
CENTROIDAL VORONOI TESSELLATIONS

JARED BURNS

Abstract. The Voronoi diagram and centroidal Voronoi tessellation (CVT) are de�ned

and their properties explored. The Lloyd and MacQueen algorithms for determining a

CVT from an ordinary Voronoi diagram are de�ned. In order to compare the e�ciency of

the two, a few stopping parameters including the energy functional are examined. Then,

the data analysis of the computation time of Lloyd and MacQueen's algorithms given the

same initial Voronoi diagram are presented and the di�erences discussed. Finally, a new

hybrid method using the Lloyd and MacQueen algorithms as a template is constructed

and shown to be more e�cient then either method alone.

1. Introduction

1.1. A Brief History. According to Okabe in his book Spatial Tessellations [2], some of

the �rst uses of the Voronoi diagram were recorded as early as the 17th century by the

well-know philosopher Descartes. In his works, Descartes used weighted Voronoi diagrams

to explain how matter is distributed throughout the solar system. Figure 1, a diagram

of certain points on the Euclidean plane separated by lines that are equidistant from the

closest two such points, is an example of Decartes' work.

Although Georgy Fedoseevich Voronoy (1868-1908) was not the �rst to study this special

kind of decomposition of a metric space, it bears his name in honor of the advancements

he made in the theory. He not only unequivocally de�ned the Voronoi diagram, he also

spent time studing the general m-dimensional case of such diagrams, whereas many of his

peers only examined the 2 or 3 dimensional cases. In honor of another one of his peers

who also made signi�cant advances to Voronoi theory, Voronoi diagrams are sometimes

also referred to as a Dirichlet tessellations.

Since its conception, the Voronoi diagram has been used by anthropologists, crystallog-

raphers, ecologists, economists, and many others to model and explain structures, cultures,

and markets. One interesting early example of Voronoi modeling is John Snow's analysis

of the London Cholera outbreak in 1854. Snow used a crude Voronoi diagram to show that

the outbreak of the cholera was due to contaminated water originating from a single water

pump. After the handle from that pump was removed, the cholera outbreak soon ceased

[5].

1.2. Outline. The Voronoi tessellation is also used in a wide scope of modern applications.

From computational geometry to resource allocation to digital image compression and
1

2 JARED BURNS

Figure 1. Descarte's Voronoi diagram [2](p. 7)

robot navigation, Voronoi diagrams are used to answer many questions. With the fairly

recent advent of the computer age comes new possibilities in applying computationally

intensive Voronoi algorithms to solve problems.

The main purpose of this paper is to explore the e�ciency of di�erent algorithms in

determining a centroidal Voronoi tessellation given an initial Voronoi diagram. We are

interested in deriving the CVT and some of the methods and mathematical necessities

that come along with it. Thus, much of this paper is devoted to the basic concepts of the

Voronoi diagram, the CVT, and computational methods necessary for the completion of

the CVT algorithms.

We begin with probably the most basic and essential step in understanding the rest of

this paper: the de�nition of the Voronoi diagram and the basic properties of such diagrams.

From there, we look at the de�nition of the centroidal Voronoi tessellation and explore a

few useful applications of the CVT. The next section of this paper is devoted to exploring

the methods used to derive a CVT from a Voronoi diagram. In this section, we discuss

the Lloyd and MacQueen methods in terms of their computational algorithms. After some

�nal discussion on the nuances of the algorithms including stopping parameters and other

methods necessary for the MacQueen and Lloyd method to work properly, we discuss some

CENTROIDAL VORONOI TESSELLATIONS 3

speci�c data that was taken from the running of these algorithms. The �rst two sections

contain computation time data for the two methods in a variety of conditions as well as a

discussion on the development and e�eciency of a new hybrid algorithm, formed from the

strengths of the Lloyd and MacQueen algorithms.

2. Voronoi Diagrams

The purpose of the following section is to introduce the reader to Voronoi diagrams and

a selection of their properties. If the reader is already familiar with Voronoi diagrams, he

may wish to skip to the next section, which discusses the centroidal Voronoi tesellation

(CVT).

2.1. De�nition of Voronoi Tessellations. In the 2-D case, a Voronoi diagram is a

partition of the plane into n convex polytopes. Each partition contains one generator such

that every point in the partition is closer to its own generator than any other generator.

In general, the de�nition of the Voronoi diagram in n dimensional space is given as in Du's

Centroidal Voronoi Tessellations: Applications and Algorithms [1]:

De�nition 2.1 (Voronoi Tessellation). Given a set of points {zi}ki=1 belonging to the

closed set Ω ∈ RN , the Voronoi region V̂i corresponding to the point zi is de�ned by:

V̂i = {x ∈ Ω
∣∣|x− zi|< |x− zj | for j = 1, . . . , k, j 6= i}.

In addition, we include the de�nition of a tessellation.

De�nition 2.2 (Tessellation). Given an open set Ω ∈ RN , the set {Vi}ki=1 is called a

tessellation of Ω if Vi ⊂ Ω for i=1, . . . ,k, Vi ∩ Vj = ∅ for i 6= j, and ∪ki=1V i = Ω.

Here, Du chooses to de�ne the Voronoi tessellations as a set composed of a collection of

open sets. However, it is also possible for these tessellations to be de�ned as closed sets

(as is done in Okabe's Spatial Tessellations). Some of the properties of Voronoi diagrams

we discuss later may depend on a precise form of the de�nition. In such cases, a note will

be made.

