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Abstract

This paper is a development of the use of MacQueen’s method to draw
centroidal Voronoi diagrams as apart of the redistricting process. We will
use Washington State as an example of this method. Since centroidal
Voronoi diagrams are inherently compact and can be created by an un-
biased process, they could create congressional districts that are not only
free from political gerrymandering but also appear to the general public
as such.

1 Introduction

The purpose of this project is to use centroidal Voronoi diagrams (CVDs) within
a mathematical approach to redistricting. One of the benefits of using a math-
ematical approach instead of wholly relying on the political process and its
committees is that the political parties of incumbents do not then have the
opportunity to influence the drawing of congressional lines. If they did have
the opportunity, they could be motivated to draw the new lines so that they
concentrate the voting strength of the other party in as few districts as possi-
ble and extend their own party’s power as the majority in as many districts as
possible. This practice, called gerrymandering, usually results in oddly shaped
districts. In response, the general public is very suspicious of non-compactly
shaped districts. Since CVDs are inherently compact, they could greatly aid
the process of redistricting for any state. As an example, we will draw CVDs
over Washington State using a modified MacQueen’s method.

The population movement during the Industrial Revolution from rural to
urban areas created congressional districts that were very unequal in population
to each other. Rural districts would elect a representative for considerably less
people so that the concerns of rural residents were given proportionately more
attention in the House of Representatives. The Federal Reapportionment Act of
1911 temporarily addressed the problem. It required congressional districts to
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be equal in population so that they had to be redrawn in response to the changes
in population, but this mandate was only to be until 1929 [11]. This problem
was not readdressed until 1962. Until then, rural-urban migration continued
to cause so much change in the population that by 1946, the largest district
in Illinois had more than eight times as many people than the state’s smallest
district [11].

Supreme Court Mandate This problem of unequal representation eventu-
ally came before the Supreme Court in the case of Baker v Carr (1962) [1]. As
a part of its ruling, the Supreme Court stated the most important criteria of
reapportionment to be “One man, one vote”, meaning voting districts had to
contain equal portions of the state’s population. Districts that did not contain
equal populations violated the Fourteenth Amendent: “equal protection of the
laws” [11]. The Court however did not give a clear maximum for the allowed
and inevitable population deviation. In the Reynolds v Sims case (1964), the
Court allowed state legislature districts more of a deviation range than for con-
gressional districts [1]. The size of these deviations are further discussed in
cases Wesberry v Sanders (1964), Wells v Rockefeller (1969) and Kirkpatrick
v Preisler (1969) [1]. In Wesberry v Sanders, the Court stated that “as nearly
as practicable, one man’s vote in a Congressional election be worth as much
as another’s.” In the Wells v. Rockefeller the Court further elaborated that
“the “nearly as practicable” standard requires that the State make a good faith
effort to achieve precise mathematical equity.” Without any explicit maximum
for the population deviation, the Supreme Court’s mandate of equal population
comes down to the statements “nearly as practicable” and “a good faith effort.”
Most importantly, neither of these statements answer the questions of who is to
carry out the mandate of equal population or how.

Enacting the Mandate As state legislators attempted to redraw the voting
districts, the problem of gerrymandering quickly became evident. Consequently,
some states, including Washington, have turned to bipartisan committees to re-
draw the districts. This process, though, has proven to be very time-consuming,
lasting for months at a time, and is still vulnerable to bias.

An Unbiased Method To achieve unbiased congressional districts of equal
population, a mathematical method must be used. The focus of this project
is to incorporate CVDs into an unbiased redistricting of Washington state. In
Section 2, we will consider criteria used in past redistricing projects. Section
3 will review the past mathematical methods used. Section 4 will describe
the available data. Section 5 will introduce CVDs and a modified MacQueen’s
Method. Section 6 will discuss the results and unresolved problems with the
techniques present.
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2 The Criteria of Reapportionment

There are many debates surrounding the criteria of redistricting, most of which
could be discussed at great length. Below are listed those criteria most men-
tioned in the literature.

1. Equal Population: Congressional districts of equal population are re-
quired by the Supreme Court, as discussed in the above section. It should
be noted however, that equal population does not mean equal number of
registered voters or even of potential voters: all those who are allowed to
vote whether or not they are registered (U.S. citizen, no felony convictions,
etc.). Equal population refers to equal numbers of the total population.

2. Compactness: Districts of compact size are seen by the public as unbi-
ased, while more creatively shaped districts seem suspicious. An unbiased
method of redistricting will only be useful if the public believes it to be
unbiased. It follows that compactness will be an important criterion in
this project.

