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Comparison of Two Exploratory Data Analysis
Methods for fMRI: Unsupervised Clustering

Versus Independent Component Analysis
A. Meyer-Baese, Axel Wismueller, and Oliver Lange

Abstract—Exploratory data-driven methods such as unsuper-
vised clustering and independent component analysis (ICA) are
considered to be hypothesis-generating procedures, and are com-
plementary to the hypothesis-led statistical inferential methods in
functional magnetic resonance imaging (fMRI). In this paper, we
present a comparison between unsupervised clustering and ICA in
a systematic fMRI study. The comparative results were evaluated
by 1) task-related activation maps, 2) associated time-courses, and
3) receiver operating characteristic analysis. For the fMRI data, a
comparative quantitative evaluation between the three clustering
techniques, self-organizing map, “neural gas” network, and fuzzy
clustering based on deterministic annealing, and the three ICA
methods, FastICA, Infomax and topographic ICA was performed.
The ICA methods proved to extract features relatively well for a
small number of independent components but are limited to the
linear mixture assumption. The unsupervised clustering outper-
forms ICA in terms of classification results but requires a longer
processing time than the ICA methods.

Index Terms—FastICA, functional magnetic resonance imaging
(fMRI), Infomax, minimal free energy vector quantization (VQ),
“neural gas” network, principal component analysis (PCA),
self-organizing map, topographic independent component anal-
ysis (ICA).

I. INTRODUCTION

FUNCTIONAL magnetic resonance imaging (fMRI) with
high temporal and spatial resolution represents a powerful

technique for visualizing rapid and fine activation patterns of
the human brain [1]. As is known from both theoretical estima-
tions and experimental results [2], an activated signal variation
appears very low on a clinical scanner. This motivates the appli-
cation of analysis methods to determine the response waveforms
and associated activated regions. Generally, these techniques
can be divided into two groups: Model-based techniques require
prior knowledge about activation patterns, whereas model-free
techniques do not. However, model-based analysis methods im-
pose some limitations on data analysis under complicated ex-
perimental conditions. Therefore, analysis methods that do not
rely on any assumed model of functional response are consid-
ered more powerful and relevant. We distinguish two groups
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of model-free methods: transformation-based and clustering-
based.

The first method, principal component analysis (PCA) [3],
[4] or independent component analysis (ICA) [5]–[8], trans-
forms original data into high-dimensional vector space to sep-
arate functional response and various noise sources from each
other.

Among the data-driven techniques, ICA has been shown to
provide a powerful method for the exploratory analysis of fMRI
data [6], [8]. ICA is an information theoretic approach which
enables recovery of underlying signals, or independent compo-
nents (ICs) from linear data mixtures. Therefore, it is an excel-
lent method to be applied for the spatial localization and tem-
poral characterization of sources of BOLD activation. ICA can
be applied to fMRI both temporal [9] or spatial [6]. Spatial ICA
has dominated so far in fMRI applications because the spatial
dimension is much larger than the temporal dimension in fMRI.
However, recent literature results have suggested that temporal
and spatial ICA yield similar results for experiments where two
predictable task-related components are present.

The second method, fuzzy clustering analysis [10]–[13] or
self-organizing map [13], [21], [23], attempts to classify time
signals of the brain into several patterns according to temporal
similarity among these signals.

In this paper, we perform a detailed comparative study
among unsupervised clustering methods [“neural gas” network
[22], fuzzy clustering based on deterministic annealing [13],
and Kohonen’s self-organizing map (SOM)] and spatial ICA
techniques (FastICA [14], topographic ICA [16], Infomax [17],
PCA) for fMRI. In a systematic manner, we will compare
and evaluate the results obtained based on each technique and
present the benefits associated with each paradigm.