We are now going to introduce some useful vocabulary that we employ throughout the

paper. See Figure 2 for an illustration of the following de�nitions:

• Voronoi generators - the set of points {zi}ki=1 belonging to the closed set Ω ∈ RN

in a Voronoi diagram that are used to form the distinct Voronoi regions.

• A Voronoi Region - the convex area (in Euclidean space) that contains every point

closest to a generator with respect to all the other generators.

• A Voronoi Edge is the line, half line, or line segment that corresponds to the points

that connect exactly half way between two Voronoi Generators.

4 JARED BURNS

Figure 2. Graphical De�nitions of Voronoi Pieces [6]

• A Voronoi vertex is the intersection of three (or more, depending on the restrictions

of the given Voronoi Diagram) Voronoi Edges.

2.2. Properties of Voronoi Diagrams. Before we can go much further in dealing with

Voronoi tessellations, it is important to understand the geometry of Voronoi diagrams.

Property 2.1. If the Voronoi polygon for the generator point pi contains the point p,

then pi is the closest generator point from p. This is a direct result of the de�nition of a

Voronoi tessellation.

Property 2.2. Given the set of generators P = {p1, . . . , pn} ∈ RN , the Voronoi diagram

of P is a unique tessellation of RN .

Property 2.3. (The Non-Cocircularity Assumption) Given the set of generators P =
p1, . . . , pn ∈ R2 (where 4 ≤ n < ∞), there can be no circle C, centered at a vertex, that

contains more than 3 generator points on its circumference while having no other generator

inside the area of the circle.

Property 2.4. For any vertex (qi) in a Voronoi diagram, there exists a circle (Ci) that

passes through at least three generator points, with no generator points in its interior.

In the case of the Non-Coircularity Assumption, this simpli�es to exactly three generator

points on the edge of the circle. This circle happens to be the largest empty circle centered

at the vertex qi.

CENTROIDAL VORONOI TESSELLATIONS 5

3. Centroidal Voronoi Diagrams

3.1. De�nition of Centroidal Voronoi Diagrams. Up until this point, we have been

exploring Voronoi diagrams and their properties. We now consider a diagram with a more

restrictive de�nition: the centroidal Voronoi diagram. Recall the de�nition of the Voronoi

tessellation, De�nition 2.1, on which we now wish to place constraints in order to create

the de�nition of the centroidal Voronoi tessellation.

The constraint for the centroidal Voronoi tessellation is simply that each Voronoi gen-

erator must be the mass centroid for its corresponding Voronoi region. Note Figure 5, for

example. Although it may not be apparent at �rst glance, the second Voronoi graph has

its generators in the exact place of the mass centroids of the Voronoi regions. Thus, it is a

centroidal Voronoi diagram. Note that most of the time we will not be able to determine

if the diagram is centroidal simply by inspection, but often CVT's look more organized

than plain Voronoi tessellations.

Thus, our de�nition of a centroidal Voronoi diagram is the aforementioned de�nition of

Voronoi tessellations with an extra constraint on the location of the generators.

Given the set of Voronoi regions {Vi}ki=1, the mass centroid ci over a region with prob-

ability density ρ(y) is de�ned as

ci =

∫
Vi

yρ(y)dy∫
Vi
ρ(y)dy

.

Note that the density function ρ(y) ≥ 0 and y is a vector in RN . Also, given k generators

{z}ki=1, the following equality must hold in order for the Voronoi diagram to be considered

a centroidal Voronoi tessellation:

zi = ci for i = 1, . . . , k.

It is interesting to note that centroidal Voronoi diagrams are not necessarily unique for

a �xed density function and number of generators. That is, it is possible to have two or

more di�erent centroidal Voronoi tessellations for the same density function and number of

generators. See Figures 3 and 4 for a simple two generator example of this non-uniqueness.

Each has the same desnity function, domain, and each has two generators. Both diagrams

in Figure 3 and 4 satisfy the conditions of a CVT.

An important characteristic of the centroidal Voronoi diagram is the density function,

ρ(y) ∈ RN . This function is responsible for �weighting� the CVT's generators. For in-

stance, let us think for a moment of the density function and the CVT existing on the

same contour map. A peak on the density function corresponds to an increased number

of generators per unit area (or volume, etc.) at that same point in the CVT. Similarly,

a valley corresponds to a decrease in the number of generators per unit area (or volume,

etc).

6 JARED BURNS

Figure 3. One version of the CVT

Figure 4. A second version of the CVT

Figure 5. Regular Voronoi Diagram (left) and Centroidal Voronoi Diagram

3.2. Application of Centroidal Tessellations: Data Compression. Data compres-

sion is a technique of using fewer bits of memory to trasmit the same amount of information.

The idea in most applications is to minimize the noticable loss of quality of the original

information. In music, for example, there are many di�erent methods of digitally storing

music. The best, of course, are the ones that completely save all portions of the audio

�le. Naturally, these tend to be very large �les. A data compression of a music �le �lters

out most of the �le that is essentially inaudable, thus using less memory with essentially

the same sound as far as an average human can tell. We are now going to explore how

CENTROIDAL VORONOI TESSELLATIONS 7

centroidal Voronoi tessellations can help us with something similar: image compression.

The following example is in Centroidal Voronoi Tessellations: Applications and Algorithms

[1].

Suppose a picture is made of 106 pixels. In computer graphics, each pixel is assigned a

number that corresponds to its color. In this case, let that color be determined by a 24 bit

number (so, each pixel requires 24 bits to "code" for its color). Thus, this uncompressed

image, like an uncompressed music �le, is very large. To be exact, it is 2.4× 107 bits long.