3. Contiguousness: Keeping districts together as one mass instead of di-
viding them is widely accepted as practical and essential to proper repre-
sentation. Also, if the districts were not expected to be contiguous, the
possibilities for gerrymandering would be endless.

4. Respect For City and County Lines: Some argue that this condition
would best represent the interests of individual cities and counties. How-
ever, this view is not widely accepted. Many rural communities feel better
represented when their district includes a rural community from another
county than when it includes a city within the same county. Furthermore,
it is difficult to draw compact districts within cities and counties that are
not compactly drawn themselves.

5. Preserving Communities of Interest: Communities of interest include
communities determined geographically (inland vs.coastal), by population
(rural vs.urban) and racially (minority communities). This piece of criteria
is one of the most hotly debated. While many of the arguments on both
sides have merit, drawing district lines that preserve these communities
would be an immensely complicated process that not only would include
debate over which communities to preserve, but also would conflict with
the criteria of compactness.

6. Creating Competitive Districts: Creating districts that are competi-
tive (not homogenous in interests) directly conflicts with preserving com-
munities of interest. Competitive districts would include enough of differ-
ent political opinions and stances so as to be individually representative
of the state in general. Again, a lot of debate surrounds this topic and it
would likely interfere with the criteria of compactness.
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The first three requirements do not conflict with each other and are the
most widely accepted. The last three requirements are highly debated. They
conflict with each other as well as the important criteria of compactness. The
inclusion of the last three requirements will make any redistricting much more
complicated and more suspicious to the public. A redistricting that the public
will trust to be unbiased must appear as uncomplicated and straightforward:
equal in population, contiguous and compact. Hence we will consider past
methods of redistricting in regards to this set of criteria.

3 Established Methods of Redistricting

The past methods of redistricting can be divided up into four general methods
each designed to redistrict an area made up of population units that can range
from city blocks to large rural counties [4]. The population units in a given area
to redistrict are not necessarily equal in spatial size or population.

3.1 The Nagel-Kaiser Method

This method was used by Nagel in 1965 and by Kaiser in 1966. What sets
this method apart is that it begins with a pre-existing district plan and makes
“swaps” of population units from one district to another. These “swaps” mini-
mize an objective function composed of three parameters: the number of over-
populated districts, a measure of the average deviation from perfect population
equality and the average of the deviation from a population-weighted compact-
ness baseline [11]. In Figure 1 for example, the different shades designate the
districts and the lines designate the population units. If the population in unit
1 had declined while the population in unit 2 had increased, then this method
would consider switching unit 2 to the dark grey district.

A potential problem of this method is that it does not provide a global
solution, meaning it does not necessariliy work for each case. However, this
method is more flexible in considering other political criteria.

3.2 The Vickery Method

Vickery published this method in 1961. It is an iterative heuristic that was not
originally intended for computers. However, Vickery designed this method to
be “completely mechanical” with “no room at all for human choice” [11].

1. Begin with an arbitrary population unit A

2. Pick the population unit B1 farthest from A–the seed base unit: this step
forces the unit B1 to be on the periphery.

3. Add the closest units to B1 to ensure compactness. To fulfill the criteria
of equal population, or that the population of each district is equal to the
total population of all units divided by the number of districts, continue
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Figure 1: An existing district plan [7]

adding until the condition arises when adding the closest unassigned unit
would increase the district’s population to above the given quota. Fig-
ure 2 shows the seed base unit B1 as the unit farthest from unit A and
surrounded by the population units of district 1.

4. Repeat step 3 with the next furthest population unit from A: B2. Again,
this new unit, B2 will be on the periphery because the furthest units from
A are on the periphery.

5. Continue repeating step 3, each time with the next furthest population
unit from A until all the population units are assigned, except for perhaps
any “residuals.” Residuals are units whose adjacent districts cannot add
the residual without going over the population quota. Hence, it is impos-
sible to assign them without going over the population quota or violating
the criterion of contiguity by assigning it to a non-adjacent district.

6. Repeat steps 1-5 again with a new arbitrary starting population unit in
step 1. The two different plans would both be presented to a state legis-
lature who would decide on which is more appropriate for any additional
criteria.

As mentioned above, this method can produce residual population units.
This hindrance prevents it from guaranteeing a global solution.

3.3 The Garfinkel and Nembauser Method

Garfinkel and Nemhauser presented this method in 1970. Unlike the other
methods presented here, this is an exact method, not a heuristic, meaning that
the solution is optimal for the given objective and constraints. It was specifically
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Figure 2: Building the first district by the Vickery Method [7]

Figure 3: Creating additional districts by the Vickery Method [7]
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designed for a computer. Its first step is the tree search method that is somewhat
similar to the Vickery method. It generates all the possible districts that have
equal populations, are compact enough according to the given constraints and
are contiguous. The next step is to build a matrix with the feasible district
plans, and to then use the implicit enumeration technique. This technique uses
partitioning integer linear programming to remove the less than optimal district
plans according to the constraints that correspond to the criteria of contiguity,
compactness and equal population [4]. While an exact method like the Garfinkel
and Nembauser Method is very appealing, it is computationally very demanding.

