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Introductory Comments Motivation and Examples

About Supervised Learning Tasks ...

Data/observations come as samples z' = (x/,y’) from a product space Z = X x ) where
typically X = R, ) = R™. The first component x represents attributes/features identifying
members of entity of interest (medical images, customers, etc.), the second component y'
represents properties associated with the features x'.

It suffices to consider scalar properties y' = y/, i.e., m = 1. The “spatial” variable d instead
of the features could be large.

Given aset 3y = {z',...,zN} C Z of samples (data), the key objective is
Prediction/Generalization. This means, given a new feature X, predict its property y, using
knowledge of 3.

Without any kind of additional a priori information - prior - it is impossible to predict/learn y
from the data 3. For instance, one can only quantify a polynomial interpolation error, if
one knows something about the derivatives of the interpolated function.

In Supervised Learning is given in terms of the following (Statistical) Model: The samples
2/ = (x/, y') are i.i.d. drawn instances of a random variable (X, Y) with joint density
p(x,y). Typically p(x, y) is unknown (except perhaps for information about range and
support) - (non-parametric estimation).

If y takes only finitely many values - labels, we talk about classification - this lecture. The
goal then is to assign to any new feature x a label from this finite set. For most purposes it
suffices to understand binary classification, i.e., Y = {0,1} or {—1,1}.

If the properties y have a continuous range, one seeks a function ?(x) ~ y. This is called
regression - next lecture.

The following illustrations are taken from: A. Statnikov, D. Hardin, I. Guyon, C. F. Aliferis
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Introductory Comments Motivation and Examples

Data-analysis problems of interest

1. Build computational classification models (or
“classifiers”) that assign patients/samples into two or
more classes.

- Classifiers can be used for diagnosis, outcome prediction, and
other classification tasks.

- E.g., build a decision-support system to diagnose primary and
metastatic cancers from gene expression profiles of the patients:

e—— P
L — I

Classifier

model S

Metastatic Cancer
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Introductory Comments Motivation and Examples

Data-analysis problems of interest

2. Build computational regression models to predict values
of some continuous response variable or outcome.

- Regression models can be used to predict survival, length of stay
in the hospital, laboratory test values, etc.

- E.g., build a decision-support system to predict optimal dosage
of the drug to be administered to the patient. This dosage is
determined by the values of patient biomarkers, and clinical and
demographics data:

- Optimal
|, — [EBEEEEET] —» | Regression | |—» | dosageiss
model
. Biomarkers, IU/Ke/week
Patient clinical and

demographics data
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Introductory Comments Motivation and Examples

Data-analysis problems of interest

3. Out of all measured variables in the dataset, select the
smallest subset of variables that is necessary for the
most accurate prediction (classification or regression) of
some variable of interest (e.g., phenotypic response
variable).

- E.g., find the most compact panel of breast cancer biomarkers
from microarray gene expression data for 20,000 genes:

Breast

cancer

tissues T .
Normal J =
tissues l
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Introductory Comments Motivation and Examples

Data-analysis problems of interest

4. Build a computational model to identify novel or outlier
patients/samples.

- Such models can be used to discover deviations in sample
handling protocol when doing quality control of assays, etc.

- E.g., build a decision-support system to identify aliens.
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Introductory Comments Motivation and Examples

Data-analysis problems of interest

5. Group patients/samples into several
clusters based on their similarity.

- These methods can be used to discovery  ciyers1 [ IRINTNED

disease sub-types and for other tasks.

- E.g., consider clustering of brain tumor Cluster#2
patients into 4 clusters based on their gene
expression profiles. All patients have the ¢ sters3
same pathological sub-type of the disease,
and clustering discovers new disease
subtypes that happen to have different Cluster#4
characteristics in terms of patient survival
and time to recurrence after treatment.
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Classification What is this about?

Basic principles of classification

* Want to classify objects as boats and houses.

W. Dahmen, J. Burkardt (DASIV) V - Classification 11/88



Classification What is this about?

Basic principles of classification

* All objects before the coast line are boats and all objects after the
coast line are houses.
* Coast line serves as a decision surface that separates two classes.
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Classification What is this about?

Basic principles of classification

These boats will be misclassified as houses
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Classification What is this about?

Basic principles of classification

Longitude

O Boat

House

Latitude

* The methods that build classification models (i.e., “classification algorithms”)
operate very similarly to the previous example.
* First all objects are represented geometrically.
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Classification What is this about?

Basic principles of classification

Longitude

O Boat

House

Latitude

Then the algorithm seeks to find a decision
surface that separates classes of objects
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Classification What is this about?

Main Methodologies

The objects to be classified, in the above examples patients, boats, and houses, are represented
by feature vectors in a high-dimensional Euclidean space.

@ Nearest neighbor search;

9 Support Vector Machines (SVM) - Kernel Methods;
© Decision trees - CART, Random forests;

© Neural networks.

This course: 2, 4 and perhaps a bit about 1, 3
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Classification

Linear Separators

Warm Up - Linear Separation

Gene Y
*
* o
x5 *
xR K
* &

L J

J

T
Normal patients

Cancer patients

Gene X

* Consider example dataset described by 2 genes, gene X and gene Y
* Represent patients geometrically (by “vectors”)
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Classification Warm Up - Linear Separation

Linear Separators

Gene Y

Normal patients Cancer patients

Gene X

* Find a linear decision surface (“hyperplane”) that can separate
patient classes and has the largest distance (i.e., largest “gap” or
“margin”) between border-line patients (i.e., “support vectors”);

W. Dahmen, J. Burkardt (DASIV) V - Classification



Classification Warm Up - Linear Separation

Hyperplanes

Recall: an affine hyperplane H ¢ R? can be defined as
H={xecR?:x-w+b=0forsome beR, we R} (3.1)

In fact, any two points x', x? belong to H iff (x! — x?) - w = 0, i.e., their difference is
perpendicular to the vector w, i.e.,

H=Hw,b)={xecR: (x—x° . -w=0 for any fixed x° € H}, ~~ (3.2)

Remark 1

(i) Varying b causes just a parallel shift of H. Also, given H, w and b are only determined up a
scalar multiple.

(ii) For any x' € R? one has

X' + b|
dist (H,x") := inf ||’ — X :|wx7+ 3.3
s (HX) = inf X = xlle = = (3:3)
(iii) The distance dist (H, H") between any two parallel hyperplanes H(w, b), H(w, b’) is
. |b— b
dist(H,H") = . (3.4)
llwll2

Since H and H' are parallel, we have dist (H, H") = dist (H, x") for any x’ € H'. Since then
w-x' = —b’, the claim follows directly from (i), (3.3).
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Classification Warm Up - Linear Separation

Hyperplanes some arguments...

(i) follows directly from the above orthogonality statement (3.2).