II. EXPLORATORY DATA ANALYSIS METHODS

Functional organization of the brain is based on two comple-
mentary principles, localization and connectionism. Localiza-
tion means that each visual function is performed mainly by a
small set of the cortex. Connectionism, on the other hand, ex-
presses that the brain regions involved in a certain visual cortex
function are widely distributed, and thus, the brain activity nec-
essary to perform a given task may be the functional integration
of activity in distinct brain systems. It is important to stress that
in neurobiology the term “connectionism” is used in a different
sense that that used in the neural network terminology.
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Fig. 1. Visualization of ICA applied to fMRI data. (a) Scheme of fMRI data decomposed into ICs, and (b) fMRI data as a mixture of ICs where the mixing matrix
M specifies the relative contribution of each component at each time point [6].

The following sections are dedicated to presenting the algo-
rithms and evaluate the discriminatory power of the two main
groups of exploratory data analysis methods.

A. ICA Algorithms

According to the principle of functional organization of the
brain, it was suggested for the first time in [6] that the multifocal
brain areas activated by performance of a visual task should
be unrelated to the brain areas whose signals are affected by
artifacts of physiological nature, head movements, or scanner
noise related to fMRI experiments. Every single above men-
tioned process can be described by one or more spatially ICs,
each associated with a single time course of a voxel and a com-
ponent map. It is assumed that the component maps, each de-
scribed by a spatial distribution of fixed values, represent over-
lapping, multifocal brain area of statistically dependent fMRI
signals. This aspect is visualized in Fig. 1. In addition, it is con-
sidered that the distributions of the component maps are spa-
tially independent, and in this sense uniquely specified. Math-
ematically, this means that if specifies the probability
distribution of the voxel values in the th component map,
then the joint probability distribution of all components yields

(1)

where each of the component maps is a vector (
), where gives the number of voxels. Indepen-

dency is a stronger condition than uncorrelatedness. It was
shown in [6] that these maps are independent if the active
voxels in the maps are sparse and mostly nonoverlapping.
Additionally, it is assumed that the observed fMRI signals are
the superposition of the individual component processes at each
voxel. Based on these assumptions, ICA can be applied to fMRI
time series to spatially localize and temporally characterize the
sources of BOLD activation.

Different methods for performing ICA decompositions have
been proposed which employ different objective functions to-
gether with different criteria of optimization of these functions,
and it is assumed that they can produce different results.

B. Models of Spatial ICA in fMRI

In the following, we will assume that is a observed
fMRI signal data matrix, is the random matrix of com-
ponent map values, and is a mixing matrix containing
in its columns the associated time-courses of the components.
Furthermore, corresponds to the number of scans, and is
the number of voxels included in the analysis. Matrix is the
so-called matrix of observed voxel time courses (VTCS).

The spatial ICA (sICA) problem is given by the following
linear combination model for the data:

(2)

where no assumptions are made about the mixing matrix and
the rows being mutually statistically independent.

Then the ICA decomposition of can be defined as an in-
vertible transformation

(3)

where is an unmixing matrix providing a linear decomposi-
tion of data. is the pseudoinverse of .

C. Infomax Approach

The Infomax was the first ICA application to fMRI time series
[6], and is based on minimization of mutual information [17].
The algorithmic description is given in the following. A self-or-
ganizing learning algorithm is described that maximizes the in-
formation transferred in a network of linear units. It was shown
that the neural network is able to perform ICA estimation and
that the nonlinearities in the transfer function introduce higher
order statistics.
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The network has input and output neurons, and an
weight matrix connecting the input layer neurons with the
output layer neurons. Assuming sigmoidal units, the neurons
outputs are given by

with (4)

where is a logistic function .
The idea of this algorithm is to find an optimal weight matrix
such that the output entropy is maximized. The algo-

rithm initializes to the identity matrix . The elements of
are updated based on the following rule:

(5)

where is the learning rate. The term in (5) was first
proposed in [18], and it avoids matrix inversions and speeds
convergence. The vector-function has the elements

(6)

During training, the learning rate is reduced gradually until the
weight matrix stops changing appreciably.

Equation (5) represents the so-called “Infomax” algorithm.
The choice of a nonlinearity is determined by the application

type. In the context of fMRI, where small activity foci in a large
volume are usually expected, the distribution of the target com-
ponents is assumed to be super-Gaussian or sparse. Therefore,
a sigmoidal function is relevant for such an application.