To reduce the amount of data, we could do one of two things: either reduce the number

of pixels or reduce the amount of information needed to describe the colors. We are going

to do the latter.

We decide to reduce the 24 bit color number to an 8 bit one. The question, then, is to

decide how to approximate the old 24 bit color scheme with the new 8 bit one. An outline

of a solution to this problem follows.

Let W be the set of admissable colors. Also, let ρ(y) be the density function over the

set W . We wish to choose k colors {zi}ki=1 that will act as generators in W . If y is a color

in the original picture and y ∈Wi, we replace y with zi. Basically, we are creating a new

set of colors. If the density function,ρ(y), of the old color is found in a certain Voronoi

region Wi, then that color is replaced with the new color (the Voronoi generator for that

region, zi).

In this algorithm, ρ(y) denotes the number of times the combination of the basic colors

y appears in the image. In this way, the 256 approximating colors (8 bits) can be chosen

using the color density function ρ(y). There are a number of ways to approximate {zi}256
i=1.

All of the solutions we can generate for this problem are going to correspond to Voronoi

spaces. But we are looking for a very close approximation of the original photo. To do

this, we wish to �nd a Voronoi diagram that minimizes the distances between the old set

of colors (yj) and the new approximated set (zi). Thus, we create the energy functional

ε
(
(zi, Vi, i = 1, . . . , k)

)
=

k∑
i=1

∑
yj∈Vi

ρ(y) | yj − zi |2 .(1)

If we minimize (1), we �nd the most approproate image compression we can using

Voronoi theory (that is, we minimize the loss of data). In a proof in a later section, we

will show that ε is minimized when the zi's of the Voronoi regions are the mass centroids

of their corresponding regions. In other words, the best compressed picture with k colors

corresponds to the centroidal Voronoi tessellation over the set of admissible colors. If

we wished to create the best compressed image we could using Voronoi diagrams, the

solution would be as easy as computing the centroidal Voronoi diagram of the initial

Voronoi diagram as described above.

8 JARED BURNS

4. The Lloyd and MacQueen Algorithms

There are numerous numerical methods for determining the centroidal Voronoi diagram

given a speci�c probability density over the tessellation. The method we are �rst going

to explore, MacQueen's method, is a probabilistic method that requires sets of random

numbers according to the probability density function of the diagram. And the second

method, Lloyd's method, is a deterministic algorithm that �nds the centroid of a Voronoi

region and averages the generator and the centroid to �nd a new generator.

4.1. MacQueen's Algorithm. The following algorithm for Macqueen's Method is found

in Ju, Du, and Gunburger's Probabilistic Methods for Centroidal Voronoi Tessellations and

Their Parallel Implementations [1].

�Given a region Ω, and density function ρ(x) de�ned for all x ∈ Ω (the closed set), and

a positive integer k,

(1) Choose an initial set of k points {zi}ki=1 in Ω, e.g., by using a Monte Carlo method;

set ji = 1 for i = 1, . . . , k;
(2) Determine a point y in Ω at random,e.g, by a Monte Carlo method, according to

the probability density function ρ(x);
(3) Find a zi among {zi}ki=1 that is the closest to y;

(4) Set

zi ←
jizi + y

ji+1
and ji ← ji + 1;

the new zi, along with the unchanged {zj}, j 6= i, form the new set of points {zi}ki=1;

(5) If the new points meet some convergence criterion, terminate; otherwise, return to

step 2� [1].

MacQueen's Method dictates that we use the density function of the region Ω to generate

a random point y within Ω. Then, for whichever generator is closest, the average of that
generator and the random point is taken. The new generator is the average. This whole

process is then repeated as a weighted average with the new generators. After a set number

of iterations or some stopping criteria is met, the new centroidal Voronoi diagram is formed

from the values of the weighted averages.

The Monte Carlo method plays an important role in this algorithm. The Monte Carlo

method is a general method that generates random inputs in the desired region and per-

forms some computation on them based on where they fall in the region. In order to put

MacQueen's algorithm to any practical use, we must �rst �nd a Monte Carlo method that

satisfactorily chooses initial random numbers. For both parts (1) and (2) of MacQueen's

algorithm, we choose to use the rejection method.

4.2. Rejection Method. Random number generators, such as those used in programming

languages C++ and Fortran, are generally of uniform density. Since we may deal with

CENTROIDAL VORONOI TESSELLATIONS 9

non-uniform densities, we wish to �nd a Monte Carlo method capable of producing random

numbers according to said non-uniform probability density function.

There are a number of ways to do this. One of the simpler yet computationally intensive

ways is to use the following formula:

X =

∫ x
a ρ(s)ds∫ b
a ρ(s)ds

,

where we are generating numbers in the interval (a,b) with density function ρ(s). Note

that s in this case is a generalized coordinate as the density function should span the

spatial dimensions of the tessellation. Evaluating two integrals for each and every random

number can be quite taxing on computer memory, especially when the density function is

complex. Since we are interested in employing this algorithm using computational means,

we will now look at a di�erent procedure: the rejection method described in [1].