Regarding (ii), for any fixed x? € H, H — x? =: Uis a (d — 1)-dimensional linear subspace of R?.
By definition U = {x : x € RY, x-w = 0}. Letu’,...,u9~" C RY be orthonormal vectors
perpendicular to w,i.e.,w-u' =0,i=1,...d — 1. Then the u’ form an orthonormal basis for U.
Clearly

dist (H,x') = dist (H — x%,x — x%) = dist (U, x’ = x°) = ||(x' = x?) = Py(x’ — xO) ||,

where we have used the Projection Theorem 24, Lecture |. Moreover, by Lecture |, (5.26), page
47, we know that

d—1 o (x, _ XO) W d—1 o
Pole = x%) = 32(( = x0) -uu', - (= x0) = w3 (¢ - x) - u,
i=1 2 i=1
since w/|\w||z,u’, ..., u?=" form an orthonormal basis for all of R9. Thus
X —x% - w w w-(x' —x° w-x' +b
diSt(H,X/) — ||(X/—X0)—P1U(X'—X0)||2 — H( ) H — | ( )l — I + |
wiz (w212 lIwll2 lIwil2
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Classification Warm Up - Linear Separation

Warm Up - Linearly Separably Data

Assumption: there exists a hyperplane that separates data with positive and negative labels.

Negative instances (y=-1) Positive instances (y=+1)

But: if data are linearly separable then there are generally infinitely many separating hyperplanes
- how to compute a particularly “good ” one?
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Classification Warm Up - Linear Separation

Warm Up - Linearly Separably Data

@ The red hyperplane looks “good” because it
maximizes the width of the margin (gap) between
the two sets. We know it can be written as H(w, b)
for some w € R, b € R.

@ H(w, b) is the zero set of the affine function
f(x) == w - x + b. Since Vf(x) = w, the slope in
direction w can be adjusted by scaling w and b
which maintains the zero set H(w, b).

. ) @ The level sets {x € RY : f(x) = £c}, any ¢ € R, at

Negative instances (y=-1) Positive instances (y=+1) equal distance frOm H(W7 b)’ are the hyperplanes
{XeR:w-x+bTFc=0}=H(Ww,bTFc).

@ H(w, b) is therefore optimally positioned if the
points (x*,41) € Z closest to H(w, b), belong to
the graph of w-x + b, i.e., x* € H(w,bF1). The
x* on the boundary of the separating margin are
called support vectors.

@ By Remark 1, width of the margin is

(b—1)—(b+1)| _ 2
wll2 Iwll2

(3.5)

T
Negative instances (y=-1) Positive instances (y=+1)
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Classification Warm Up - Linear Separation

Linear Support Vector Machine (SVM) Classifiers

The process of determining the margin maximizing
W Eb=0 hyperplane H(w, b) is called linear Support Vector

e Machine (SVM). The parameters w € RY, b € R have the
**** " property that for (x', y;) € 2
*K ok s 050 e, wexi+b>1  if y =+ ,,
* ok ‘e® o %0 : < yi(w-x'+b) > 1.
2T °.° w-x+b< -1 if y=-1,
L r TR '. ) (36)
Negative instances (y=-1) Positive instances (y=+1)

By (3.5), the smaller ||w||, the wider is the margin !
In summary: solve the constrained optimization problem

N 1 . i .
minimize over w e R, be R : EHWH% subjectto y(w-x'"+b)>1, i=1,....N. (3.7)

The classifier
h: x> h(x) := sign (W - X+ b) (3.8)

is called hard-margin linear SVM.

The problem (3.7) requires minimizing a quadratic functional under linear constraints which is still
a convex optimization problem. Efficient methods will be discussed later.
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Classification Warm Up - Linear Separation

Soft-Margin Linear SVM

Observations and measurements are viewed as random

samples from some underlying distribution to account for 10.6 [ 0
measurement errors, i.e., the observed labels do not represent & 0 1' ') o ®
certain information but random events. Hence, even if a * ; ¢
sample set 3 = {(x',y1),...,(xN,yn)} may notbe abletobe & 0 Y ¢ 0
linearly separated by a hyperplane, they may be nearly so. In * o X g ¢
such a case it may still be reasonable to use a linear SVM. We *x '
discuss next how to deal with unavoidable training errors. ;
Gap
Instead of minimizing %||w||§ subject to the constraints y;(w-x/ + b) > 1,j=1,..., N, (see

(3.7)), we relax the constraints as follows:
Approach: To each j =1,..., N assign a slack variable §; > 0, £ = (&1,...,én) € Rﬂ, ~

N

minimizew7b’§ %lel% + CZE/ subjectto  yj(w-x+b)>1-¢ ,1<j<N, (3.9)
j=1

constraints
objective functional

~ W, b, take again h(x) := sgn (W - x + b).

This is still a quadratic optimization problem under linear constraints, more about solvability later.
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Classification Warm Up - Linear Separation

Soft-Margin Linear SVM

N
1 .
minimize over w, b: §||w||§ +C E ¢ subjectto  y(w-xX +b)>1—-¢,1<j<N.
J=1

@ C very large: this is very close to hard-margin SVM;

@ C very small: one achieves a small || bw||» and
hence a wide margin (see (3.5)) but at the expense
of many misclassifications.

@ The proper choice of C depends on the problem
and will be discussed later. It can be seen as Model
Selection.

C=0.15 C=0.1
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Classification Some Further Orientation

What if there is no reasonable linear separation? ...

GeneY

[Cancer | - u Decision surface

GeneX

@ Find a function f : X — R, taking positive values at data with positive labels and negative
values at data with negative labels;

@ Find the decision boundary {x € R? : f(x) = 0}. The classifier h: X — {#1} is then
defined as

h(x) = { T x>0, } = sgn (f(x)) Plug-in-Estimator. (3.10)
-1 if f(x)<o0.

This corresponds to a linear separation in the higher dimensional space R+,
@ When f has the special form

fx)=w-®(x)+b, beR,we ]R‘_”, o :RY - Ra, d possibly larger than d, (3.11)
(x is replaced by ®(x)) this leads to the concept of Support Vector Machines (SVM).
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Classification Some Further Orientation

What if things are really mixed up? ...

. 77 RN &
1 I i )
. [} t
‘ ‘ X
>—2 o L g ¢ 4 =
i i !
‘ : ‘ X
: { :
=il ° ° ®
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Classification Some Further Orientation

What if things are really mixed up? ...
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Classification

Some Further Orientation

What if things are really mixed up? ...

Z/\
b
£(x)
o oe o
)\Il‘ ,l'. & Y\
S
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Classification Some Further Orientation

What does this tell us? ...

o Data contain outliers and reflect only statistical information about an underlying process.
9 Building classifiers that are exact on the training data may become very complex.

e It may also cause overfitting which, in turn, may result in poor generalization properties,
i.e., due to increased variance, the ability to predict well on new samples.