D. FastICA Approach

The FastICA approach is based on minimization of mutual
information but using the negentropy as a measure of non-Gaus-
sianity. This approach is both symmetric and hierarchical, and is
based on fixed-point iterations. To apply this ICA approach, the
data must be preprocessed by centering and whitening. A single
artificial neuron has a weight vector that is updated based on
a learning algorithm. It finds a vector such that the projection

maximizes non-Gaussianity.
The FastICA algorithm is a fixed-point iteration scheme for

finding a maximum of the non-Gaussianity of . To esti-
mate several ICs, the one-unit FastICA is employed using sev-
eral units (neurons) with weight vectors . To prevent
different vectors from converging to the same maxima the out-
puts have to be decorrelated after every itera-
tion. For a whitened , this is equivalent to orthogonalization.
There are several known methods to achieve this [15]. Here,
only the symmetric decorrelation is considered. It has several
advantages over other methods: 1) the weight vectors are
estimated in parallel and not one by one and 2) it does not per-
petuate the errors from one weight vectors to the next.

The symmetric orthogonalization of can be accomplished
by involving matrix square roots

(7)

Numerical simplifications of the above equation are given in
[15].

Fig. 2. Topographic ICA model [16]. The variance generated variables
u are randomly generated, and mixed linearly inside their topographic
neighborhoods. This forms the input to nonlinearity �, thus giving the local
variance � . Components s are generated with variances � . The observed
variables are x are obtained as with standard ICA from the linear mixture of
the components s .

An algorithmic description of the FastICA algorithm for esti-
mating several ICs is given in [15]. The main difference between
Infomax and FastICA lies in the updating rule: It is adaptive for
the Infomax depending on a learning rate, and it is nonadaptive
for FastICA.

E. Topographic ICA Approach

Topographic ICA represents a generative model which com-
bines topographic mapping with ICA. As in all topographic
mappings, the distance in the representation space given by the
topographic grid is related to the distance of the represented
components. This distance is defined for topographic ICA by the
mutual information implied by higher order correlations [16].
Thus, a natural distance measure is given in the context of ICA.
Traditional topographic mapping methods define distance either
based on the Euclidean distance or correlation. The ICA dis-
tance measure enables the definition of a topography even if the
Euclidean distances are all equal as it is the case with an orthog-
onal vector space.

In the generative model described in [16] and shown in Fig. 2,
represent the unknown sources and are independent given

their variances . Dependence among the is enforced by the
variance dependence. Obeying the principle of topography, the
variances of only neighboring components are positively corre-
lated, while the others are independent. By using a neighbor-
hood function , the variance is given by

(8)

where are the higher order ICs used to generate the vari-
ances, while describes some nonlinearity. The neighborhood
function can be either a two-dimensional grid or have
a ring-like structure. The components are given by the fol-
lowing relationship:

(9)

where is a random variable having the same distribution as
while is fixed to unity. and are mutually independent.

The most important properties of the topographic ICA are:
1) all the components are uncorrelated, 2) components far from
each other are independent, 3) neighboring components tend to
be active (nonzero) at the same time, and thus, have positively
correlated energies and . The classic ICA results from the
topographic ICA by setting .
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The learning rule is based on the maximization of the
likelihood. First, it is assumed that the data is preprocessed
by whitening and that the estimates of the components are
uncorrelated.

The update rule for the weight vector is derived from a
gradient algorithm

(10)

where

(11)

The function is the derivative of . After
every iteration, the vectors in (10) are normalized to unit
variance and orthogonalized. This equation represents a modu-
lated learning rule, where the learning term is modulated by the
term .

It is useful to point out some differences between topographic
ICA and other topographic mappings: 1) topographic ICA finds
a decomposition into ICs, while topographic mappings find
cluster centers or codevectors, and 2) the similarity of two
vectors in topographic ICA is based on higher order correla-
tions and not defined by an Euclidean distance or dot-product.
However, if the data is prewhitened, the dot-product in the data
space is equivalent to correlation in the original space [16].