The rejection method is a probabilistic procedure that takes in two random numbers

generated from uniform density and produces either one number that satis�es the non-

uniform density or nothing at all. Suppose our two randomly generated numbers are u

and v. We want to test to see if one of these random numbers �ts into our new non-uniform

density function. Choosing both u and v to be bounded over [0, 1], let X = a+ (b− a)v.
We can think of this relation as a kind of parameterization that stretches the random

number v ∈ [0, 1] to the random number X ∈ [a, b]. At this point, we have a random

number over the interval we want, but we do not know if X �ts our non-uniform density

requirements. Using probabilistic means, the rejection method states that we set up the

following inequality using the second random number:

u <
ρ(X)

(maxx∈[a,b] ρ(x))
.(2)

If inequality (2) holds true, then we let the random number x = X. Otherwise, we pick

two more random numbers and begin again until the inequality does hold.

A pictorial example of this method is shown in Figure 6 and Figure 7. Note that the

density function ρ(x) is normalized so that its maximum value is equal to one. This method

is completely dependent on the fact that the smaller the value of ρ(x) (the left and right

portions of Figure 7), the less likely it will be for a random variable u (chosen over [0,1])

to be in the interval [0,ρ(x)]. This direct correlation gives us the random generators over

the non-uniform density we are seeking.

The careful reader may question the e�eciency of the rejection method, because in its

implementation, we may end up throwing out many iterations worth of data that do not

satisfy inequality (2). However, in general, even with the �wasted� iterations, the rejection

method is on average less computationally intensive than the integrating method.

10 JARED BURNS

Figure 6. A Bell Density Curve

Figure 7. New, normalized density curve used to create tbe new set of
random points

Since we are most interested in the two-dimensional cases, we now wish to generalize

the rejection method for 2-D cases. The rejection method for two dimensional domains is

very similar to that of the one dimensional case. We begin with a density function ρ(x, y)
(de�ned over our domain) and a rectangle D = [a, b] × [c, d] that encloses the domain

in which we are interested (i.e. for our domain Λ ⊂ R2, Λ ⊂ D). Once again, since

the random points are picked over the interval [0, 1], we have two formulas to �stretch�

them over the interval of the enclosing rectangle of our domain: X = a + (b − a)v and

Y = c+ (d− c)u. Once again, our randomly generated points are u and v.

We now know that the point (X,Y) is in the enclosing rectangle D, but we do not yet

know if it is in our domain Λ. We can check that now; so if (X,Y) /∈ Λ̄, we simply pick

two more random variables u and v and begin again. Otherwise, exactly analogous to the

CENTROIDAL VORONOI TESSELLATIONS 11

1-D case, we pick another random point over [0,1], say z. If

z <
ρ(X,Y)

max(x,y)∈Λ ρ(x, y)
,

we have found our random point: (x, y) = (X,Y). Otherwise, we begin again from the

beginning and choose two more random points u and v. Similarly, this method can be

generalized for domains in R3 or even higher dimensions.

Now recall that MacQueen's algorithm requires a Monte Carlo method for two of its

steps. We choose for both steps to use the method just described, the rejection method,

which e�ectively chooses a random point in the tessellation given a known probability

density over said tessellation. We will also use the rejection method, although to a lesser

extent, in the next CVT method, Lloyd's algorithm.

4.3. Lloyd's Algorithm. Another method for �nding the centroidal Voronoi diagrams

for a given region Ω and density function ρ(x, y) is Lloyd's Algorithm. In this algorithm,

an initial Voronoi diagram is made with the desired number of generators over the region

Ω. Then, the centroids of the Voronoi regions are computed and a new Voronoi diagram

is created using the centroids as the generator points. This is repeated for a given number

of iterations or until some stopping criterion on the new generators are met. The follow-

ing is a more precise algorithm as stated in Probabilistic Methods for Centroidal Voronoi

Tessellations and Their Parallel Implementations [1]:

�Given a region Ω, and density function ρ(x) de�ned for all x ∈ Ω, and a positive integer

k,

(1) Choose an initial set of k points {zi}ki=1 in Ω, e.g., by using a Monte Carlo method;

(2) Construct the Voronoi sets {Vi}ki=1 associated with {zi}ki=1;

(3) Determine the mass centroids of the Voronoi sets {Vi}ki=1; these centroids form the

new set of points {zi}ki=1;

(4) If the new points meet some convergence criterion, terminate; otherwise, return to

step 2� [1].

In the implimentation of this algorithm, we use a discrete method for determining the

centroids in step (3) based on the number of pixels used in the Voronoi diagram. We will

now look at the speci�c set-up for the two dimensional case. Given n pixels i = 1, . . . , n
with position pi that belong to the Voronoi region Vj , the center o� mass Cj for Voronoi

region Vj is given by:

Cj =
∑n

i=1 ρ(xi)xi∑n
i=1 ρ(xi)

.

In this way, we tessellate over the entire region of our Voronoi diagram and �nd the centers

of mass of each Voronoi region.

12 JARED BURNS

5. Stopping Parameters

Since both the MacQueen and Lloyd methods are iterative, we are now going to discuss

how and when to stop these algorithms. There are a number of ways to set the stopping

parameters for a program that determines a CVT. One is simply to set a number of

iterations. Another involves testing the distance between each Voronoi generator and its

corresponding centroid. Both of these methods are easy parameters to implement, but for

our purposes they do not give enough information about the CVT's being derived.

The stopping parameter we choose to implement for comparing the Lloyd and MacQueen

methods involves the minimization of the energy functional. This section explores two

di�erent stopping parameters and o�ers a proof proof that the CVT is the lowest energy

Voronoi diagram.