0 One should therefore not insist on classifying the training data exactly.

Q Instead one should seek for a proper balance between exactness on training data and
generalization, i.e., the ability to predict well on new samples.

@ The main strategies for arriving at such a balance are:

(a) Complexity Penalization the classifier is constructed as the solution of an optimization
problem where the objective functional consists of a data-fit-term and a penalty term that
controls the complexity of the estimator; see the soft-margin linear SVM (3.9).

(b) Model Selection: one builds several classifiers subject to different design parameters
and “compares”.
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Classification Convex Optimization

Convexity

<+—Local minimum

“—Global minimum Global minimum

@ A function f : X — R is called convex if for any x,v € X one has

(G0 w) < (100 + 1),

i.e., the value of f at the average of two points is always bounded from above by the
average of the values of f Exercise: show that this is equivalent to the statement: for any
x', ..., X" € X, A\q,..., \p>0suchthat \{ +--- + Ap = 1 one has

FX! o+ AnXT) < A F(XT) + - - 4 Apf(X7).

@ Property: any local minimum of a convex function is also a global minimum.
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Classification Convex Optimization

QP-Problems

Recall from (3.9): linear soft-margin SVM leads to (given the data (x', y;))

N
1 .
minimize,, ,, ¢ E\lw”% +C> ¢ subjectto y(w-X +b)>1-¢ ,1<j<N,.
=

constraints

objective

@ Since %||w||§ + CZJ-’L &; the objective is a quadratic function in (w, b, €).

@ The constraints are linear.

@ Such optimization problems are called Convex Quadratic Programming (QP) problems.

@ QP-problems can be solved by descent or greedy methods that decrease the objective in
an iterative fashion.

For zero slacks, i.e., § =0, j=1,..., N, the problem has the form
L 1 ) .
minimizey cpa Ex-'—Ax +c'x subjectto (Bx—b)> 0 (componentwise) (8.12)
where above A<y <4 =1 € RI¥9, B € RNX9 hasrows y;x/,j=1,...,N, b € RN has
components bj == yib—1,j=1,...,N,c=0.
v
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Classification Convex Optimization

Model Problem

Consider the case d = 1 (w <> Xx)

minimize over x: — (xZ + x3) subjectto x; +x —1>0.

1
2

X

The solution is x;=1/2 and x,=1/2.

n, J. Burkardt (DASIV)



Classification Convex Optimization

Lagrange Multipliers A Short Digression

Optimization with equality constraints: F : RY — Rconvex, g¢:RY —» R

Minimize, . pa F(x) subjectto g(x)=0. (3.13)

Idea: find necessary conditions for x to be a local constrained minimum:

Recall that the direction of steepest descent of a function F at a point X is —VxF(X).

Suppose X is a feasible point, i.e., g(x) = 0. For F(x + tz) < F(Z) for some t > 0 and
some direction z, one must have

VF(X)-z<0, (why?) (3.14)

For X + z to be tangential to the constraint surface, z must be perpendicular to the
constraint surface, i.e., -
! ! z-Vxg(X) = 0. (3.15)

If VxF(X) and Vxg(X) point in the same direction, i.e.,
VxF(X) = —aVxg(Xx) forsomeacR (3.16)

one cannot satisfy (3.14) and (3.15) simultaneously. Hence, one cannot decrease F(X)
any further while staying feasible.
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Classification Convex Optimization

Lagrange Multipliers A Short Digression

Conclusion: A necessary condition for X to be a minimizer of
Minimize, . pa F(x) subjectto g(x)=0
is in view of (3.16): 3a € R s.t.

VxF(X) +avxg(x) =0 and g(x) =0 (& 0a(F(x) + ag(x)) = 0). (3.17)

By similar arguments one can show the following:

Proposition 4

Letg = (gi,---,9m)" : RY — R™ be vector-valued and define the Lagrangian
L(x,a) := F(x) +a-g(x) = F(x) + >, a;gi(x). Then ifx € RY is a local minimizer of

Minimize, . pq F(x) subjectto g(x)=0, (3.18)

there exists a a € R™ such that (X,a) € R? x R™ fs a critical point of the Lagrangian, i.e.,

Vil(X,3) =0 and Val(X,a) =0, (3.19)

v

The vector a € R is called Lagrange Multiplier.
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Classification Convex Optimization

KKT-Conditions A Short Digression

Optimization with inequality constraints:  F : R — R convex, ¢:RY — R7

Minimize, . pa F(x) subjectto g(x) >0 (meaning gj(x)>0,j=1,...,m). (3.20)

Karush-Kuhn-Tucker Conditions: Let L(x,a) := F(X) +a - g(x). Then, ifX is a local minimum of
(8.20) there exists a a € R™ such that the KKT-conditions hold:

Vxl(X,a) = 0 (3.21)
a > 0 componentwise (3.22)

a-g(x) =0 (3.23)
g(x) > 0 componentwise. (3.24)

Note: (3.22) - (3.24) replace ValL(x,a) = 0.

Proof: Let R := {x € RY : g(x) > 0} be the feasible region (constraints are satisfied).

Case 1: the unconstrained local minimum X belongs to R, i.e., g(X) > 0. Then X must be a
critical point of F, i.e., VxF(X) = 0 and (3.24) holds. Taking a = 0 satisfies (3.22) and (3.23).
Because of a = 0 and VxF(X) = 0 (3.21) follows. Hence the KKT-conditions hold at x.
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Classification Convex Optimization

KKT-Conditions A Short Digression

Proof of Theorem 5 continued: Consider now:

Case 2: The unconstrained local minimum lies outside the feasible region R. Consider first the
case m=1,ie, g:RY — R, the case m > 1 follows the same ideas and will be sketched later.

Then X € OR, i.e., g(X) = 0 which is (3.23) and (3.24). Thus, we have a minimization problem
with one equality constraint.

By the previous reasoning we must therefore have that VxF(X) = —aVxg(X) for some a € R
which is (3.21). Also the direction of steepest descent of F at X must point outside the feasible
reagion. Since g(x) > 0 inside R, g grows when moving inside the feasible reagion, i.e., the
direction of steepest descent —Vxg(X) must also point outside R. Hence, we must have a > 0
which is (3.22). This completes the argument for m = 1.

Now consider m > 1. Again, we know that the constrained minimizer must lie on the boundary
OR of the feasible region R, i.e., X € 9R.

The argument is slightly more complicated because the feasible region
R:={xeR:g(x) >0} ={xeR?:gi(x)>0,j=1,...,m}is slightly more complicated. In
fact, defining the componentwise feasible regions

m
R:={xeR?:g(x)>0}, j=1,...,m onehas R=[)AR,.
i=1
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Classification Convex Optimization

KKT-Conditions A Short Digression

Proof of Theorem 5 continued: Hence, the boundary of R is more complicated

m
R = J(@R NR).
=1

Suppose for a moment that the constrained minimizer X belongs to just a singe boundary facet
dR; N R which means g;(X) = 0, g;(X) > 0 for all / # i. By the same argument as before we can
conclude that there must exist a a; > 0 such that VxF(X) 4+ a;Vxg;(X) = 0. If we set g = 0,

I # i, it follows that VxL(X,a) = 0 which is (3.21), and (3.22) - (3.24) are obviously valid.