3.4 The Weaver and Hess Method

This method, presented in 1963, was the first major computer redistricting
method [11]. It is a heuristic optimization model that incorporates the warehouse-
location model.

1. Begin with an arbitrary set of district centers

2. Use the Warehouse-Location Model, as described below, to minimize the
population weighted distances between each district’s center and each of
the centers of its population units. This minization can produce “split”
population units where part of a unit is assigned to one district and the
rest of the unit to another.

3. To correct for any split population units, assign any split units to the
districts that already serve the greatest proportion of the split unit’s pop-
ulation. These new assignments could cause a significant deviation in the
district population.

4. To address the new, possibly larger, population deviations, repeat step
2-3 until the centers converge.

5. Start over with a new set of arbitrary centers

6. Select the best solution according to the criteria of equal population, com-
pactness and contiguity.

The split districts are potentially a large problem as they can interfere with
the criteria of equal population and compactness.

Warehouse-Location Model

• N : number of population units and consequently the maximum number
of districts

• cij is the Euclidean distance between the center of district i and the center
of population unit j, multiplied against the population of population unit
j: Qj
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• Xij is the proportion of the population of population unit j that is included
in district i (Xij ≤ 1)

• Constraint: every member of every population unit is assigned to a district

• Objective: minimize ΣN
i=1Σ

N
j=1cijXij

Lagrangian Relaxtion Method Hojati [4] uses a Lagrangian Relaxation
heuristic to solve this warehouse location problem. Keeping with the above
notation, Hojati uses the supply and demand constraints:

• Q: the district quota, or the total population of all the units divided by
the number of districts

• Yi = 0: there is not a ‘warehouse’ or district center in population unit i

• Yi = 1: there is a ‘warehouse’ or district center in population unit i

• Demand constraint: ΣN
i=1Xij = 1

This constraint is such that for every population unit j, the sum of the
proportion of the unit’s population assigned to all districts i, i = 1, ..., N ,
must equal one. More simply, the entire population of each population
unit must be assigned to a district.

• Supply constraint: ΣN
j=1QjXij = QYi

The inclusion of the supply constraint makes this a capacitated warehouse-
location problem. This constraint means that the population of the ith
district cannot have more or less than the quota, or that all the proportions
of a district j, j = 1, ..., N , assigned to all districts i, i = 1, ..., N , must
equal the given quota.

Hojati then sets up an equation with the objective function including two Lan-
grangian function multipliers multiplied against their respective constraints.
With a number of simplifications, he then proceeds to use a sub-gradient opti-
mization to find the best values for the Lagrangian coefficients.

Like the Vickery Method, the Weaver and Hess Method is a heuristic method
that includes the risk of split districts, and therefore cannot guarantee a globally
optimal solution. The method of redistricting described in this paper is similar
to the Weaver and Hess method since they both include converging centers
but our method only uses population units to find where the centers converge.
Before the discussion of our new method, we will introduce the data that we
will be using within that method.

4 Washington State Population Data

The Washington State data is collected from the Census Bureau’s 2004 U.S.
population estimates since it is the most readily available. The data consists of
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Figure 4: The Census Tracts of Washington State [6]

census tract identification numbers, population, population density (population
per squared mile) of each census tract and the latitudes and longitudes of the
geographic center of each census tract. There are about 1,318 census tracts in
Washington out of 65,443 nationally.

Census tracts are drawn for the U.S. Census Bureau by local committees.
They are small sub-divisions of a county and contain between 1,500 and 8,000
people and average about 4,000 people [10]. They are designed to be relatively
socio-economically homogeneous such that the habitants have similar charac-
teristics, economic status and living conditions [10]. The spatial size of census
tracts vary depending on whether they are in an urban area or a less densely
populated rural area as shown by Figure 4. The boundaries usually follow geo-
graphical features.

The 2004 population estimates of the census tracts are estimated by the
“Distributive Housing Unit Method” that uses a census tract’s housing occu-
pency rate, average persons per household and estimated number of housing
units (geographically updated in the decennial census) in addition to the county
population estimate [10]. The annual county population estimates are based on
the decennial census and on the following estimates for the years subsequent to
the decennial census:

1. Number of births

2. Number of deaths

3. Net domestic migration
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4. Net international migration

5. Net Armed Forces movement to and from overseas

6. Net native emigration from the US

7. Changes in group quarters (correctional institutions, university dormito-
ries, military barracks, nursing homes, etc.)