5.1. The Distance Stopping Parameter. We outline the distance stopping parameter

in the following algorithm:

(1) Find the distance di =| zi−ci |; so di is the distance between each generator {zi}ki=1

and its corresponding mass centroid {ci}ki=1;

(2) Set a tolerance ε;

(3) Run through iterations of Lloyd's algorithm until max1≤i≤k di < ε, in which case

stop.

Using this stopping criteria, Figures 8, 9, and 10 were produced (using Lloyd's method)

with tolerances of 1, 10, and 50 units respectively (units are arbitrary and related to image

pixels). For comparison, Figure 11 was made by simply iterating (again with Lloyd's

method) 100 times. Note that the Voronoi diagram in Figure 11 is very similar to that of

Figure 8 even though the image in Figure 8 was only iterated 14 times. Lloyd's method

produces less than linear convergence toward the CVT; thus, for many practical purposes,

the Voronoi diagram in Figure 8 is as good a CVT as the Voronoi tessellation in Figure

11.

One of the goals of this paper is to compare the e�ciency of the Lloyd and MacQueen

algorithms in computing a CVT. The distance stopping parameter, however, cannot aid us

as, given a set tolerance with MacQueen's method, the question soon arises as to when to

stop iterating. In MacQueen's algorithm, we randomly choose one coordinate per iteration,

and one generator gets changed. Examining the distance between the new generator and

old generator tells us very little about the entire Voronoi diagram. It is possible because of

the random nature of MacQueen's algorithm that one iteration be within the set tolerance

while the next is much bigger than said tolerance. Thus, a minimum distance between

generators of sequential iterations does not produce similar Voronoi diagrams using the

Lloyd and MacQueen algorithms.

CENTROIDAL VORONOI TESSELLATIONS 13

Figure 8. CVT produced with Lloyd's algorithm with a stopping param-
eter of 1 unit

Figure 9. CVT produced with Lloyd's algorithm with a stopping param-
eter of 10 units

Figure 10. CVT produced with Lloyd's algorithm with a stopping param-
eter of 50 units

14 JARED BURNS

Figure 11. CVT produced with Lloyd's algorithm with 100 iterations

5.2. Minimization of the Energy Functional as a Stopping Parameter. We are

interested in forming a stopping parameter that will stop both Lloyd's method and Mac-

Queen's method at the same Voronoi graph. Once this is accomplished, it would then be a

fairly trivial matter to compare the e�ciency of the two methods. The stopping parameter

we choose is dependent on the energy functional

ε
(
(zi, Vi, i = 1, . . . , k)

)
=

k∑
i=1

∑
yj∈Vi

ρ(y) | yj − zi |2 .

Recall that ρ(y) is the probability density function in the open set Ω ∈ RN, where Ω is

as de�ned in De�nition 2.1. A centroidal Voronoi diagram is produced when the functional

ε
(
(zi, Vi, i = 1, . . . , k)

)
is minimized. We will prove this momentarily, but for now we are

simply interested in its usefulness as a stopping parameter. The energy functional behaves

as a Cauchy sequence. That is,

lim
zi,Vi→z∗i,V ∗i

∆ε
(
(zi, Vi, i = 1, . . . , k)

)
= 0,

where z∗i,V ∗i are the centroidal Voronoi generators and the centroidal Voronoi regions,

and ∆ε
(
(zi, Vi, i = 1, . . . , k)

)
is the change in the energy functional between two di�erent

iterations of the sets {zi}ki=1, {Vi}ki=1.

We can now set our stopping criteria to some value based on the Cauchy sequence. If we

run both MacQueen and Lloyd's method until a chosen value for ∆ε
(
(zi, Vi, i = 1, . . . , k)

)
is reached, we should have two Voronoi graphs that are essentially identical. At the very

least, since the energy functional is a Cauchy sequence, both of their values for total

energies are equally far away from the minimum energy. Using this value as a stopping

criteria, we can then compare the two methods.

Note that there are a few potential problems with using the energy functional as a

stopping parameter. The �rst crops up because the centroidal Voronoi diagram is not

CENTROIDAL VORONOI TESSELLATIONS 15

unique, as discussed in section 3.1. If we desired to compare the e�ciency of the MacQueen

and Lloyd algorithms as they approached same CVT, the energy stopping parameter would

require more speci�c criterion than we have so far given. For our purposes, however, we

will not distinguish between one CVT and another.

Another possible problem occurs when either the Lloyd or MacQueen algorithm stops

short of approaching the CVT at what we will call a "false bottom." A false bottom occurs

when the Cauchy sequence has local minima. Since we are iterating Voronoi diagrams little

by little, there is a chance our algorithm will happen upon a local minima in the energy

functional before it reaches the absolute minimum. In such a case, the MacQueen or Lloyd

algorithms could take thousands or even millions of iterations to push the diagram out of

the local extrema. In testing the two methods, we will simply avoid any diagrams that

seem to have such tendencies.

5.3. Minimization of the Energy Functional. We now wish to prove that the mini-

mization of the energy function occurs at a centroidal Voronoi tessellation. The following

proof follows closely to that given in Du, Faber, and Gunzenburger's Centroidal Voronoi

Tessellations: Applications and Algorithms. [1]

Theorem 5.1. Let ρ(y) be the probability density function on the open set Ω ⊆ RN over

which is found the sets of k points {zi}ki=1 and k regions {Vi}ki=1 that tessellate Ω. The

functional

(3) F
(
(zi, Vi, i = 1, . . . , k)

)
=

k∑
i=1

∫
y∈Vi

ρ(y) | y − zi |2 dy

is minimized when the set over Ω is a Voronoi tessellation with {zj}kj=1 as the centroids of

the Voronoi regions {V̂j}kj=1.