Topographic ICA represents a new paradigm for fMRI signal
analysis since the strict independence condition imposed by
standard ICA techniques is relaxed among neighboring compo-
nents, such that neighboring components (voxels) are positively
correlated.

F. PCA Approach

Principal component analysis is a basic technique used for
data reduction in bioimaging. The idea is that similar input pat-
terns belong to the same class. Thus, the input data can be nor-
malized within the unit interval and then chosen based on their
variances. In this sense, the larger the variances, the better dis-
criminatory properties the input features have.

PCA involves a mathematical procedure that transforms
a number of (possibly) correlated variables into a (smaller)
number of uncorrelated variables called principal components.
This is a highly desirable property, since besides being op-
timally uncorrelated, the redundancy in data information is
removed. By selecting the eigenvectors having the largest
eigenvalues, we lose as little information as possible in the
mean-square sense. A fixed number of eigenvectors and their
respective eigenvalues can be chosen to obtain a consistent
representation of the data.

Let be a matrix of observed cortical time courses.
The correlation matrix of the cortical time courses is defined
as

(12)

This correlation matrix can be rewritten in terms of the eigen-
values as

(13)

where is the th eigenvector and the corresponding th
eigenvalue of the matrix .

G. Clustering Algorithms

The previous sections showed that ICA techniques can be ap-
plied to fMRI by considering brain function as consisting of sets
of nonsystematically overlapping networks. In other words, ICA
works by assuming that during a given fMRI experiment there
are a number of brain regions (networks) that are spatially inde-
pendent from one another (sources) and are mixed together via
a network specific hemodynamic time course.

In this section, we will review cluster analysis as an alterna-
tive technique which is based on grouping image voxels together
based on the similarity of their intensity profile in time (i.e., their
time courses).

Let denote the number of subsequent scans in an fMRI
study, and let be the number of voxels. The dynamics of
each voxel , i.e., the sequence of signal values

, can be interpreted as a vector
in the -dimensional feature space of possible signal time series
at each voxel.

Cluster analysis groups image voxels together based on the
similarity of their intensity profile in time. In the clustering
process, a time course with points is represented by one point
in an -dimensional Euclidean space which is subsequently par-
titioned into clusters based on the proximity of the input data.

Here, we employ several vector quantization (VQ) ap-
proaches as a method for unsupervised image time-series
analysis. VQ clustering identifies several groups of voxels with
similar VTC, while these groups or clusters are represented by
prototypical time series called codebook vectors (CVs) located
at the center of the corresponding clusters. The CVs represent
prototypical VTCs sharing similar temporal characteristics.
Thus, each VTC can be assigned in the crisp clustering scheme
to a specific CV according to a minimal distance criterion, while
in the fuzzy scheme according to a membership to several CVs.
Accordingly, the outcomes of VQ approaches for fMRI data
analysis can be plotted as “crips” or “fuzzy” cluster assignment
maps.

VQ approaches determine the cluster centers by an itera-
tive adaptive update based on the following equation:

(14)

where represents the learning parameter, a codebook
dependent cooperativity function, a cooperativity param-

eter, and a randomly chosen feature vector. For fMRI, the fea-
ture vector represents the VTC.

H. Kohonen’s Self-Organizing Map

Kohonen’s self-organizing map generates nodes on a two-di-
mensional lattice in which the distribution of these nodes corre-
sponds to the proximity of their associated node patterns in the
signal intensity space. The benefits of this clustering technique
are: 1) if started with an adequate number of neurons, it can find
distinctive features in the data even if they are less predomi-
nant, and 2) the emerging node patterns are ordered according to
their proximity properties in the data space. This topology-pre-
serving technique enables the forming of superclusters by fusing
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nodes, and thus, provides a way to visualize high-dimensional
data sets. Its advantages in analyzing fMRI data were demon-
strated in [23].

The update equation for the CVs based on this VQ approach
can be derived from (14). The cooperativity function is given
by

(15)

where is a distance between neurons and determined by
a neighborhood relation and is an adjusting parameter.
takes the maximum value of one when , namely for the
firing neuron, and decreases when the distance becomes large.