The population density data will be used to form a population density equa-
tion within a modified MacQueen’s method that will be described within the
next section.

5 The Centroidal Voronoi Diagram

The Voronoi diagram is essentially a partition of an area, Ω, in reference to a set
of points called cluster centers, defined below, such that each point of the area
is grouped with the cluster center to which it is closest. The resulting boundary
line between any two cluster centers is a bisector of the line segment connecting
the two points. An example is shown in Figure 5 with a bisector illustrated in
the lower right corner. Another characteristic of Voronoi diagrams is that they
are inherently compact because they assign points of the area to the closest
cluster point.

5.1 Voronoi Polygons

We denote the ordered set of cluster centers as C = {zk ∈ Ω | k = 1, 2, ...,K},
with K as the number of cluster points, and the ordered pair zk containing
the coordinates of the cluster point k. We designate the Voronoi polygons (or
Voronoi clusters) as

P (zk, C,Ω) = {x ∈ Ω | d(x, zk) ≤ d(x, zj)}, j = 1, 2, ...,K

If d(x, zk) = d(x, zk) then k ≤ j, k = 1, 2, ...,K

The point x contains the coordinates of a point in the set Ω. The quantity
d(x, zk) represents the distance between the point x and the cluster center point
zk. Our representation of the Voronoi polygon of zk means that it contains all
the points x in Ω that are closer to zk than any other zj , j 6= k. However,
if x is equidistant from zk and zj , it is assigned, arbitrarily, to the cluster
center with the smaller index. For basic properties of Voronoi diagrams see
Atsuyuki Okabe’s “Spatial Tessellations: Concepts and Applications of Voronoi
Diagrams” [8].
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Figure 5: An example of a Voronoi diagram [7]

5.2 Centroidal Voronoi Diagrams

Given a density function ρ(y) ≥ 0 for y ∈ Ω and a region V ∈ Ω, let

z =

∫
V

yρ(y)dy∫
V

ρ(y)dy

then z is the mass centroid of the region V [3]. When both the following are
true:

1. The polygons {Vi}ki=1 are Voronoi polygons for the set of points {zi}ki=1

2. The points {zi}ki=1 are the mass centroids of the polygons {Vi}ki=1

then the Voronoi diagram may be classified as a CVD of the area
⋃k

i=1 Vi [3].
While CVDs contain compact polygons, they also contain equal energy meaning
the total distance between each point in a polygon and a polygon’s centroid is
equal to that of the other polygons in the diagram [3]. Another characteristic
of CVDs are that they are more aesthetically pleasing than general Voronoi
diagrams. Figure 6 compares a general Voronoi diagram and a CVD over the
same size area with constant density. The general Voronoi diagram has more
variation in the area of its polygons and in general the polygons are less compact.

5.3 A Modified MacQueen’s Method

MacQueen’s method is designed to generate CVDs as described by Du, Gun-
zburger and Ju in their article “Probabilistic Methods for Centroidal Voronoi
Tessellations and their Parallel Implementations” [5]. We will apply a modifi-
cation of MacQueen’s method that is more suited to the available census tract
data.
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Figure 6: Voronoi Tessellation and Centroidal Voronoi Tessellation over an Area
with Constant Density [2]

1. Begin with an inital set of k points, {zk
i=1} in the region Ω found

by a Monte Carlo method. Let ji = 1 for all i = 1, ..., k.
A Monte Carlo method is any method that generates random numbers but
only uses those that satisfy previously determined properties [5]. In this
project however, we will not use a Monte Carlo method. Instead, we will
chose points from the top nine population centers in Washington State.
In our case of redistricting, we will let the area Ω be Washington State
and we will let k = 9 because Washington has 9 congressional districts.

2. Select a census tract and its geographic center, x, in Ω at random
using a probability density function based on population: ρ(y).
The point, x, will be the geographic center of a randomly selected census
tract. The probability that the census tract will be chosen is the popu-
lation density of the census tract divided by the sum of the population
densities of all the census tracts in Washington state.

