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Introductory Comments Motivation and Examples

About Supervised Learning Tasks ...

Data/observations come as samples zi = (xi , yi ) from a product space Z = X × Y where
typically X = Rd , Y = Rm. The first component x represents attributes/features identifying
members of entity of interest (medical images, customers, etc.), the second component yi

represents properties associated with the features xi .
It suffices to consider scalar properties yi = y i , i.e., m = 1. The “spatial” variable d instead
of the features could be large.
Given a set ZN = {z1, . . . , zN} ⊂ Z of samples (data), the key objective is
Prediction/Generalization. This means, given a new feature x, predict its property y , using
knowledge of ZN .
Without any kind of additional a priori information - prior - it is impossible to predict/learn y
from the data ZN . For instance, one can only quantify a polynomial interpolation error, if
one knows something about the derivatives of the interpolated function.
In Supervised Learning is given in terms of the following (Statistical) Model: The samples
zi = (xi , y i ) are i.i.d. drawn instances of a random variable (X,Y ) with joint density
p(x, y). Typically p(x, y) is unknown (except perhaps for information about range and
support) - (non-parametric estimation).
If y takes only finitely many values - labels, we talk about classification - this lecture. The
goal then is to assign to any new feature x a label from this finite set. For most purposes it
suffices to understand binary classification, i.e., Y = {0, 1} or {−1, 1}.
If the properties y have a continuous range, one seeks a function f̂ (x) ≈ y . This is called
regression - next lecture.

The following illustrations are taken from: A. Statnikov, D. Hardin, I. Guyon, C. F. Aliferis
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Classification What is this about?

Main Methodologies

The objects to be classified, in the above examples patients, boats, and houses, are represented
by feature vectors in a high-dimensional Euclidean space.

1 Nearest neighbor search;

2 Support Vector Machines (SVM) - Kernel Methods;

3 Decision trees - CART, Random forests;

4 Neural networks.

This course: 2, 4 and perhaps a bit about 1, 3
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Classification Warm Up - Linear Separation

Linear Separators
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Classification Warm Up - Linear Separation

Linear Separators
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Classification Warm Up - Linear Separation

Hyperplanes
Recall: an affine hyperplane H ⊂ Rd can be defined as

H = {x ∈ Rd : x · w + b = 0 for some b ∈ R, w ∈ Rd}. (3.1)

In fact, any two points x1, x2 belong to H iff (x1 − x2) · w = 0, i.e., their difference is
perpendicular to the vector w, i.e.,

H = H(w, b) = {x ∈ Rd : (x− x0) · w = 0 for any fixed x0 ∈ H},  (3.2)

Remark 1

(i) Varying b causes just a parallel shift of H. Also, given H, w and b are only determined up a
scalar multiple.

(ii) For any x′ ∈ Rd one has

dist (H, x′) := inf
x∈H
‖x′ − x‖2 =

|w · x′ + b|
‖w‖2

. (3.3)

(iii) The distance dist (H,H′) between any two parallel hyperplanes H(w, b),H(w, b′) is

dist (H,H′) =
|b − b′|
‖w‖2

. (3.4)

Since H and H′ are parallel, we have dist (H,H′) = dist (H, x′) for any x′ ∈ H′. Since then
w · x′ = −b′, the claim follows directly from (ii), (3.3).
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Classification Warm Up - Linear Separation

Hyperplanes some arguments...

(i) follows directly from the above orthogonality statement (3.2).