Proof. We begin by looking at a speci�c variation of F with respect to a single generator

point, zj :

F (zj + εv)− F (zj) =
∫
y∈Vi

ρ(y)| y − zi − εv |2| y − zi |2dy.

The only restriction on v is that zj + εv ∈ Ω. If we then divide both sides by εv and

take the limit as ε→ 0, we have,

(4) lim
ε→0

F (zj + εv)− F (zj)
εv

= lim
ε→0

∫
y∈Vi

ρ(y)| y − zi − εv |2| y − zi |2

εv
dy

The left side of the equation is simply the derivative of the functional. We are interested

in the point when the functional is minimized, which happens when |F ′(zj)|=0. So, we

16 JARED BURNS

want to concentrate on the right hand side of equation 4. After doing a bit of vector

algebra on the integrand of equation 4, we get

(5) lim
ε→0

|
∫
y∈Vi

ρ(y)2εv · (−y + zj + εv)dy|
|εv|

= 0.

Taking this limit gives us∫
y∈Vi

ρ(y)(−y + zj)dy = −
∫
y∈Vi

ρ(y)dy +
∫
y∈Vi

ρ(y)zjdy = 0,

which leads to a familiar result:

zi =

∫
y∈Vj

yρ(y)dy∫
y∈Vj

ρ(y)dy
.

Since this is the exact de�nition of a mass centroid, we see that the arbitrary zj we have
chosen is the centroid of our region Vi, and thus the points {zj}kj=1 are all centroids of their

corresponding regions {Vi}ki=1. We now want to show that this arbitrary set of points and

their corresponding regions are actually the Voronoi generators and regions. To do this,

we are going to hold the points {zi} �xed and compare the values of the functional given

by the Voronoi tessellation {V̂ }kj=1 and another tessellation {V }ki=1 as given in equation

3. The value of the functional for the Voronoi tessellation is

(6) F
(
(zi, V̂j , j = 1, . . . , k)

)
=

k∑
j=1

∫
y∈bVj

ρ(y) | y − zj |2 dy.

We are now going compare the integrands of both Equations (3) and (6). We know

from previous study of Voronoi tessellations that a point y belongs to a Voronoi region

V̂m only if |y − zm|2 < |y − zj 6=m|2 for generators {zj}kj=1, where 1 ≤ m ≤ k. Since the

tessellation {Vi}ki=1 is not a Voronoi tessellation of our given Ω, it is necessary that the

following inequality involving the integrands of Equations (3) and (6) hold:

ρ(y)|y − zj |2 < ρ(y)|y − zi|2.

Thus,

F
(
(zi, V̂j , j = 1, . . . , k)

)
< F

(
(zi, Vi, i = 1, . . . , k)

)
,

and F is minimized only when the tessellation {Vi}ki=1 is chosen to be the Voronoi tessel-

lation {V̂j}kj=1 with corresponding generator points {zj}kj=1.

�

CENTROIDAL VORONOI TESSELLATIONS 17

6. Convergence and Efficiency

We are now going to examine how well the Lloyd and MacQueen algorithms derive cen-

troial Voronoi Tessellations. We begin with a short discussion on the iterative convergence

of the two methods by examining emperical data. We then compare the computation time

of the two methods (for our purposes the shorter an algorithm takes, the more e�cient it

is) and discuss the di�erences between the two.

6.1. Iterative Convergence of the MacQueen and Lloyd Algorithms. Table 1

shows the average energy and maximum time for a one-dimensional MacQueen's method

over the interval (-1,1) given a constant density function. In Table 1, as the number of

iterations becomes greater, the energy converges at a smaller rate. As we can see, the �rst

20,000 iterations changes the value of the energy by about 17×10−5, creating a signi�cant

digit 5 × 10−5. The rest of the 3,180,000 iterations did very little more comparatively.

They did not even create another signi�cant digit to the right of the decimal point. Table

2 reveals similar truths about Lloyd's method. Basically, the same number of iterations

produces fewer signi�cant �gures the closer to the CVT the graph becomes. Understand-

ably, for applications that require a very high approximation of the CVT, these methods

may not be adequate as they could take a very long time to compute such a CVT.

When constructing a method to compare the two methods, simply adding code to com-

pute the energy of the preexisting CVT coded algorithm adds unwanted computation time.

We are only interested in the computation time of the Lloyd or MacQueen algorithm itself.

Fortunately, computing the energies of a CVT derived using Lloyd's method is a trivial

matter. Since both the Lloyd algorithm and the energy functional require numerical itera-

tion over Voronoi regions, we simply add a few lines of code adding negligible computation

time that allow for the computation of the energy. This method adds a small but trivial

amount of time to the computation time for Lloyd's method. Finding the energies of a

CVT derived using MacQueen's algorithm is a lot more taxing on MacQueen computation

time. For all comparisons between methods made in this section, only the MacQueen al-

gorithm time (without computing the energy) is shown. In particular for the data shown

here, we make two seperate programs for MacQueen's method: one that tests energies and

one that does not. The one that tests CVT energies outputs the energies and the iterations

corresponding to those energies. Once we know the iteration of a particular energy, we

can then input the set number of iterations into the second program, which returns the

computation time.

