
Annealed Pruning of Neural Network Connections
Implementing a new machine-learning technique with Keras

Brian Bartoldson
Florida State University
Department of Scientific Computing
bb11t@my.fsu.edu

Abstract
Keras is a Python module for building neural networks that are capable of solving artificial intelligence prob-

lems. Neural networks must be trained, and preventing overfitting means ensuring that a neural network’s accuracy
on training data is not significantly greater than the network’s accuracy on general data. To prevent overfitting,
Keras provides tools such as Dropout. I add to Keras the ability to use a new overfitting-prevention tool, annealed
pruning, which reduces the size of the neural network as the network trains. Tests on the MNIST database show
that annealed pruning is competitive with Dropout on both training time and accuracy.

Introduction

Artificial neural networks (ANNs) grew out of early models of biological neural networks and are
now the state-of-the-art in a variety of machine learning problems. An ANN computes a function
fw(x) that is parameterized by a weight vector w, and w is optimized via gradient descent. A con-
cern of those who use neural networks is ensuring that the ANN does not overfit to the training data,
xtraining. Overfitting happens when the neural network is computing a function fw(x) that performs
worse in the wild (on xgeneral) than it does while training (on xtraining). For example, a neural net-
work responsible for driving a car has each turn/acceleration/honk/etc. being determined by fw(x).
Preventing overfitting would ensure that the car’s performance in the real world is not worse than the
car’s performance on test tracks; i.e., the car would only be safe for xgeneral if the car’s ANN did not
overfit to xtraining.

This work seeks to evaluate annealed pruning, an overfitting prevention technique, by comparing it
to Dropout, an overfitting prevention technique that facilitates record-setting performance on machine
learning problems [3].

Background

Test Problem: MNIST Handwritten Digit Classification

Figure 1: MNIST digit examples
[5].

The Mixed National Institute of Standards and Technology
(MNIST) database is a collection of images of handwritten
digits. A sample of images from this database is shown in
Figure 1. Each image xi is 256 (28x28) pixels and possesses
a corresponding label yi for the digit that is represented in the
image. When an image is fed to the neural network, the neural
network computes fw(xi), and the loss/error is some function
L(fw(xi), yi).

Overfitting is a concern when making a model to classify
the MNIST training data, which makes it possible to compare
the overfitting-prevention abilities of annealing and Dropout.
The best performing algorithm for MNIST is a neural network that uses Dropout/DropConnect and
correctly classifies 99.8% of handwritten digits, misclassifying 21/10,000 test images [6].

Neural Networks

Figure 2: The input z to this neuron is the prod-
uct of three pixel intensities and three weights
plus the bias: z =

∑
j wjxj + b. The neuron’s

output a, assuming a logistic activation function
σ, is a = σ(z) = (1 + e−z)−1 [5].

A neural network is constructed from a set of neu-
rons, each of which takes input values from the
data or other neurons in the network. A neuron’s
input values are multiplied by weights, summed,
added to a bias term, and then passed through
a non-linear activation function σ. Using the
MNIST example, which has pixel intensities as in-
put values, a neuron behaves as shown in Figure 2.

A neural network typically has 3+ layers of neu-
rons. As shown in Figure 3, these layers can be
broken up into three types: input, hidden, and out-
put. An input layer contains the data, a hidden layer contains neurons of the type shown in Figure 2,
and the output layer contains the result of the input data passing through the entire neural network.

Figure 3: A neural network with four
layers [4].

Each connection between neurons has an associated
weight, as shown in Figure 2. The neural network is trained
by modifying each of these weights via gradient descent. Ba-
sically, after the neural network computes fw(xi), the loss
L(fw(xi), yi) is calculated, and each weight wj is updated
with ∂L

∂wj
such that the loss on the training example xi is re-

duced.
This training procedure leads to a neural network
fw(x) that minimizes L(fw(xtraining), ytraining), but

fw(x) does not necessarily minimize L(fw(xgeneral), ygeneral). fw(x) will only minimize
L(fw(xgeneral), ygeneral) if we prevent overfitting to the idiosyncrasies of xtraining and ytraining.

Dropout

Figure 4: No information
passes through faded con-
nections [5].