The resulting learning rule for the Kohonen self-organizing
map is given below

(16)

I. Fuzzy Clustering Based on Deterministic Annealing

Another proven tool for the analysis of fMRI time series is
given by a clustering fuzzy clustering technique based on deter-
ministic annealing [13], [19].

The update equation for the CVs based on this VQ approach
can be derived from (14). The cooperativity function is given
by

(17)

where is the “fuzzy range” of the model, and defines a length
scale in data space and is annealed to repeatedly smaller values
in the VQ approach. In parlance of statistical mechanics, rep-
resents the temperature of a multiparticle system by .

The cooperativity function is the so-called softmax acti-
vation function, and accordingly, the outputs lie in the interval
[0,1] and they sum up to one. The resulting learning rule for
fuzzy clustering based on deterministic annealing is given below

(18)
This learning rule describes a stochastic gradient descent on an
error function which is a free energy in a mean-field approxi-
mation. The algorithm starts with one cluster representing the
center of the whole data set. Gradually, the large clusters split
up into smaller ones representing smaller regions in the feature
space. This represents a major advantage over standard fuzzy
-means clustering since this algorithm does not employ pre-

specified cluster centers.

This clustering procedure identifies groups of voxels sharing
similar properties of signal dynamics, and thus, enables the in-
terpretation of the physiological part of the experiment. The
main differences between SOM and fuzzy clustering based on
deterministic annealing were pointed out in [13]: 1) the hierar-
chical and multiresolution aspect of data analysis; 2) monitoring
based on different control parameters (free energy, entropy) fa-
cilitates straightforward cluster splitting; and 3) the learning rule
based on a stochastic gradient descent on an explicitly given
error function.

J. “Neural Gas” Network

The “neural-gas” algorithm [22] is an efficient approach
which, applied to the task of VQ, 1) converges quickly to low
distortion errors, 2) reaches a distortion error lower than that
from Kohonen’s feature map, and 3) at the same time obeys a
gradient descent on an energy surface.

Instead of using the distance or of using the ar-
rangement of the within an external lattice, it utilizes a
neighborhood-ranking of the reference vectors for the given
data vector .

The update equation for the CVs based on this VQ approach
can be derived from (14). The cooperativity function is given
by

(19)

where represents the rank index describing
the neighborhood-ranking of the neural units, is the number
of units in the network, and determines the number of neural
units changing their synapses with every iteration. The resulting
learning rule for the “neural gas” network is given below

(20)
The step size describes the overall extent of the mod-
ification.

In [22], it was shown that the average change of the reference
vectors corresponds to an overdamped motion of particles in a
potential that is given by the negative data point density. Su-
perimposed on the gradient of this potential is a “force,” which
points toward the direction of the space where the particle den-
sity is low. This “force” is the result of a repulsive coupling be-
tween the particles (reference vectors). In its form, it resembles
an entropic force and tends to homogeneously distribute the par-
ticles (reference vectors) over the input space, like in case of a
diffusing gas. This suggests the name for the “neural-gas” algo-
rithm. It is interesting also to mention that the reference vectors
change their locations slowly but permanently and, therefore,
pointers that are neighboring at an early stage of the adapta-
tion procedure might not be neighboring anymore at a more ad-
vanced stage. Connections that have not been refreshed for a
while die out and are removed.

Another important feature of the presented algorithm com-
pared to Kohonen algorithm is that it does not require a prespec-
ified graph (network). In addition, it can produce topologically
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preserving maps, which is only possible if the topological struc-
ture of the graph matches the topological structure of the data
manifold. However, in cases where it is not possible to a priori
determine an appropriate graph, for example, in cases where the
topological structure of the data manifold is not known a priori
or is too complicated to be specified, Kohonen’s algorithm nec-
essarily fails in providing perfectly topology preserving maps.