The case where the constrained minimizer X belongs to the intersection of several facets,
°_1(8R;, N 'R), one cannot move in any of these facets to decrease F. This means the direction

—VxF(X) of steepest descent must point into the cone formed as the intersection of half spaces

defined by the tangent planes to R at X. This means —VxF(X) must be a linear combination

S
—VxF(X) =Y 3, Vxg,(X), &, >0,r=1,...,s
r=1

Setting again @ = 0, for I & {i, ..., is}, it follows that (3.21) - (3.24) hold for X, a. This finishes
the proof. O
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Classification Convex Optimization

Active Constraints

The above discussion can be summarized as follows:
@ The ith constraint is called active at X if gj(X) = 0, i.e., X lies on OR;.
@ Forx to belong to the boundary &R of the feasible region R, at least one constraint has to
be active.
@ Ifthe ith constraint is active the above reasoning showed that VxF(X) = —a;Vxg;(X) for
some positive a;.
@ [Ifthe jth constraint is inactive, i.e., gj(X) > 0, the two KKT-conditions (3.22), (3.23) just say
that a; = 0.
Hence, the support supp (a) := {i : a; # 0} identifies the active constraints at a local minimum X,
i.e., when X, a satisfy the KKT-conditions, then

{ie{1,...,m}: pi(X) =0 (iis active)} = supp (a). (3.25)

W. Dahmen, J. Burkardt (DASIV) V - Classification



Classification Convex Optimization

KKT-Conditions A Short Digression

We specialize this to a quadratic problem: Let A € R9*%9 be symmetric positive semi-definite and
B € RV*9 b € RN, see Remark 3. Consider

L 1 .
minimize, . ExTAx +c¢'x subjectto Bx—b>0. (3.26)
| e — _
=:F(x) =a(x)

Since If F(x) = %XTAX is convex when A is symmetric positive definite, and since the feasible
region for g(x) = Bx — b is the intersection of half-spaces and hence again convex, the
constrained minimization problem has a solution. By convexity each local solution is a global
solution which must satisfy the KKT-conditions. Thus, X is a constrained minimizer if and only if
the KKT-condiitions hold.

The Lagrangian reads

L(x,a) = %XTAX +c'x+a'(Bx—b), xeR? acRV (3.27)

The KKT-conditions (3.21) - (3.24) are
VxL(X,a) = Ax+BTa=0, a'(Bx—b)=0, a>0 Bx>b. (3.28)
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Classification Convex Optimization

Saddle Points A Geometric Interpretation

Suppose for a moment that we have only equality constraints Bx — b = 0. Then, Proposition 4
(see (3.19)) says that the KKT-conditions (3.28) reduce to

Ax+BTa=0, Bx=b, (3.29)

Vyal(x,a) = ( : BOT ) ( : ) - ( E ) —0 (3.30)

Thus, the Hessian of L(x, a) is given by

or equivalently

REINEE:]

For A positive semi-definite the Hessian D?L is in general indefinite, i.e., it has positive and
negative eigenvalues (by symmetry all eigenvalues are real, see Lecture |). This is easily
confirmed when A= a > 0, B = b € R\ {0} since the determinant is then —b? < 0.
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Saddle Points

By Remark 8, the critical point (X, a) of L(x,a) satisfying (3.30), cannot be a minimum of L. Itis a
saddle point

L(%,3) = inf L(X,d) = sup L(X,a) = sup inf L(x,a). (3.31)
x€R? ackN acRN x€RY
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The Dual Problem equality constraints

An important strategy in quadratic programming is the passage to the so called dual problem
which is to solve the right most version (3.31), i.e.,

H(a) := inf L(x,a) ~ sup H(a). (3.32)
xeRd acRN

H(a) is often called the dual function.

Remark 9

Notice that (3.32) is now an unconstrained optimization problem. Here this is, however, a

consequence of the fact that we had only equality constraints and changes slightly when dealing
with inequality constraints. - But: how to compute H(a)?

Idea: Assume for a moment that A is non-singular.

o For fixed a the Lagrangian L(x, a) as a function of x is convex. Therefore, its

(unconstrained) minimum is a critical point VxL(x,a) = 0 which is the first KKT-condition
(3.21).

@ Eliminate x from the first KKT-condition (3.21) ~ x = —A~'BT a and substitute this into
L(x,a).
© This yields
x"Ax=a'BA"'AA"'BTa=a'BA 'B"a, a'(Bx—b)=-a'BA'BTa—a'b
which gives 1
H(a) = fEaTBA*‘ B'a—a'b. (3.33)

W. Dahmen, J. Burkardt (DASIV)

V - Classification



Classification Convex Optimization

The Dual Problem equality constraints

maximizea  H(a) = —%aTBA*1 B'a—a'b
1 <
Minimizeacgm EaTMa +a'b, where M:=BA'BT is symm. pos. def. (3.34)
<
0=VH@) =Ma+tb < Ma=-b ~ x°2 _A'BTa (3.35)

Remark 10

@ Thus, if one only has equality constraints, passing to the dual formulation, reduces the QP
problem to solving a linear positive definite system of equations.

@ We have assumed that det A # 0 to form the matrix M. If A is singular the system

327)

VxL(x,a) =0 Ax=-BTa,

has more than one solution (infinitely many in this case, but it always has at least one). We
can solve then instead the least squares problems

min [Ma + b2 —a, min|Ax+ BTa|3 (e.g. by SVD)
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The Dual Problem inequality constraints

Back to inequality constraints (3.26):  minimize, cpa %XTAX subjectto Bx—b > 0.
The associate dual problem now reads (with H(a) from (3.33))

Maximizea H(a) subsectto a>0. (3.36)

Remark 11

@ Even if the objective function F is not convex, the dual function
H(a) = infygd {F (x) + aTg(x)} as a pointwise limit is affine in a and hence convex.
Hence it is in general easier to optimize.

@ The value 6* := sup,cgd o> H(@) is in general strictly smaller than 7 := minycpg F(X).
This is called duality gap . For convex F, as in our case, and if the feasibility region

R = {x € R? : Bx — b > 0} is not empty (Slater condition), then one can show that
0* = w* (strong duality holds), that is the duality gap is zero, see e.g. [3, Chapter 5].