3. Find the closest initial point, zi, from step 1, to the randomly
selected point x from step 2.
To put it in terms of redistricting, we will find the closest center point to
the randomly selected census tract using the Haversine function that is
the most appropriate function for geographic distances since it considers
the curve of the earth’s surface within its calculation. The longitude and
latitude components, both in radians, of the first point are entered in
as (x1, y1), and the second point is similarly entered in as (x2, y2). The
distance, D, is given in kilometers:

∆x = x2 − x1

∆y = y2 − y1

a = (sin
(

∆y

2

)
)2 + cos(y1) cos(y2)(sin

(
∆x

2

)
)2
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c = 2 arctan

( √
a√

(
√

a)2 + (
√

1− a)2 +
√

1− a

)

D = (6371)(0.62)(c)

4. The coordinates of zi will be reset such that

zi ←
jizi + x
ji + 1

ji ← ji + 1

What these expressions mean is that the closest center point, zi, is reset in
the first iteration of this method (ji = 1) by an average of its coordinates
and the coordinates of the tract center, x. The parameter ji is reset to
two such that for the next iteration, the next randomly selected tract
center that is closest to this center point, zi, will have less influence on
the coordinates of the new zi. For each time a center point is found closest
to a randomly selected census tract, the tract center will have less and less
influence over the new coordinates of zi.

5. When the zi’s satisfy a certain convergence criteria, end the it-
erations.
We will end the iterations after a set number have been performed. Other
possible convergence criteria includes stopping once a certain number of
consecutive movements of zi, for i = 1, 2, ..., k, are each less than a speci-
fied distance.

With this modified MacQueen’s method, we can find the mass centroids
based on population density. These centroids will allow us to draw a CVD over
Washington State to produce congressional districts that are compact, contingu-
ous and equal in energy. Once these districts are created, we may then examine
how successful they are in achieving equal population. This method has not
been carefully reviewed and there may be unexamined problems that affect our
results.

6 Results

In this section, we will first review how successful the current congressional
districts of Washington State are in meeting the criteria of compactness and
equal population. Then we will examine the results of running our modified
MacQueen’s method three separate times starting with the same set of initial
points for the same number of iterations. We will also examine the results of
an alternate run of our modified MacQueen’s method that begins with a set of
initial points that are all placed in eastern Washington. Finally, we will compare
these results to another run of the modified MacQueen’s method starting with
the same set of initial points but for more iterations.
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Figure 7: 110th Congressional Districts of Washington [6]

6.1 The Current Congressional Districts

Figure 7 displays the current congressional districts overlaying county lines.
These districts respect county lines whenever possible. Keeping counties to-
gether however, often makes it more difficult to keep the districts both equal
in population and relatively compact since the large discrete sets of popula-
tion in relatively non-compactly shaped counties cannot be divided. Also we
note from Figure 7 that two small districts span over Puget Sound, giving the
state a total of nine congressional districts. Overall the congressional districts
of Washington State are drawn compactly and appear to be relatively free from
gerrymandering unlike the controversial 110th congressional districts of Texas
in Figure 8. However, we are testing our method on Washington State because
of its relevance to the author.

Table 1 shows the total population of each district in addition to the percent-
age of the state population in the district and the difference of that percentage
from the goal: 100

9 %. We can see that the population deviation is relatively
good. In absolute value, the largest deviation is 0.00775%. The population
totals in this table are calculated by the Census Bureau with their “Sample”
method as opposed to their “100%” method.

We observe in Figure 9 which districts in Washington State have lower pop-
ulation deviation in absolute value: the darker the district the higher the devi-
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Figure 8: 110th Congressional Districts of Texas [6]

Total Population Percentage of Total Population Population Deviation in Percent
654799 11.109358% -0.001753%
654984 11.112497% 0.001386%
654992 11.112632% 0.001521%
654851 11.110240% -0.000871%
654935 11.111665% 0.000554%
655068 11.113922% 0.002811%
655016 11.113040% 0.001928%
655029 11.113260% 0.002149%
654447 11.103386% -0.007725%

Table 1: 2006 Population Estimates of the Current Congressional Districts
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Figure 9: Absolute Value of the Deviation from Equal Population in Percent [6]

ation, the lighter the district the lower the deviation. Eastern Washington has
the lowest and the area surrounding Puget Sound has higher deviation, espe-
cially to the west and south. The darkest district in Figure 9 has a negative
deviation meaning its population is less than the correct proportion. The sec-
ond darkest district has a positive deviation. Figure 10 compares the absolute
value of the population deviation in Washington’s districts to the rest of the
Continental United States. The districts with higher deviation are shown in
darker colors. Some of the states of the districts with higher deviations are
Idaho, Nevada, New Mexico, Lousiana, Alabama, Arkansas, the Carolinas, New
Hampshire, Maryland and West Virginia.