III. RESULTS AND DISCUSSION

FMRI data were recorded from six subjects (three female,
three male, age 20–37) performing a visual task. In five sub-
jects, five slices with 100 images (TR TE ms) were
acquired with five periods of rest and five photic simulation pe-
riods with rest. Simulation and rest periods comprised ten repe-
titions each, i.e., 30 s. Resolution was 3 3 4 mm. The slices
were oriented parallel to the calcarine fissure. Photic stimulation
was performed using an 8-Hz alternating checkerboard stimulus
with a central fixation point and a dark background with a cen-
tral fixation point during the control periods [13]. The first scans
were discarded for remaining saturation effects. Motion artifacts
were compensated by automatic image alignment [20].

The clustering results were evaluated by 1) task-related acti-
vation maps, 2) associated time-courses, and 3) receiver oper-
ating characteristic (ROC) analysis.

In the following, we will give the set of parameters chosen
for the comparative evaluation for both exploratory data anal-
ysis techniques. For PCA, no parameters had to be set. For In-
fomax we choose the following: 1) the learning rate ;
and 2) as the maximal number of iterations. For FastICA
we choose the following: 1) as the maximal number of it-
erations; and 2) the nonlinearity . And last, for
topographic ICA we set the following: 1) stop criterion is ful-
filled if the synaptic weights difference between two consecu-
tive iterations is less than number of IC; 2) the function

; and 3) is the maximal number of iterations.
For SOM, we employed the SOMPAK

(http://www.cis.hut.fi/research/sompak) and we
choose the following: A rectangular grid, the neighborhood
function is a bubble (step function), and for the initial ordering
training phase we set , , and the maximum
iteration number equals the number of data points. For the
fine-tuning training phase we set , , and the
maximum iteration number equals 1.5 the number of data
points. For “neural gas” network we choose the following:
1) the learning parameters and ; 2) the
lattice parameters equals half the number of classes and

; and 3) the maximal number of iterations equals
1000. And last, for fuzzy clustering based on deterministic
annealing we set the following: 1) neurons’ initialization with
principal components; 2) learning parameter
and updating based on a linear annealing scheme; and 3) the
maximal number of iterations equals 100.

It is important to determine the differences and implications
on the analysis of fMRI time series. The two main groups which
are subject to our comparative study are 1) the transformation-
based methods such as PCA and ICA, and 2) the clustering

Fig. 3. Results from simulation optimization for transformation-based
techniques for 8, 16, and 36 ICs from top to bottom. The algorithms 1–4 are:
PCA, Infomax, FastICA, and topographical ICA. The plots show the correlation
of the CTR component with the reference function and the corresponding
quantization error per voxel.

methods such as SOM, “neural gas” network, and the fuzzy
clustering based on deterministic annealing.

The main difference between these two model-free fMRI
analysis techniques lies in their categorization properties. The
transformation-based techniques allow us to determine the con-
tribution of the consistently task-related (CTR) component and
the artifacts components (head movement) to a single voxel.
While based on ICA, it is possible to separate the artifacts
from the CTR; clustering techniques try to identify clusters
of similar VTCs within the data space. In other words, they
try to determine clusters describing similar VTCs based on a
minimal distance criterion, such that the resulting CVs are then
prototypes of VTCs of similar temporal characteristics.

A. Estimation of Optimal Number of ICs and CVs

The estimation of the optimal number of target components,
IC number in case of transformation-based techniques and
CV for clustering techniques, is of critical importance for
exploratory data analysis in fMRI.

To compare uniformly the performances of the seven algo-
rithms with a varying number of target components, we use the
maximum achieved correlation of the CTR component with the
reference function and the quantization error per voxel.

The achieved results for both ICA and clustering techniques
for 8, 16, and 36 components are plotted in Figs. 3 and 4.
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Fig. 4. Results from simulation optimization for clustering techniques for 8, 16, and 36 ICs from top to bottom. The plots show the correlation of the CTR
component with the reference function and the corresponding quantization error per voxel.

Fig. 5. Simulation time aspects for transformation-based and clustering techniques in function of the number of ICs or CVs. (a) Transformation-based techniques.
(b) Clustering techniques.