Dropout is a tool used during neural network training that reduces over-
fitting. Dropout randomly blocks a percentage of connections during
training. The set of connections that is blocked changes as training
proceeds. Figure 4 illustrates a network with a Dropout rate of 50%,
and we can think of the resulting sub-network as computing and train-
ing fw1(x). Since different, random groups of three neurons are shut
down, the neural network computes different functions fwk(x). Once
training is finished, all connections are turned on. The output fw(x)
behaves similarly to a vote among the many trained networks fwk(x),
and voting helps prevent weighting idiosyncrasies of any particular xi
too heavily (overfitting).

Annealed Pruning of Connections

Algorithm

Figure 5: A general algorithm for gradient descent with an-
nealing [1].

While Dropout pauses certain connections, an-
nealed pruning permanently removes connec-
tions until only a specified number of parameters
(weights/connections) remains. Annealed prun-
ing proceeds as shown in Figure 5, in which B
represents what this poster has called w.

“Key ideas in the algorithm design are: a) us-
ing an annealing plan to lessen the greediness in
reducing the dimensionality from M to k, and b)
gradually removing the most irrelevant variables
to facilitate computation” [1]. When a neural net-
work’s size is restricted, it can’t as easily afford
to model the aspects of the data that aren’t helpful, like idiosyncratic noise. This helps prevent over-
fitting.

Keras Implementation
Keras is a library that simplifies the construction of neural networks in Python. Keras provides users
with the ability to execute custom functions (known as callbacks) while a network trains. I constructed
a custom callback that takes layer numbers as arguments and performs annealing on those layers of
the neural network that the callback is issued on.

The neural network that classifies MNIST digits with annealing is ANNA. The starting point for
ANNA was ANND, which is mnist cnn.py from the Keras GitHub repository [2]. ANND uses
Dropout in its final two layers, and I replaced Dropout with annealing to make ANNA. The anneal-
ing schedule I used for ANNA removes 0.5% of the connections in a layer every 50 weight updates.

Results

Figure 6: Training data and test data accuracies at each epoch for both
ANNA and ANND. Each epoch includes 60,000 training images.

The accuracies of ANNA and ANND
are plotted in Figure 6 below. The fi-
nal accuracies are: ANNA = 98.89%,
and ANND = 98.76%. Thus, anneal-
ing beats Dropout by 0.13 percentage
points, or 13 images.
ANNA and ANND trained for 12

epochs, seeing 60,000 training images
each epoch. Both networks took fewer
than 7 minutes to train on a K1100M
GPU, with ANND training faster than
ANNA by about 10 seconds, or 2%
of total training time. If the anneal-
ing function can be modified such that
annealed weights are absent instead of

masked, then the reduced number of computations may make ANNA quicker to train.

Conclusions
Annealed pruning, a new overfitting-prevention technique, removes connections between layers in a
neural network to make the function that the neural network computes more parsimonious. Python
and Keras were used to compare annealed pruning to Dropout, a separate technique for preventing
overfitting that has had empirical success. Preliminary results on the MNIST handwritten digit classi-
fication problem showed that annealed pruning led to slightly higher classification accuracy (by 0.13
percentage points, or 13 images) at the cost of a slightly longer training time (≈ 2% slower).

Forthcoming Research
•Delete connections instead of masking connections to reduce computations.

•ANND does not reach 99.25% accuracy, which it should be doing according to the Keras GitHub
page (Keras, 2016).

• Push ANNA and ANND closer to state-of-the-art accuracy.

• Implement the prescribed annealing schedule from [1].

References
[1] A. Barbu et al. Feature selection with annealing for computer vision and big data learning.

[2] F. Chollet. mnist cnn.py. https://github.com/fchollet/keras/blob/master/
examples/mnist_cnn.py, 2016.

[3] G. Hinton et al. Improving neural networks by preventing co-adaptation of feature detectors.

[4] A. Karpathy. Cs231n: Convolutional neural networks for visual recognition. http://cs231n.
stanford.edu/, 2016.

[5] Michael A. Nielsen. Neural networks and deep learning. 2015.

[6] L. Wan et al. Regularization of neural network using dropconnect.

Acknowledgements
Dr. Erlebacher and Dr. Barbu assisted and inspired my work on this project.