Note the discrepancy between the energy values in Table 1 and Table 2. This di�erence

is a result of how the dimensions of the Voronoi diagram are measured. The diagrams

whose values correspond to Table 1, for example, are measured over the interval [-1,1] as

stated earlier. The diagrams whose values correspond to Table 2, however, are measured

over the interval [0,500]. Recall that the energy functional as given by Equation (3) is a

18 JARED BURNS

1

Table 1. Maximum Run times and energies using MacQueen's method
over tessellations with a constant probability density.

No. Iterations Average Energy Maximum time (s)
0 22.514E-5 0.00

200,000 5.888E-5 2.93
800,000 5.658E-5 11.59
3,200,000 5.475E-5 46.34

Table 2. Energies using Lloyd's method over tessellations with a constant
probability density.

No. Iterations Average Energy
1 8.89587E+08
10 5.49157E+08
25 5.29632E+08

1,000 5.28842E+08

function dependent on distance. Since the diagram corresponding to Table 2 has Voronoi

regions covering much larger distances, it also has much bigger corresponding energies.

One thing that a�ects the convergence of MacQueen's method is the initial set of genera-

tors. That is, the success of MacQueen's method is dependent on the beginning placement

of the Voronoi generators of its initial iteration. Thus, the better the Monte Carlo method

is at distributing random points according to the probability density, the better Mac-

Queen's method will converge. As Ju, Du, and Gunzburger said of the MacQueen method,

�One observation that can be gleamed from a detailed examination of the results of the

computational experiments (although not de�nitively from the data given in the tables)

is that the energy of the �nal set of points is closely correlated to the energy of the cor-

responding initial set of points, i.e., in general, the smaller the initial energy, the smaller

the �nal energy� [1].

6.2. Run times of MacQueen and Lloyd Algorithms. Table 3 and Table 4, when

looked at simultaneously, compare the di�erence in computation time between Lloyd's

method and MacQueen's method to reach a speci�c energy. In this case, since it is much

easier and takes much less computation time to compute the energy for Lloyd's method, the

energy is based on 10,000,000 interations of Lloyd's method. Since very little computation

time is lost when �nding the energy using Lloyd's method, the Lloyd energy was compared

with the MacQueen until it was less than or equal the MacQueen value. Notice that

since Lloyd's method computes a lot more in one iteration than MacQueen's, we often get

slightly di�erent energy values for Lloyd's method. Though they have di�erent energies,

we are guaranteed that the energy we are searching for in Lloyd's method is between the

CENTROIDAL VORONOI TESSELLATIONS 19

Table 3. Maximum Run times and energies using MacQueen's method.

Density Function Generators No. Iterations Ave. Energy Max time (s)
1 10 10,000,000 1.069E9 7.248

20 10,000,000 5.474E8 10.201
100 10,000,000 1.085E8 36.334

e−(y+x)2 20 10,000,000 3.010E8 13.857
100 10,000,000 6.215E7 40.033

e−10∗(y2+x2) 20 10,000,000 1.121E7 47.980
100 10,000,000 2.657E6 73.364

Table 4. Maximum Run times and energies using Lloyd's method.

Density Function Generators Average Energy Max time (s)
1 10 1.067E9 2.248

20 5.474E8 5.470
100 1.080E8 10.254

e−(y+x)2 20 3.010E8 7.035
100 6.189E7 10.349

e−10∗(y2+x2) 20 1.119E7 3.747
100 2.646E6 12.185

energy of the current and the previous iteration. Thus, the current iteration of Lloyd's

method is the �rst iteration whose energy is less than or equal to the energy we want it to

reach.

6.3. Some More Run Times with Di�erent Energy Stopping Parameters. Tables

5 and 6 are almost identical to Tables 3 and 4 with one exception: the target energies

are di�erent. This time, the target energies are based on only 1,000,000 iterations of

MacQueen's method. Notice how this time, unlike the �rst set of data, MacQueen's method

often takes less computation time to reach the target. This data indicates that there

is a point at which MacQueen's method becomes more e�cient than Lloyd's method.

In particular, our data indicates that MacQueen's method pushes the Voronoi diagram

closer to a CVT initially but Lloyd's approaches the CVT more quickly given a diagram

su�ciently close to the CVT.

Thus, we are unable to answer the question of which method is more e�cient without

quali�ers. As we just discussed, Lloyd's method is more e�cient than MacQueen's given

certain conditions, and visa versa. The conditions, however, naturally lead us to consider

a third algorithm, one possibly more e�cient than either of the �rst two. A hybrid of

the two methods, combining them when they are most e�ecient, is discussed in the next

section.

20 JARED BURNS

Table 5. Maximum Run times and energies using MacQueen's Method.

Density Function Generators No. Iterations Ave. Energy Max time (s)
1 10 1,000,000 1.070E9 .724

20 1,000,000 5.577E8 1.041
100 1,000,000 1.099E8 3.617

e−(y+x)2 20 1,000,000 3.032E8 1.377
100 1,000,000 6.296E7 3.993

e−10∗(y2+x2) 20 1,000,000 1.132E7 5.056
100 1,000,000 2.741E6 7.618

Table 6. Maximum run times and energies using Lloyd's Method.

Density Function Generators Average Energy Max time (s)
1 10 1.070E9 1.904

20 5.575E8 3.445
100 1.095E8 8.0887

e−(y+x)2 20 3.0E8 10.161
100 6.261E7 8.714

e−10∗(y2+x2) 20 1.129E7 3.825
100 2.721E6 10.321

7. Hybrid Algorithm

Using the idea that MacQueen's method better approaches a CVT initially and Lloyd's

method does better when the diagram is closer to the CVT, we create an algorithm that

is a hybrid of the two methods. The new algorithm is very simple:

(1) Given an initial set of generators, run MacQueen's algorithm for a set number of

iterations and store the �nal set of generators.