The observed results suggest that the optimal number of target
components regarding the maximum correlation is equal to 36

for clustering techniques, while for transformation-based tech-
niques is equal to eight.
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Fig. 6. Computed reference functions for the three clustering techniques (SOM, “neural gas” network, and fuzzy clustering based on deterministic annealing) for
eight code vectors, and the transformation-based methods (PCA and ICA techniques) for eight different components. The determined correlation coefficients are:
0.69 (PCA), 0.85 (Infomax), 0.93 (FastICA), 0.86 (TopoICA), 0.72 (SOM), 0.83 (“neural gas”), 0.82 (fuzzy clustering based on deterministic annealing).

Fig. 7. Computed reference functions for the three clustering techniques (SOM, “neural gas” network, and fuzzy clustering based on deterministic annealing) for
36 code vectors, and the transformation-based methods (PCA, and ICA techniques) for 16 different components. The determined correlation coefficients are: 0.69
(PCA), 0.85 (Infomax), 0.93 (FastICA), 0.90 (TopoICA), 0.84 (SOM), 0.84 (“neural gas”), 0.84 (fuzzy clustering based on deterministic annealing).

An important aspect in real-time analysis is the required pro-
cessing time associated with each class of techniques. A com-
parison between these techniques is given in Fig. 5(a) and (b).
For the same number of target components, ICA techniques are
faster than clustering techniques.

B. Correlation With the Reference Function

An interesting aspect can be observed if we compare the com-
puted reference functions at the maximum correlation for both
the clustering and the transformation-based techniques.
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Fig. 8. Comparison of the results for the four techniques, PCA, Infomax, FastICA, and topographic ICA. The shown activation maps show only the pairwise
differences. The darker pixels show active voxels for the first technique, while the lighter pixels show the active voxels for the second technique.

Figs. 6 and 7 visualizes the computed reference functions for
all model-free methods. We can see that increasing the number
of IC components leads to a deterioration of the computed refer-
ence function, while for the unsupervised cluster techniques the
opposite is true. A larger number of code vectors improves the
classifier’s efficiency. The only exception pertains to the “neural
gas” network: The correlation coefficient for 8 codevectors has
almost the same value as that for 36 code vectors, thus sug-
gesting that this clustering technique works very efficiently even
at a lower resolution.

All CTR components obtained based on the clustering tech-
niques show, in general, an important aspect: The curve drops
during the first time step due to the presence of an artifact. Some
of the ICA techniques are able to annihilate this artifact, pro-
viding, thus, the proof for the IC separation’s feasibility. In gen-
eral, the obtained correlations for the clustering methods are
higher for a larger number of CV, suggesting that unsupervised
clustering works more robustly.

Fig. 7 shows for 36 CVs the component time course most
closely associated with the visual task for all two main tech-
niques. The best results are achieved by the “neural gas” net-
work and the fuzzy clustering based on deterministic annealing,
yielding almost identical reference functions, and a correlation
coefficient of between those two.

Both Figs. 6 and 7 show clearly an increase in sensitivity
of the CTR components based on the unsupervised clustering
methods. A sensitivity range of [ 50, 50] is common for all
clustering techniques. Among the ICA techniques, topographic
ICA shows the largest sensitivity range of [ 10, 10] compared
to the remaining ICA techniques.

C. Activation Maps

To further differentiate in terms of detecting activation clus-
ters, we take a look at the activation maps of the CTR compo-
nent for all model-free analysis methods.

Fig. 8 shows the activation maps as a comparison of results
obtained by the four ICA techniques.

The striking similarity between the “neural gas” network and
the fuzzy clustering based on deterministic annealing is also vi-
sualized in Fig. 9 which shows the activation maps as a compar-
ison of results obtained by the three clustering techniques.

To further differentiate in terms of detecting activation clus-
ters, we take a look at the differences in the activation maps
for topographic ICA versus “neural gas,” and fuzzy clustering
based on deterministic annealing, as illustrated by Fig. 10. Here
again, it is evident that the topographic ICA unifies the strengths
of the two other techniques, and that the resulting pairwise pixel
differences are minimal and scattered.