Regarding (ii), for any fixed x0 ∈ H, H − x0 =: U is a (d − 1)-dimensional linear subspace of Rd .
By definition U = {x : x ∈ Rd , x · w = 0}. Let u1, . . . ,ud−1 ⊂ Rd be orthonormal vectors
perpendicular to w, i.e., w · ui = 0, i = 1, . . . d − 1. Then the ui form an orthonormal basis for U.
Clearly

dist (H, x′) = dist (H − x0, x′ − x0) = dist (U, x′ − x0) = ‖(x′ − x0)− PU(x′ − x0)‖2,

where we have used the Projection Theorem 24, Lecture I. Moreover, by Lecture I, (5.26), page
47, we know that

PU(x′ − x0) =

d−1∑
i=1

((x′ − x0) · ui )ui , (x′ − x0) =
(x′ − x0) · w
‖w‖2

2
w +

d−1∑
i=1

((x′ − x0) · ui )ui ,

since w/‖w‖2,u1, . . . ,ud−1 form an orthonormal basis for all of Rd . Thus

dist (H, x′) = ‖(x′−x0)−PU(x′−x0)‖2 =
∥∥∥ (x′ − x0) · w

‖w‖2

w
‖w‖2

∥∥∥
2

=
|w · (x′ − x0)|
‖w‖2

=
|w · x′ + b|
‖w‖2

.
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Classification Warm Up - Linear Separation

Warm Up - Linearly Separably Data
Assumption: there exists a hyperplane that separates data with positive and negative labels.

But: if data are linearly separable then there are generally infinitely many separating hyperplanes
- how to compute a particularly “good ” one?
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Classification Warm Up - Linear Separation

Warm Up - Linearly Separably Data

The red hyperplane looks “good” because it
maximizes the width of the margin (gap) between
the two sets. We know it can be written as H(w, b)
for some w ∈ Rd , b ∈ R.

H(w, b) is the zero set of the affine function
f (x) := w · x + b. Since ∇f (x) = w, the slope in
direction w can be adjusted by scaling w and b
which maintains the zero set H(w, b).

The level sets {x ∈ Rd : f (x) = ±c}, any c ∈ R, at
equal distance from H(w, b), are the hyperplanes
{x ∈ Rd : w · x + b ∓ c = 0} = H(w, b ∓ c).

H(w, b) is therefore optimally positioned if the
points (x±,±1) ∈ Z closest to H(w, b), belong to
the graph of w · x + b, i.e., x± ∈ H(w, b ∓ 1). The
x± on the boundary of the separating margin are
called support vectors.

By Remark 1, width of the margin is

|(b − 1)− (b + 1)|
‖w‖2

=
2
‖w‖2

. (3.5)
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Classification Warm Up - Linear Separation

Linear Support Vector Machine (SVM) Classifiers
The process of determining the margin maximizing
hyperplane H(w, b) is called linear Support Vector
Machine (SVM). The parameters w ∈ Rd , b ∈ R have the
property that for (xi , yi ) ∈ Z

w · xi + b ≥ 1 if yi = +1

w · xi + b ≤ −1 if yi = −1,

 ⇔ yi (w·xi +b) ≥ 1.

(3.6)

By (3.5), the smaller ‖w‖2 the wider is the margin !

In summary: solve the constrained optimization problem

minimize over w ∈ Rd , b ∈ R :
1
2
‖w‖2

2 subject to yi (w · xi + b) ≥ 1, i = 1, . . . ,N. (3.7)

The classifier
h : x 7→ h(x) := sign (w · x + b) (3.8)

is called hard-margin linear SVM.

Remark 2

The problem (3.7) requires minimizing a quadratic functional under linear constraints which is still
a convex optimization problem. Efficient methods will be discussed later.
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Classification Warm Up - Linear Separation

Soft-Margin Linear SVM

Observations and measurements are viewed as random
samples from some underlying distribution to account for
measurement errors, i.e., the observed labels do not represent
certain information but random events. Hence, even if a
sample set Z = {(x1, y1), . . . , (xN , yN )} may not be able to be
linearly separated by a hyperplane, they may be nearly so. In
such a case it may still be reasonable to use a linear SVM. We
discuss next how to deal with unavoidable training errors.

Instead of minimizing 1
2‖w‖

2
2 subject to the constraints yj (w · xj + b) ≥ 1, j = 1, . . . ,N, (see

(3.7)), we relax the constraints as follows:

Approach: To each j = 1, . . . ,N assign a slack variable ξj ≥ 0, ξ = (ξ1, . . . , ξN ) ