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I have a huge number of data samples; can I find a small number of trends that explain them?

The second item of data we collect is probably quite different from the first. But unless our data is completely
random, we expect that in a large sample, many date items are very similar. In fact, it’s probably true that
most of the data values are close to a small number of typical cases.

In principal component analysis (PCA), we try to recombine our data in ways that reveals the most infor-
mation in the fewest number of components. We will review two methods for carrying out PCA, apply each
to the same problem, and finish with an application involving image analysis.

1 Eigenvalues and Singular Values

There are two common approaches to PCA, both based on linear algebra. Assuming the data is stored as an
m× n array A, we can essentially do an eigenvalue analysis of the symmetric matrix A′A, or we can apply
the singular value decomposition (SVD) directly to A.

In this exercise, we will simply make sure you are familiar with the MATLAB commands needed, and check
that the factorizations are correct.

Exercise 1:

• Create the matrix A by calling rand(6,4);
• Compute ATA as the transpose of A times A;
• Use the eig() function to get X, the eigenvector and L, the eigenvalue matrices associated with A;
• For a single eigenvalue, the eigenvalue equation is written Ax = λx;. Let x be the first column of X,

and lambda be L(1,1), and verify that x and lambda satisfy the eigenvalue equation for ATA;
• For all the eigenvalues of a square system, write A = X ′LX; Verify that X and L satisfy this for ATA;
• Now compute U, S, V using the svd() function;
• Verify that these factors satisfy A = USV ′;
• Use the first three SVD components to approximate A:

A3 = U( : , 1 : 3 ) ∗ S ( 1 : 3 , 1 : 3 ) ∗ V( : , 1 : 3 ) ’ ;

and compare this to A;

2 PCA by Eigenvalues of A’A

We will load a set of data about the chemical composition of various glass samples. We will ignore the
first and last columns, copying the remaining data into an m × n array A. We “center” each column by
subtracting off its mean. We create an n×n matrix by computing ATA = A′A. We compute the eigenvalues
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and eigenvectors of ATA. The eigenvectors with largest eigenvalues indicate the components that have the
most information in them. If we plot the eigenvalues, we can see the information content of each component.

Exercise 2:

• Use csvread() to read glass data.csv into the variable data;
• Create the matrix A from entries data(:,2:end-1);
• Get column means mu=mean(A) and subtract from each column;
• Compute ATA by multiplying the transpose of A times A;
• Get eigenvector and eigenvalue matrices, and extract the diagonal:

[ VEC, VAL ] = e i g ( ATA ) ;
lam = diag ( VAL ) ;

• Plot the eigenvalues; you should see a sharp drop in magnitude;
• Plot the variance captured by the first K eigenvectors:

y = [ 0 . 0 ; cumsum( lam ) ] / sum ( lam ) ;
p l o t ( 0 : 9 , y ) ;

Based on your second plot, how many of the 9 eigenvectors would you need to use in order to account for at
least 80% of the variance in the original data?

3 PCA by Singular Value Decomposition of A

PCA can also be carried out using the singular value decomposition. Given a choice, the SVD should be
preferred. For one thing, it works directly with the matrix A rather than with A′A, so the condition number
(resistance to error growth) is better. For the SVD algorithm, the importance of each singular vector is
represented by the square of the corresponding singular value.

Exercise 3:

• Use csvread() to read glass data.csv into the variable data;
• Create the matrix A from entries data(:,2:end-1);
• Get column means mu=mean(A) and subtract from each column;
• Use the svd() command to get factors U, S, V, extract singular values from S and square them:

[ U, S , V ] = svd ( A ) ;
svec = diag ( S ) ;
svec = svec . ˆ 2 ;

• Plot the squared singular values; you should see a sharp drop in magnitude;
• Plot the variance captured by the first K singular vectors:

y = [ 0 . 0 ; cumsum( svec ) ] / sum ( svec ) ;
p l o t ( 0 : 9 , y ) ;

Your SVD plots should be almost identical to the eigenvalue plots.

4 PCA for Image Data

Consider an black and white image as an m×n array A of numbers. Now imagine each column of this array
as being a data item, so that we have n items, each of dimension m. Note that usually, we have thought of
the rows of an array as being the data items. However, for the SVD, it will be more natural to work with
columns.
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If we compute the SVD of A, then we will be able to approximate the original image using combinations of
a small set of singular vectors. We also can compute automatically whether we have captured most of the
information in the image. Exercise 3:

• Use the imread() function to read the image casablanca.png into array I, which is of type “unsigned
integer 8 bit” or uint8 ;•

• Set m, n to the dimensions of I;
• Use the double() function to create A, a real copy of I;
• Use the svd() function to get factors U, S, V of A;
• Extract the singular values, square them, and plot them:

svec = diag ( S ) ;
svec = svec . ˆ 2 ;
p l o t ( 1 : l ength ( svec ) , svec , ’ bo−’ ) ;

• Create a compressed image using K=10 components:

k = 10 ;
I2 = U( : , 1 : k ) ∗ S ( 1 : k , 1 : k ) ∗ V( : , 1 : k ) ’ ;
I2 min = min ( min ( I2 ) ) ;
I2 max = max ( max ( I2 ) ) ;
I2 = 255 ∗ ( I2 − I2−min ) / ( I2 max − I2 min ) ;
I2 = uint8 ( I2 ) ;
imshow ( I2 ) ;

• Repeat the previous step with K=20 components;
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