This finding suggests that the relaxation of the independence
condition for neighboring components in ICA applied to fMRI
proves to be a better feature extraction method than traditional
ICA relying solely on a strict independence.

D. ROC Analysis

It is important to perform a quantitative analysis of the rel-
ative performance of the introduced exploratory data analysis
techniques. To do so, we compared the proposed algorithms for
8 and 36 components in terms of ROC analysis using correlation
map with a chosen threshold of 0.4. We report the ROC perfor-
mances for the five subjects in Fig. 11. The Figure illustrates the
average area under the curve and its deviations for 20 different
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Fig. 9. Comparison of the results for the three techniques, SOM, “neural gas” network, and FC for 16 code vectors. The shown activation maps show only the
pairwise differences for 16 code vectors. The darker pixels show active voxels for the first technique, while the lighter pixels show the active voxels for the second
technique.

Fig. 10. Differences in the activation maps resulting from the CTR component between topographic ICA, “neural gas,” and fuzzy clustering based on deterministic
annealing. (a) TopoICA versus “neural gas” network, and (b) TopoICA versus fuzzy clustering based on deterministic annealing. The darker pixels show voxels
being active with the first technique, while the lighter ones show only those active with the second technique. The difference activation maps show only the pairwise
differences for eight chosen codevectors. The number of code vectors and of components was set equal to eight.

ROC runs using the same parameters but different algorithms’
initializations. From Fig. 11, we can see that the clustering
methods outperform for 36 components the ICA methods
including PCA for all five subjects. For 8 components, we see
that for most subjects SOM is outperformed by topographical
ICA, while the other two clustering techniques achieve the best
results.

IV. CONCLUSION

In this paper, we have experimentally compared two ex-
ploratory data analysis methods for fMRI: the ICA techniques
versus unsupervised clustering. The ICA techniques were two
standard ICA algorithms, the Infomax and the FastICA, and a

new algorithm, the topographic ICA. The unsupervised clus-
tering techniques were two proven clustering algorithms, the
SOM and the fuzzy clustering based on deterministic annealing,
and a less known algorithm, the “neural gas” network.

The goal of the paper was to determine the robustness
and reliability of extracting task-related activation maps and
time-courses from fMRI data sets. The success of ICA methods
is based on the condition that the spatial distribution of brain
areas activated by task performance must be spatially indepen-
dent of the distributions of areas affected by artifacts. It was
also shown that unsupervised clustering techniques represent a
successful strategy for the analysis of time-courses from fMRI
data sets. The increasing cluster resolution proved to reveal
extremely well the structure of the data set. From the ROC
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Fig. 11. Results of the comparison between the two different exploratory data analysis methods on fMRI data. Spatial accuracy of the different maps is assessed
by ROC analysis using correlation map with a chosen threshold of 0.4. It illustrates the average area under the curve and its deviations for 20 different ROC runs
using the same parameters but different algorithms’ initializations. The number of chosen ICs or CVs for all techniques is equal to 8 and 36 and results are plotted
for all five subjects.

analysis, we observe that for 36 components, the clustering
methods outperform the transformation-based methods for all
five subjects. For 8 components, we see that for most subjects
SOM is outperformed by topographical ICA, while the “neural
gas” network and fuzzy clustering based on deterministic
annealing achieve the best results.

Both the “neural gas” network and fuzzy clustering based
on deterministic annealing outperform ICA in terms of clas-
sification results and sensitivity range of the CTR-component
but require a longer processing time than the ICA methods.
Another important aspect is that topographical ICA represents
a unifying paradigm between transformation-based and clus-
tering techniques and, thus, bridges the discriminatory capabil-
ities of FastICA and “neural gas” network. The relaxation of
the independence condition for neighboring components leads
to an increase in sensitivity range compared to standard ICA,
and achieves in most cases, a higher correlation coefficient com-
pared to the other ICA techniques.

The applicability of the new algorithm is demonstrated on
experimental data.
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