@ A particular interest in the dual formulation arises if d > m, i.e. there are many more
primal variables than constraints. In fact, the dual problem involves than far fewer variables.
v
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SVM Optimization Problem Primal/Dual Formulations

Back to linear SVM (slacks &; = 0 hard-margin SVM): Recall

N
1 i .
minimize over w, b 5 > w? subjectto y(w-X +b)>1, 1<j<N. (3.37)
:1_, constraints
objective
@ This is the primal formulation of a QP problem with d + 1 variables b, w;,i =1,...,d, and

N constraints, i.e. d ++ d+ 1, m + N in the above general situation.
@ By Remark 3, this is a special case of the QP-problem (3.12) with

OT 0 B/’k:y,'X;;, I':‘I,...,N,k:‘l,...,d,

Id O) Bi,d+1:}’i, 7i:17"'7N7
bi=1, i=1,....N.

(W17"'7Wd7b)—r<_>xa A_<

(3.38)
i.e.,be RN, Be RNVx(@+1),

@ SVMs work robustly even when d > N. Therefore, it is of interest to consider the dual
formulation.

@ In this case: Ais singular.
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Derivation of the Dual Formulation

Primal Formulation:

N
L 1 ) i .
minimize over w, b 3 E sz subjectto  y(w-X' +b)>1, 1<j<N,.
J=1

—_—— constraints
objective

In the present case the Lagrangian associated with the above problem reads

d N
L(w, b;a) := % > W= a(y(w-x +b)—1) (3.39)
j=1 =1

For fixed a it is convex in (w, b). Therefore, a(n unconstrained) minimizer of L(w, b; a) over
(w, b) for fixed a must be a critical point:

0 = Vy pL(w, b;a).
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Computation of the Dual Function

d N
1 )
L(w, b;a) := > Z Wj2 _ Zaj(y/(w.xl +b)—1)
j=1 j=1

To compute H(a) := infy, 4 cra+1 L(W, b;a) compute the critical points Vi pL(W, b;a) Lo0.

N
dwlw,ba) = w—> ayx =0, i=1...4d (3.40)
j=1
N ]
Opl(w,bja) = —> ay =0, (3.41)
j=1
Thus
N .
(3.40) = w=)> ayx,
v (3.42)
841) = D ay=0=a-y, ye{-1,1}"
j=1
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Computation of the Dual Function

Using the relations (3.42) for w, yields:

1 d 1 N
2 Z sz = E w2 (Z ajyjx ) (Z aquxq> Z ala/yl.ij %
J=1 q=1

,/ 1
N : (3.42) N
S a(yi(w-x +b) 1) Z (yj(w-x/) — 1) (bdrops out)
= =1
N N N
= Za,yl(Zaquxq x/) > a
j=1 g=1 i=1
N N
= D> aayyx ¥ - a
=1 i=1
Subtracting yields

N

- 1

H@) => a - E aayyx ¥ => a,-fEaTMa, M= (yx - x/yj),/ 1 (3.43)
i= // 1 i=
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The Dual Problem

N N N
- 1 P .
maximize, pn : E aj — 5 E a,-ajy,;/jx’ -x/ subjectto a; >0, and 5 ay;=0. (3.44)
i=1 ij=1 =

Objective: aT1— %aT Ma Constraints

@ Retrieve w: (3.42) ~ w:= Z}L ayxl

@ Retrieve b: letZ, := {i € suppa: y; = +1}, take fp := argmin {w - x :ieZ.},set
b:=1—w-xb

© Classifier:  h(x) := sgn (W - X + b).
Comments:

@ If the dimension d is very large (e.g. document classification d > 108) and N < d the dual
problem involves much fewer variables (e.g. if a microarray dataset contains 20,000 genes
and N = 100.

@ One doesn’t have to access the original data but only the inner products x - x/, w - x.

@ The optimization problem can actually be reduced to a(n often) much smaller size. In fact,
the solution a of the dual problem has has only #supp (a) = # of active constraints
positive entries. For an active constraint j one has y;(w - x/ 4+ b) —1 = 0. This means ¥ is
a support vector. So what counts is the number of support vectors, identified by supp (a).
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Summary

Recall from (3.9): linear soft-margin SVM leads to (given the data (X', y;),i = 1,..., N,

N
1 .
minimize,, ,, ¢ E\|w||§ +C> ¢ subjectto  y(w-X +b)>1-¢ ,1<j<N,.
=

constraints

objective

This is again the primal form of a QP problem (this time with primal variables
w=(w,...,wg)T,6=(&,...,6n) T, b € R) and can therefore be treated in the same way as
before. Concluding Remarks:

@ We have shown so far only how to formulate linear SVMs QP problems.

@ Depending on d and N (which one is larger) the actual optimization code can be applied to
the primal or dual formulation.

@ The complexity of the dual formulation depends essentially on the number of active
constraints.

@ The discussion so far therefore concerned only setting up the mathematical problem.
Discussing the concrete numerical algorithms needed to solve such QP problems is a
course by itself.

@ QP-algorithms are typically iterative, often based on a prediction step, eg. as a

Newton-step for solving (3.21) followed by a correction step to restore feasibility. Key
words: interior point methods, barrier methods, see e.g. [2, 3, 8].
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Kernel Trick

The class of problems where data with different lables can be (nearly) linearly separated is, of
course, restricted. A way of extending the viability of linear separators is to “lift” the feature
vectors X/ first into a higher dimensional feature space where they can be (at least
approximately) linearly separated.

GeneY

\Cancer " Decision surface

kernel
B —
00 00 2
oS ool -
R8s, ofe——
>0 0%

GeneX

Kernel Trick:

@ Choose a mapping ¢ := X (= RY) — H(= RPD), called feature map, that takes the data x/,
j=1,..., N, into a (typically) higher dimensional space .

@ Use a linear SVM to separate the data in H.
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Kernel SVMs

Given @ : X — H, solve

1 .
Minimize,, o p : 5||w||§ subjectto y(w- &(X)+b) > 1, 1 <j<N. (3.45)

Now, the dimension is D in which the optimization takes place. So, it is the more important to go
by the dual method: In view of (3.44), this reads

N N N
o 1 i i )
maximize, cpn E aj— — E aayy; ®(x') - &(x') subjectto & >0, and E ajy; =0.
i=1 2 ij=1 v j=1
K(x!,x/)
Oncea = (ai,...,ay) " € RY hasbeen computed: (3.46)

Q Retrieve w: (3.42) ~ w:= 3N, ay;0(x)

© Retrieve b: let Iy :={icsuppa:y; = +1}, take fp := argmin {w - d(xl) i€y}, set
b:=1—w-d(x0)

© Classifier: (3.42) =
N
h(x) = sgn(w-®(x)+b) W sgn ({ Z ayd(x/) - (D(x)} + b)
j=1

N
= sen (D0 gyKed,x) +b). (3.47)
j=1
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Comments:

@ One does not need to know the mapping . One only needs to know the kernel
K(x,y) : R? x RY — R.
@ The objective function in (3.46) can be rewritten as
N 1N 1
- To
Z:a,-fgi; ai(yiK(x',¥)y)a =1-a— Sa'KRa, (3.48)
where
= (K, X)y)) ", € RV, (3.49)

@ Maximizing 1-a— %aTRa is equivalent to minimizing %aTRa —1-a subject to the same
constraints from (3.46). This is again precisely a QP-problem of the general type (3.26)
provided that the matrix K is symmetric positive definite.