A further examination of this data yields some interesting questions about
how the Census Bureau calculates these population estimates. First, the sum
of the population estimates of all the districts is 5, 894, 121, while the Census
Bureau estimates the total state population to be 6, 395, 798. The difference,
about 500, 000, is very significant. Another curiosity is that the sum of the 2006
county population estimates of the counties within the easternmost district is
702, 268 while the Bureau’s 2006 population estimate for that district is 654, 935.
This district is comprised of only these counties and completely encloses these
counties except for a small portion of Adams County. However, the population
of that particular portion cannot explain the difference of almost 50, 000 because
the 2006 total county population estimate of Adams County is only 16887. So
even if the whole population of Adams County was in that small portion outside
of the district, there would still be a difference of almost 35, 000 in the population

16



District Number Roeck Ratio
1-Northern Seattle 0.293089
2-Bellingham 0.546939
3-Vancouver 0.261801
4-Central Washington 0.300806
5-Eastern Washington 0.126157
6-Olympic Peninsula 0.234736
7-Seattle 0.365203
8-Seattle Outgrowth 0.463537
9-Olympia 0.300019

Table 2: Roeck Ratio of the Current Congressional Districts

estimates for the district. These large inconsistencies in the data suggest further
inquiry into the population estimate techniques of the Census Bureau is needed.

Now we consider the compactness of these current districts. We will do so
by using the Roeck ratio which is the ratio of the area of the district over the
area of the smallest circle that completely encloses the district. The closer the
ratio is to one, the more compact the district. Table 2 lists the Roeck ratios for
each district.

As we look at these ratios, we should consider that for a district to have a
Roeck ratio of 1, it must be a perfect circle which would mean very low Roeck
ratios for the surrounding districts. A more fitting comparison for our districts
is the perfect square that has a Roeck ratio of 2/π = 0.6366. Also, we must re-
member that these districts are being drawn within a relatively non-compactly
shaped state. Figure 11 displays the districts according to their Roeck ratio:
the darker the district means the more compact it is. The central districts have
the highest Roeck ratios while, not surprisingly, one of the districts that spans
over Puget Sound has the lowest.

Given all of these observations on the current congressional districts, we
will now compare them to three different district plans drawn using CVDs with
centroids found by our modified MacQueen’s method.

6.2 Centroidal Voronoi Diagram-Based Congressional Dis-
tricts

From three independent runs of the modified MacQueen’s method, each for 150
million iterations starting with the same set of initial points and each subsequent
to a different set of random numbers (step 2 of MacQueen’s), we have three dif-
ferent sets of centroidal centers for Washington State. Figures 12, 13 and 14
display the corresponding CVDs with the corresponding centroidal points. Fig-
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Figure 10: Absolute Value of the Deviation from Equal Population in Percent
of the Continental United States [6]
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Figure 11: Roeck Ratios of the Current Congressional Districts of Washing-
ton [6]

ure 15 shows the three diagrams together revealing a large degree of instability
within the results. This lack of stability might be resolved by simply running
the modified MacQueen’s method for more iterations, or using a Monte Carlo
method to find the initial points, or using a continuous population density func-
tion instead of a discrete function.

To calculate population estimates for the districts drawn from CVDs, we
use the population data of the census tracts. The population of each census
tract is assigned to the district whose centroid is closest to the census tract’s
geographic center. This method only gives a rough estimation. Furthermore,
the census tract population estimates are from the year 2004 because they were
not readily available for the years 2005 and 2006. Table 3 compares the 2006
current district population estimates to our rough 2004 population estimates of
our CVD-based districts. The last row of the table gives the difference between
the largest and smallest district population of each district set.

Given the questionability of the current district population estimates, the
rough estimates based on census tracts and the difference of 2 years in the data,
the results, while not impressive, are also not conclusive. The large deviation in
the populations of the CVD-based districts might be cleared by more reliable
data or resolved by solutions mentioned above: more iterations, using a Monte
Carlo method or a continuous population function.

However, there remains a fundamental problem with the CVD: equal energy
instead of equal population. The CVD, similar to the uncapacitated warehouse-
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Figure 12: First Set of the CVD-Based Districts of Washington [6]

Figure 13: Second Set of the CVD-Based Districts of Washington [6]

Current First CVD Second CVD Third CVD
654799 615634 539531 610259
654984 684289 429944 511327
654992 854434 400906 929671
654851 787900 990066 718284
654935 636725 501469 500615
655068 686268 755819 854239
655016 481501 735582 610492
655029 570619 909689 863893
654447 853830 906405 568304

621 372329 589160 429056

Table 3: Comparison of District Population Estimates
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Figure 14: Third Set of the CVD-Based Districts Washington [6]

