------------------------------- // Approximate nearest neighbor searching by priority search. // The kd-tree is searched for an approximate nearest neighbor. // The point is returned through one of the arguments, and the // distance returned is the SQUARED distance to this point. // // The method used for searching the kd-tree is called priority // search. (It is described in Arya and Mount, ``Algorithms for // fast vector quantization,'' Proc. of DCC '93: Data Compression // Conference}, eds. J. A. Storer and M. Cohn, IEEE Press, 1993, // 381--390.) // // The cell of the kd-tree containing the query point is located, // and cells are visited in increasing order of distance from the // query point. This is done by placing each subtree which has // NOT been visited in a priority queue, according to the closest // distance of the corresponding enclosing rectangle from the // query point. The search stops when the distance to the nearest // remaining rectangle exceeds the distance to the nearest point // seen by a factor of more than 1/(1+eps). (Implying that any // point found subsequently in the search cannot be closer by more // than this factor.) // // The main entry point is annkPriSearch() which sets things up and // then call the recursive routine ann_pri_search(). This is a // recursive routine which performs the processing for one node in // the kd-tree. There are two versions of this virtual procedure, // one for splitting nodes and one for leaves. When a splitting node // is visited, we determine which child to continue the search on // (the closer one), and insert the other child into the priority // queue. When a leaf is visited, we compute the distances to the // points in the buckets, and update information on the closest // points. // // Some trickery is used to incrementally update the distance from // a kd-tree rectangle to the query point. This comes about from // the fact that which each successive split, only one component // (along the dimension that is split) of the squared distance to // the child rectangle is different from the squared distance to // the parent rectangle. //---------------------------------------------------------------------- //---------------------------------------------------------------------- // To keep argument lists short, a number of global variables // are maintained which are common to all the recursive calls. // These are given below. //---------------------------------------------------------------------- double ANNprEps; // the error bound int ANNprDim; // dimension of space ANNpoint ANNprQ; // query point double ANNprMaxErr; // max tolerable squared error ANNpointArray ANNprPts; // the points ANNpr_queue *ANNprBoxPQ; // priority queue for boxes ANNmin_k *ANNprPointMK; // set of k closest points //---------------------------------------------------------------------- // annkPriSearch - priority search for k nearest neighbors //---------------------------------------------------------------------- void ANNkd_tree::annkPriSearch( ANNpoint q, // query point int k, // number of near neighbors to return ANNidxArray nn_idx, // nearest neighbor indices (returned) ANNdistArray dd, // dist to near neighbors (returned) double eps) // error bound (ignored) { // max tolerable squared error ANNprMaxErr = ANN_POW(1.0 + eps); ANN_FLOP(2) // increment floating ops ANNprDim = dim; // copy arguments to static equivs ANNprQ = q; ANNprPts = pts; ANNptsVisited = 0; // initialize count of points visited ANNprPointMK = new ANNmin_k(k); // create set for closest k points // distance to root box ANNdist box_dist = annBoxDistance(q, bnd_box_lo, bnd_box_hi, dim); ANNprBoxPQ = new ANNpr_queue(n_pts);// create priority queue for boxes ANNprBoxPQ->insert(box_dist, root); // insert root in priority queue while (ANNprBoxPQ->non_empty() && (!ANNmaxPtsVisited || ANNptsVisited < ANNmaxPtsVisited)) { ANNkd_ptr np; // next box from prior queue // extract closest box from queue ANNprBoxPQ->extr_min(box_dist, (void *&) np); ANN_FLOP(2) // increment floating ops if (box_dist*ANNprMaxErr >= ANNprPointMK->max_key()) break; np->ann_pri_search(box_dist); // search this subtree. } for (int i = 0; i < k; i++) { // extract the k-th closest points dd[i] = ANNprPointMK->ith_smallest_key(i); nn_idx[i] = ANNprPointMK->ith_smallest_info(i); } delete ANNprPointMK; // deallocate closest point set delete ANNprBoxPQ; // deallocate priority queue } //---------------------------------------------------------------------- // kd_split::ann_pri_search - search a splitting node //---------------------------------------------------------------------- void ANNkd_split::ann_pri_search(ANNdist box_dist) { ANNdist new_dist; // distance to child visited later // distance to cutting plane ANNcoord cut_diff = ANNprQ[cut_dim] - cut_val; if (cut_diff < 0) { // left of cutting plane ANNcoord box_diff = cd_bnds[ANN_LO] - ANNprQ[cut_dim]; if (box_diff < 0) // within bounds - ignore box_diff = 0; // distance to further box new_dist = (ANNdist) ANN_SUM(box_dist, ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff))); if (child[ANN_HI] != KD_TRIVIAL)// enqueue if not trivial ANNprBoxPQ->insert(new_dist, child[ANN_HI]); // continue with closer child child[ANN_LO]->ann_pri_search(box_dist); } else { // right of cutting plane ANNcoord box_diff = ANNprQ[cut_dim] - cd_bnds[ANN_HI]; if (box_diff < 0) // within bounds - ignore box_diff = 0; // distance to further box new_dist = (ANNdist) ANN_SUM(box_dist, ANN_DIFF(ANN_POW(box_diff), ANN_POW(cut_diff))); if (child[ANN_LO] != KD_TRIVIAL)// enqueue if not trivial ANNprBoxPQ->insert(new_dist, child[ANN_LO]); // continue with closer child child[ANN_HI]->ann_pri_search(box_dist); } ANN_SPL(1) // one more splitting node visited ANN_FLOP(8) // increment floating ops } //---------------------------------------------------------------------- // kd_leaf::ann_pri_search - search points in a leaf node // // This is virtually identical to the ann_search for standard search. //---------------------------------------------------------------------- void ANNkd_leaf::ann_pri_search(ANNdist box_dist) { register ANNdist dist; // distance to data point register ANNcoord* pp; // data coordinate pointer register ANNcoord* qq; // query coordinate pointer register ANNdist min_dist; // distance to k-th closest point register ANNcoord t; register int d; min_dist = ANNprPointMK->max_key(); // k-th smallest distance so far for (int i = 0; i < n_pts; i++) { // check points in bucket pp = ANNprPts[bkt[i]]; // first coord of next data point qq = ANNprQ; // first coord of query point dist = 0; for(d = 0; d < ANNprDim; d++) { ANN_COORD(1) // one more coordinate hit ANN_FLOP(4) // increment floating ops t = *(qq++) - *(pp++); // compute length and adv coordinate // exceeds dist to k-th smallest? if( (dist = ANN_SUM(dist, ANN_POW(t))) > min_dist) { break; } } if (d >= ANNprDim && // among the k best? (ANN_ALLOW_SELF_MATCH || dist!=0)) { // and no self-match problem // add it to the list ANNprPointMK->insert(dist, bkt[i]); min_dist = ANNprPointMK->max_key(); } } ANN_LEAF(1) // one more leaf node visited ANN_PTS(n_pts) // increment points visited ANNptsVisited += n_pts; // increment number of points visited }