@ Note: K is symmetric positive (semi-)definite if and only if K := (K(x",x/'));\’/.:1 is
symmetric positive (semi-)definite - verify |. ’

@ This is where ¢ enters the picture:

N N D

VK = 3 ve) - o)y = 3 vl 3 antx)ad) by
ij=1 ij=1 k=1
D D

375 (vigw (X)) (v (X)) Z(Zv,mx)) >0, (3.50)

k=11,j=1 k=1 =1
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Comments continued:

@ Algorithmically things work therefore as in the linear case.

@ The transition to the dual problem is the more important since
@ The vector w belongs to RP with D > d, so the primal problem is posed in an even
higher dimensional space and hence harder to handle.
@ The constraints in the primal problem are now in general nonlinear because of ¢.
@ The size of the dual problem is still the same N, the number of data and the
constraints are still linear.
@ The main operations involve inner products.
@ The classifier (3.47) is of the form  h(x) = sgn (f(x)) where here

N
f(x) =>_ ayK(¥,x) + b. (3.51)
j=1

The estimator is a plug-in-estimator, where f is a linear combination (up to a constant shift b) of
the functions kj(x) = K(¥/,x), j =1,..., N (which happens to depend on the data), and is
therefore (for fixed data) a linear estimator.

Which kernels should be used?
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Frequently Used Kernels

Since computationally only the kernel (not the explicit feature map ®) matters we wish to better
understand what makes a kernel useful. A kernel is called legal kernel if it is a dot-product:

D
KX, %) = o(x) - o(x) =~ ¢ (x') g (%), (3.52)

k=1

where ¢ : R — RP could be any feature map. For the actual computations only the kernel
matters. The following are legal kernels.

Examples:
Q KX, ¥)=x.x linear SVM
Q K, x)=cINXIE >0 Gaussian kernel
©Q KX, ¥)=(a+x %), a>0,geN polynomial kernel
Q K, X)=(a+x %) IX¥IE a>0qgeN hybrid kernel
@ K(X',x) =tanh(kx' - X/ + b) sigmoidal kernel

Why are these indeed legal kernels, i.e., have the structure (3.52)?
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Useful Kernel Rules

Proposition 13

o A positive constant is a legal kernel.
Q Let K(x,y) be a legal kernel and c be a positive consant. Then cK(x,y) is a legal kernel.

9 If K(x,y) is a legal kernel and f any scalar function, then f(x)f(y)K(x,y) is a legal kernel
(with the same feature dimension as before).

0 The sum of legal kernels is a legal kernel where the new feature dimension is the sum of
the original ones.

Q The product of legal kernels is a legal kernel where the new feature dimension is the
product of the original ones.

v

Proof: (1), (2) and (3) are obvious. As for (4), let Ki(x,y) = ®(X) - ®(y), Ko(X,y) = V(X) - W(y).
Then

D Dy

O(X)- OY) + V() W(Y) = 3 d)ek¥) + S vk (k(y)
k=1 k=1

<$> (x) <$> (¥Y), D=Do+ Dy.
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Proof of Proposition 13 continued: Concerning (5),

(®(x) - S(y))(W(x) - W(y))

Do Dy
(32 exsny)) (X wi0w)
k=1 j=1

Do, Dy De

= > (&) Sk ME(Y) =1 > 0u(x)0(y)
Kj=1 v

= @(x) . @(y), Do = Dy - Dy. 0

One can now confirm that the above examples of kernels are indeed legal:
Example (1): trivial
Example (3): follows from Proposition 13, (1), (2), (4), and (5).

Example (2): write

o0 k
o=V Ix=yl5 — g=vIxI3 g=7lyl3 g2vxy _ f(xmv)(Z ) )

By Proposition 13, (2), (5), each summand in the series on the right is a legal kernel. By
Proposition 13, (4), the series is a legal kernel as well. The rest follows from Proposition 13, (3).
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Some lllustrations (see[9))

The Gaussian kernel:  K(x,x/) = K(x/,x) = e /Ix¥I some > 0
Geometrically: a local “bump” which is very concentrated when + is large and flat when ~ is small.

: ® - "bump”

X Py The resulting

° mapping function
Pk 00000 & & & is a combination

4 of bumps and

: cavities.

X

The plug-in-function f from (3.51) is in this case a linear combinations of Gaussian “bumps” and
“cavities”.
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Some lllustrations (see[9))

Several more views of the
data is mapped to the
feature space by Gaussian
kernel

Linear combinations of Gaussian “bumps” and “cavities”.
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Some lllustrations (see[9))

Linear hyperplane
that separates two
classes

Linear combinations of Gaussian “bumps” and “cavities”.
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Some lllustrations (see[9))

Polynomial kernel: ~ K(x,y) = (1 +x-y)3,d=2,D=10

Assume that we are dealing with 2-dimensional data
(i.e., in R2). Where will this kernel map the data?

2-dimensional space

X X

(h (2)

kernel

A
10-dimensional space

2

2 3 3 2
Loxgy Xo) X Xo XoXe Yo Yo XoXo  Xa¥e

1y (2)
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Some lllustrations (see[9))

Polynomial kernel: ~ K(x,y) = (x-y)?>,d=2,D=3
X2y . .
* Datais not linearly separable
in the input space (R2).
* Apply kernel K(X,Z)= (X Z)
*554 *)?3 . to map data to a higher
@ dimensional space (3-
53 dimensional) where it is
linearly separable.

2
o X z
K(X,Z)=(3-2)’ = ( (U]'( (J)] =[x(”z(n+x(2)z(2)]z=

[ ] X,

X2y ) \ P
2 2
X Zw
2.2 2 2 . (). (2
=X Zay T 2X0 20 %220 T X020 = ﬁx(nx(z) ‘EZ(IJZ(ZJ =®(x)- (2)
2 2
X(2) Z12)

65
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Some lllustrations (see[9))

Polynomial kernel: ~ K(x,y) = (x-y)?,d=2,D=3
XG)
Therefore, the explicit mapping is ®(x) = «/zx(”x(z)
X0y

X(2)

kernel ® %%

V2X() X2
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Mercer Kernels

e Question: What Qualifies a function K(x,y) on X x X as a legal kernel?

e The Key Property: that makes the dual formulation work is that for any samples X/ € X,
j=1,...,N, the matrix
K = (K(x', %)) ,“321 € RNXN, (3.53)

is symmetric positive (semi-)definite.