Figure 15: The Three CVD-Based District Sets of Washington Overlaying Each
Other [6]
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Figure 16: Roeck Ratio over First CVD [6]

location model (the model without the supply constraint), equalizes the energy
that each district must expend to bring its total mass to the center. In terms of
the warehouse-location model, it minimizes the total square of the distance over
which goods are delivered to consumers from factories. The end result is that
a sparsely populated district may receive one factory while a smaller-sized dis-
trict with a higher population density and perhaps higher total population will
only receive one factory. The total distance that the goods must travel in each
district would be equal, but the number of consumers in each district would not
necessarily be equal. In terms of redistricting, the CVD is composed of districts
whose total distance between its centroid and each member of its population is
equal to that of other districts. If we were designing districts to equalize the
total distance traveled by voters to a voting center in each district, then the
CVD would be extremely useful on its own. However, while this diagram lacks
any constraint on the total mass or total population in each of its polygons, it
cannot solely be relied upon to draw districts of equal population. The bias
of this method is towards the rural population who would receive dispropor-
tionately more representation. It is interesting to note that this bias has been
the case historically, given the ongoing urbanization of the U.S. population and
the subsequent need to update district boundaries for the changing populations.

Table 4 lists the Roeck ratios for the current districts in addition to the three
CVD-based districts. The last row of the table gives the average Roeck ratio for
each set of districts. As we examine this table, we can compare the Roeck ratios
for different sets of districts to each other and to the Roeck ratio for a perfect
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Figure 17: Roeck Ratio over Second CVD [6]

Figure 18: Roeck Ratio over Third CVD [6]
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Current First CVD Second CVD Third CVD
0.293089 0.414687 0.294886 0.407779
0.546939 0.494973 0.289332 0.484481
0.261801 0.296180 0.482301 0.263783
0.300806 0.173535 0.235988 0.131780
0.126157 0.331262 0.201280 0.062491
0.234736 0.255775 0.286379 0.330565
0.365203 0.087302 0.189124 0.251200
0.463537 0.256457 0.392799 0.305724
0.300019 0.159989 0.153957 0.104363
0.321365 0.274462 0.280672 0.260241

Table 4: District Roeck Ratios

square, 2/π = 0.6366. The average Roeck ratios for the CVD-based districts are
all lower than the current districts average. The ranges of each set are roughly
similar. The Roeck ratios are also displayed for each CVD-based district set in
Figures 16, 17 and 18.

In regards to compactness, these three CVD-based districts do not offer
any improvement over the current districts. Any of the solutions mentioned
previously (more iterations, a Monte Carlo method, etc.) may produce more
districts with a higher Roeck ratio average and a smaller range of the Roeck
ratio.

6.3 Geographic Concentration of Initial Points

To better judge the stability of this method, we may examine two other CVDs
that both underwent 150 million iterations but each had different sets of ini-
tial points than the first three CVDs. Figure 19 displays a diagram that had
an initial set of points equally spaced out along a line running through central
Washington. This diagram only assigns the Puget Sound region one district,
while giving roughly three districts to eastern Washington and keeping three
to four districts within central Washington. Given that a large part of Wash-
ington’s population is concentrated in the Puget Sound region and that eastern
Washington is less densely populated, this diagram obviously is not an improve-
ment upon the current districts. However, considering that it began with a set
of initial points that were so intentionally concentrated, it is very plausible that
after more iterations, this diagram would begin to resemble the first three more
closely.

The diagram in Figure 20 was derived from an initial set of points equally
spaced along a line running north-south through the city of Spokane in east-
ern Washington. This diagram assigns less districts to western Washington and
more districts to eastern Washington than did the last diagram. When the ini-
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Figure 19: CVD Derived from Initial Points Located in Central Washington [6]

tial points, such as in the this case, are all placed in a low-density area furthest
away from the highest-density area, it will take even more iterations to find the
centroids because MacQueen’s method has a very slow convergence rate. Since
the Puget Sound has the largest collection of high population-density census
tracts, when the first of those tracts is randomly selected it will move the near-
est of the nine points closer to itself. The next Puget Sound census tract that
is selected, will likely move the same point closer to itself. With each move,
this point’s counter, ji, will increase by one each time and limit the point’s
movement for the next time it is selected. Our case of eastern Washington ex-
aggerated this effect.

Given that the placing of the initial points can have such a large effect on
the number of iterations needed to find the centroids, it is helpful to place the
initial points strategically in urban areas as we did for the first three diagrams.
A Monte Carlo method however, would find a set of intial points by a stochastic
method based on population distribution. So while our method attempts to
imitate the end result of the Monte Carlo method, it still lacks the randomized
aspect.