(2) Run Lloyd's algorithm with the product of step 1 until a desired stopping parameter

is met.

Note that we do not intend to �nd the most e�cient hybrid method; such a problem

lies outside the scope of this paper. We simply wish to know if we can combine the two to

create a more e�cient hybrid method than either the MacQueen or Lloyd algorithms.

7.1. Hybrid Runtimes. The following sets of data were taken using the hybrid method

de�ned previously. Note that the particular hybrid methods used in Tables 7 and 8 actually

run faster than just the MacQueen and Lloyd algorithms in most instances.

Table 7

Maximum Run times and energies using a combination of MacQueen and Lloyd's method

(�rst 10,000 iterations of MacQueen, then Lloyd until it reaches the desired energy).

CENTROIDAL VORONOI TESSELLATIONS 21

Density Function Generators Average Energy Max time (s)

1 10 1.067E9 1.950

20 5.602E8 1.000

100 1.079E8 10.820

e−(y+x)2 20 3.008E8 9.650

100 6.180E7 6.465

e−10∗(y2+x2) 20 1.119E7 1.798

100 2.637E6 8.088

Table 8

Maximum Run times and energies using another combination of MacQueen and Lloyd's

method (�rst 100,000 iterations of MacQueen, then Lloyd until it reaches the desired

energy).

Density Function Generators Average Energy Max time (s)

1 10 1.067E9 1.534

20 5.575E8 .664

100 1.077E8 10.222

e−(y+x)2 20 3.006E8 10.161

100 6.172E7 4.575

e−10∗(y2+x2) 20 1.119E7 .848

100 2.631E6 5.992

8. Conclusion

Based on emperical evidence, the e�ectiveness of both the Lloyd and MacQueen al-

gorithms depend on how close the current Voronoi diagram is to the centroidal Voronoi

diagram. The evidence shows that MacQueen's algorithm was more e�cient with Voronoi

diagrams further from the CVT (energy wise) while Lloyd's algorithm was more e�cient

at closer energies.

This conclusion led us to propose a new, (generally) more e�cient method: a hybrid

of the MacQueen and Lloyd algorithms. In our experiments, the hybrid method took as

much as 88 percent o� the computation time of the MacQueen or Lloyd algorithms alone.

The hybrid method, however, is not always more e�cient than either of the other two.

If the Voronoi diagram starts too close to the CVT, it would obviously be more e�cient

just to run Lloyd's algorithms rather than a mixture of the two. Other possibilities for the

reason why the hybrid method is sometimes slower would make for an interesting area of

future research.

Although we demonstrated a more e�ecient algorithm, one thing that is still unclear is

how e�ecient of an algorithm we actually have. For future research, we may be interested

in �nding the optimal switching point for the hybrid method. That is, we may want to

22 JARED BURNS

�nd the most e�cient point to stop running the MacQueen algorithm and begin running

Lloyd's. If we are in need of e�eciency in general, we may also want to come up with a

mathematical model that shows what method to use (hybrid or otherwise) based on the

density function. Combining these two possibilities for research would allow us to always

run our algorithms most e�eciently.

References

[1] Du, Qiang, Vance Faber, and Max Gunzburger. Centroidal Voronoi Tessellations: Applications

and Algorithms. Society for Industrial and Applied Mathematics. (1999): 637-676.

[2] Okabe, Michiko, Barry Boots, and Sung Nok Chiu. Spatial Tessellations : Concepts and Applica-

tions of Voronoi Diagrams. New York: John Wiley & Sons, Incorporated, 2000.

[3] Wilson, Robin. Introduction to Graph Theory. New York: Academic Press, Incorporated, 1972.

[4] Bollobas, Bela. Graph Theory: An Introductory Course. New York: Springer-Verlag New York

Incorporated, 1985.

[5] Weisstein, Eric W. "Voronoi Diagram." From MathWorld�A Wolfram Web Resource.

http://mathworld.wolfram.com/VoronoiDiagram.html

[6] Hiroyasu, Miki, Shimosaka. �Noise �gure and minor triangulation DORONE.� miki-

lab.doshisha.ac.jp

	1. Introduction
	1.1. A Brief History
	1.2. Outline

	2. Voronoi Diagrams
	2.1. Definition of Voronoi Tessellations
	2.2. Properties of Voronoi Diagrams

	3. Centroidal Voronoi Diagrams
	3.1. Definition of Centroidal Voronoi Diagrams
	3.2. Application of Centroidal Tessellations: Data Compression

	4. The Lloyd and MacQueen Algorithms
	4.1. MacQueen's Algorithm
	4.2. Rejection Method
	4.3. Lloyd's Algorithm

	5. Stopping Parameters
	5.1. The Distance Stopping Parameter
	5.2. Minimization of the Energy Functional as a Stopping Parameter
	5.3. Minimization of the Energy Functional

	6. Convergence and Efficiency
	6.1. Iterative Convergence of the MacQueen and Lloyd Algorithms
	6.2. Run times of MacQueen and Lloyd Algorithms
	6.3. Some More Run Times with Different Energy Stopping Parameters

	7. Hybrid Algorithm
	7.1. Hybrid Runtimes

	8. Conclusion
	References