Definition 14

A continuous symmetric funktion K € C(X x X) such thatforany x/ € x,j=1,... N, any
N € N, the matrix K from (3.53) is symmetric positive definite, is called a positive definite kernel
or Mercer kernel, see [6].

e Being induced by a feature map K(x,y) = ®(x) - ¢(y) = ZE:1 ok (X)pk(y) is
by (3.50) sufficient for a kernel to be positive definite. D = oo could happen.

e We'll see that it is in essence also necessary. The following Theorem is a special case of
what is called Hilbert-Schmidt Decomposition tailored to the current needs. It can be
regarded as an infinite-dimensional version of the SVD or the spectral decomposition
theorem (see Lecture |, Theorem 31, Theorem 39).
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Hilbert Schmidt Decompositions Background Material

Theorem 15

Assume that p is a separable density on X x Y (i.e., p(x,y) = p(x)p(y)) and
G e Lo(X x Vip) = |Glly(xxyip)s € [ |G(x,y)|2dP(x,y) < co. Then, the operator
X XY

Mg : Y — X defined by
(Mo)(v) = / G(,y)V(Y)dP(Y), (3.54)
Y

is compact and there exist orthonormal systems {¢x : k € Z} C X, {¢x : k € Z} C Y such that

G(x,y) = > oxdk(X)k(y), ae where oy>0p>-->0x>--->0, o5 — 0. (3.55)
keT

Moreover e
IMall e,y = 71, IMallis = 1GlLy(sypy = (S 02) (3.56)

Here T C N is the largest subset for which the o are strictly positive.

cf. Lecture |, Theorem 3.9
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Spectral Decomposition for Compact Positive Definite Operators

Theorem 16

Assume that p is a probability density on X and G € Ly(X x X;p® p) = ||GHL2(XX;( p@p); I-€

[ |G(x,y)|?dP(x)dP(y) < co. Moreover, assume that G is symmetric positive definite, i.e
XXX

/ v(X)G(x,y)v(y)dP(x)dP(y) >0V veH, G(xy)=G(Y,X), X,y € X. (3.57)
XXX

Then, (Mg)(v) : f G(-,y)v(y)dP(y) (see (3.54)) is a compact symmetric positive definite

operator and there exists an orthonormal system {¢y : k € T} C X such that

XY) =D Mok(X)pk(y), ae where A >Xp>--- >0, A —0, (3.58)
keT

i.e., Mgk = A\kdk, k € I (eigensystem of Mg). Moreover, one has

1/2
Mgl e,y = 71, IMallis = 1Gllyaex vipmp = (D) - (3.59)
JET

cf. Lecture |, Theorem 3.1
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Mercer Kernels

@ The compactness of the operator Mg induced by G, i.e., the fact that
Gl L, (2 x x,22p) < o0 s responsible for the fact that Mg has always a discrete spectrum
also when Z = N with oy, Ay — 0.

@ Without positive definiteness but only symmetry in (3.57) one could still conclude a
decomposition like (3.58) but without the sign condition on the spectrum {A\x }xcz-

@ Theorem 16 says that if G is symmetric positive definite and square integrable in X x X
then, there exists a feature map @ : X — Lo(X, p)Z, where

(%) = (VMdk(X))kez, D =#(T)(= oo if T =N) (3.60)

@ This almost what we need for G to qualify as a kernel, except that pointwise evaluations
need to be well-defined, i.e., a kernel has to be continuous.
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Mercer’'s Theorem

Theorem 17

Suppose that K is a Mercer kernel on X x X, i.e., K(-,-) € La(X x X,®°p) N C(X x X) be
symmetric positive definite (3.57). Then, K can be expanded as

X,¥) = > Mok(X)k(y), ae where Ay >Xp>--->0, A — 0. (3.61)
kez

where {¢y : k € T} C Lo(X x X,®°3p) is an orthonormal system and the series (3.61)
converges absolutely and uniformly on compact subsets of X ,i.e., for any compact D C X x X
one has

lim sup ‘K X,y) — ZAMﬁk X)pk(y)| = 0.

n~>oo Xy)GD k<n
Moreover, foranyxi € X,j=1,...,N, any N € N, the matrix
K= (K(x, x)),] ; ERNXN

is symmetric positive definite.
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Comments on the Proof of Theorem 17: The existence of the decomposition (3.61) follows
directly from Theorem 16.

Since K is continuous and K — [ K(X,y)¢x(y)dP(y) = Ax¢k(X) is continuous we conclude that
X

the ¢ are continuous. One can also show that M maps into C(X).

Thus, the feature map ®(x) := (v/Ak¢k(X))kez is well defined and (3.61) says that

K(x,y) = ®(x) - o(y) and therefore
N

VK =30 Ky Z (D2 Mo (X))
ij=1 Jj=1 kez
N
= D> X Z Vigk (X )bk () = > Ak(Z Vi¢k(x/)) <Z Vj¢k(xj)>
ke ij= 1 kel i=1 j=1
= Z)\;((ZV,(bk X)) > 0. O

keT i=1

The next observation shows that K(x, y) can be viewed as a similarity measure for a pair of

features x,y
K(x,y)? < K(x, ) K(Y,Y). (3.62)

In fact, applying Cauchy-Schwartz to (3.61) gives
1/2 1/2
KoY (D0 Men0?) (D Meswy)?) - = K(x,x)'2K(y, )72,

keT keT
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Positive Definite Functions

An important class of kernels are of the form

K(x,y) =g(llx—yll2), xye€ZX, (3.63)
where g is a scalar valued function. Collections g;(x) = g(||x — x/||2) are often called radial
basis functions (RBFs). For instance, the Gaussian kernel is of this form

There is an elaborate Theorie about such radial basis systems that are positive definite which
means that the corresponding kernels are psoitive definite in the above sense, see e.g. [7].
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Reproducing Kernel Hilbert Space

This is all closely related to the concept of Reproducing Kernel Hilbert Space (RKHS). Roughly
speaking this means the following: suppose # is a Hilbert space of functions on X with norm
lvll3 = {-,-)1/2 for which point evaluations are continuous, i.e., there exists a constant C such
that for f € H one has |f(x)| < C||f||%. Then, essentially as a consequence of the Riesz
Representation Theorem there exists a reproducing kernel K € H ® H such that

(K('7X)7f>'H = f(X)7 (3.64)

that is, the kernel K represents the Dirac functional in H.

L»>-spaces do not have a reproducing kernel, since point evaluation is not well-defined. But they
contain subspaces for which this is the case.

There is an important result by Aronszajn-Moore [1] stating the converse, namely whenever one
has a kernel K(-, -) with certain properties, then there exists a Hilbert space for which this kernel
is a reproducing kernel.