6.4 Multiple Runs

Another way to correct for the slow convergence rate of MacQueen’s method is
to run the method on the initial set of points for a set number of times, then
take the results and rerun the method on the results such that at the start of
this second run, all of the counters ji for i = 1, 2, ..., 9, will each be reset to
one. Whereas all the previous diagrams have been drawn from centroids that
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Figure 20: CVD Derived from Initial Points Located in Eastern Washington [6]

underwent 150 million iterations under one run of the method, this new diagram
that we will call the fourth diagram, underwent a total of one billion iterations
from six runs of our method. The number of iterations in millions in each run is:
300, 150, 150, 150, 150 and 100. At the end of each run, the resulting points were
used as the initial points for the start of the next run. Now we will be able to
judge the difference in compactness and population equality between the original
three diagrams and one that has underwent six runs of the method for a total of
a billion iterations. Figure 21 displays the districts of the fourth diagram which
on first glance resemble the original three district, but a closer examination
shows that the districts in western Washington are more developed so that
they are more compact. Table 5 lists the 2006 population estimates provided
by the Census Bureau for the current districts, alongside the approximations,
derived from the 2004 population estimates for census tracts, for the CVD-based
districts. The bottom row is the difference in population between the maximum
and minimum. The fourth diagram, with a range of 375, 173, does not show any
improvement over the current districts. In regards to the first three diagrams, its
range is just above the smallest range of the three, even after roughly six times
more iterations. However, Figure 22 and Table 6 have more positive findings.
Figure 19 displays the Roeck ratios by district. There is an overall improvement
in the Roeck ratios in this diagram from the original three diagrams that each
only had one district in the most compact category (0.44-0.55) and only one or
two in the next highest category (0.33-0.44). Figure 19 however, has two in the
highest category, two or three in the next, two each in the next two categories
and none in the lowest category (0-0.11). Table 6 lists the Roeck ratios and
the average of the Roeck ratios for each district set. The fourth diagram has a
Roeck ratio average that not only is higher than the first three diagrams, but
also is higher than the current. These findings comfirm the earlier discussion of
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Figure 21: CVD After Six Runs of the Modified MacQueen’s Method [6]

Current First CVD Second CVD Third CVD Fourth CVD
654799 615634 539531 610259 606541
654984 684289 429944 511327 736856
654992 854434 400906 929671 872513
654851 787900 990066 718284 512892
654935 636725 501469 500615 824469
655068 686268 755819 854239 715028
655016 481501 735582 610492 860934
655029 570619 909689 863893 497340
654447 853830 906405 568304 546918

621 372329 589160 429056 375173

Table 5: Comparison of District Population Estimates

how centroidal Voronoi diagrams divide to equalize energy, not necessarily to
equalize mass. Otherwise, we would expect greater improvement of the fourth
diagram in regards to population equality over the first three.

7 Conclusion

Given the compact nature of CVDs, they present intriguing possibilities for
redistricting. Though our modified MacQueen’s method produced population
centroids that created districts with substantial population inequality, there are
several possible changes that could improve our method so that a CVD could at
least serve as the starting map for a state legislature’s redistricting committee.
From that point, a committee could make adjustments to achieve population
equality and any other goals or concerns of the particular state, such as respect-
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Figure 22: Roeck Ratios for CVD After Six Runs of the Modified MacQueen’s
Method [6]

Current First CVD Second CVD Third CVD Fourth CVD
0.293089 0.414687 0.294886 0.407779 0.356896
0.546939 0.494973 0.289332 0.484481 0.194746
0.261801 0.296180 0.482301 0.263783 0.176656
0.300806 0.173535 0.235988 0.131780 0.349716
0.126157 0.331262 0.201280 0.062491 0.226212
0.234736 0.255775 0.286379 0.330565 0.533446
0.365203 0.087302 0.189124 0.251200 0.255510
0.463537 0.256457 0.392799 0.305724 0.495053
0.300019 0.159989 0.153957 0.104363 0.415854
0.321365 0.274462 0.280672 0.260241 0.333788

Table 6: District Roeck Ratios
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ing county lines, preserving communities of interest, etc. While these adjust-
ments would detract from the compactness of the CVD, we would still expect
the outcome to retain some of the compactness of the starting diagram. Some
of the possible changes to our derivation of a CVD include running our modified
MacQueen’s method for more iterations, using a Monte Carlo method to find
the initial points, using a continuous population density function, determining
a measure of convergence within the modified MacQueen’s method and putting
a population constraint on the CVD. Also, an examination of the population
estimation methods of the Census Bureau for congressional districts, counties
and census tracts, would strengthen conclusions surrounding these data. An-
other possibility for further investigation is additional testing and analysis on the
number of runs versus the number of iterations within our modified MacQueen’s
method so that the otherwise very slow convergence rate of MacQueen’s method
might be increased. Yet another possibility to consider is using Lloyd’s method
as it is described by Gunzburger, Du and Faber, Vance in their article “Cen-
troidal Voronoi Tessellations: Applications and Algorithms” [3] in place of our
modified MacQueen’s method. With some of these suggested changes, CVDs
could greatly contribute to the creating of unbiased congressional districts.
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