In the present context, this is relevant for the following reasons: kernel methods can be also used
for regression in which case accuracy is naturally measured in an Lyo-norm (with respect to the
underlying probability density). However, the training is based on samples, i.e., point evaluations
with which the estimators, of course, should comply. This is the situation we are in.
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Mercer Kernels and RKHS

Theorem 18

Suppose that K(-,-) € Lp(X x X, ®%p) N C(X x X) is a Mercer kernel. Then, there exists a
Hilbert space Hy C Lo(X x X, ®°2p) with inner product (-, )i in which K is a reproducing kernel
and point evaluations are continuous. Hy is generated by elements of the form

f(x) = Z,’L f.K(x,x'), see the plug-ins for SVM classifiers in (3.51).

Step 1. Given (3.61), consider the bilinear form

W= SN W ox(v.o0x, where (9)x = [ (0GRIAP).  (3:65)
kez X

One easily checks that this is indeed a bilinear form, see Lecture |, page 6. Clearly,

(u,u) e =D N (U, k)5 >0
keZ
Since >\k‘1 — oo one may have (u, u) = co. We are looking for a closed subspace
Hi C Lo(X, p) for which (-, -)k is an inner product and a closed subspace
[VIIZ := (v, v)k < oo
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Reproducing Kernel Hilbert Space

Step 2. Reproducing property: with the above bilinear form (--)x one has
(K('ax)aK('1Y)>K = K(X,y) (366)

In fact, by (3.61) and orthonormality of the ¢y, one has (K (-, X), ¢x)x = Ak¢k(X) and therefore
(KCX),KGYKk = D A (K X), 00) 2 (K(, ), ék)

kel
ST A o) x(y) = K(x, y). (3.67)

kel

Proposition 19
As in (3.64), consider the operator
f(x) = (Pf)(x) := (K(-,x), Nk (3.68)
Then, for any f € Ly(X, p) of the form f(x) = Z,’L fiK(x,x'), one has
(Pxf)(x) = £(X). (3.69)

Moreover, Py : Lo(X; p) — span{¢y : k € L} is the L-orthogonal projection to the span of the
bk, k € T.

W. Dahmen, J. Burkardt (DASIV) V - Classification



Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Proof of Proposition 19: First, by the reproducing property (3.67),one has
3.67) i
(Pkf)(X) = Zf (o 0), KCx)) i P27 ST EK(x, %) = £(x), (3.70)
which shows (3.69).

As for the rest of the claim, expanding K according to (3.61), using the definition of (-, -)x, and
orthonormality of the ¢>k, yields

(3.61)
(PkH(x) = (), ke =D A (K %), 0 x (F, ) ZA Akpk(X)(F, ¢k )X
ke ke
= > (f,éK)xk(X), as claimed O
keT
Now for f of the form
N . SN AL
=STEKxX), = (f... fy)T € ker ( (KO, X)), ) 7 (3.71)
i N e
=K
one has for || - ||k = (-, - >1/2 defined by (3.65),
Ifl% = (FHk= D> HHKEX), KX )k =Y iK', %) = 1TKE > 0.
ij=1 ij=1
Thus, || - ||k is a norm on the class of those functions.
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Step 3. RKHS and Continuity:

e Let Hk be the closure of all f of the form (3.71) under the norm || - ||k.

e As aclosed subspace of Lo(X, p) it is a Hilbert space with inner product (-, -) k.
e Since by (3.68), (3.69), f(x) = (K(-,X), )k, Cauchy-Schwartz yields

1OO1 = [(K (%), el < IKC )kl e = (K %), K21l 27 K %) 172 ik,

which says that point-evaluation is continuous in Hy, i.e, C(X) C Hk with a continuous
embedding:

[f(x)] < sup Kx,X)Ifllk ~ [IfllLox) < Cllfllk, € Heg- (8.72)
X
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A Bigger Picture ...

@ SVMs work very well in high dimensions d > 1, especially when d > N, the number of
samples. The computational complexity does not depend too strongly on d.

@ An important emerging concept is Deep Neural Networks which contain linear SVMs as
“nuclei” and can treat all regimes of d, [5].

@ The performance of SVMs with regard to generalization and classification accuracy will be
discussed in the next section.

@ For lower spatial dimension d, especially when N >> d, SVMs are not necessarily the
method of choice. One of the many alternatives are decision trees or nearest neighbor
methods.

A simple key ingredient: Partition Trees

@ Split the domain X into a fixed number of
cells - the “children”;

@ repeating this splitting for selected cells,
creates a tree;

@ the cells are the nodes. The leaf nodes
form a partition of X
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The Idea of Decision Trees

@ Given asample set 3y = {(x",y1),..., (XN, yn)} C Z = X x {—1,+1}, constructing a
classifier can be viewed as finding a subset S C X" such that for any new x € X

XeS ~ y=+1, x€8=xX\S ~ y=-1

@ The set S should be generated from the data 3. The classifier has no loss if X' € S iff
yi=1

@ The boundary 9S is called the decision boundary, for any new query x the label depends
on which side of the boundary 9S this point is located.

@ For linear SVMs the decision boundary is a hyperplane. For general kernel based SVMs
the decision boundary is the zerolevel set of a trained linear combination of the kernel
snapshots K(-,x'),i=1,...,N.

@ Adaptive partition trees can be used to “zoom” into the decision boundary of the “ideal set”
S*.

@ Such trees are called decision trees. With every leaf cell C of the tree - a cell in the

partition generated by the tree - one associates a label y(C) € {£1}. For a new query X,
one finds the leaf cell C containing x and assignes to x the label y(C).

W. Dahmen, J. Burkardt (DASIV) V - Classification



Classification Concluding Remarks

There is more than classification ...

Regression not only asks for label decisions but for the whole functional relation behind the data:
P unknown probability measure on Z := X x Y

! ! Factorization into conditional and marginal
densities dP(x, y) = dP(y|x)dPx(x)
Goal: estimate the regression function

ho(x) == / ydP(y|x) = E(y|x)
Y

! : ! see Lecture I, (8.3)

Risk functional: R[f] := [(y — f(x))2dP ~
z

RI = RIEL+ 1 = folZ, 0000 171 = 1 llax,0)

Task: construct an estimator 7z, e.g. minimizing the least squares risk 4 SN | (v — fz(xi))?

using kernel SVMs, that approximates f, well in Ly(X, px).
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The Idea of Decision Trees

@ One should not keep refining until each leaf cell contains only
one x' ~ overfitting

@ The principles of generating the “right” tree are connected
with the learning principles discussed in the next section.

@ This concerns e.g. complexity penalization and model
selection. An important variant that first refines too much and
then prunes back is CART, [4]

@ There are different ways of assigning a label to a leaf cell
based on several data contained in that cell. The simplest
one is to take the sign of the average of the labels in that cell.
Alternatively, one could use an SVM for the data in that cell.

/
i
N \

0* o0*
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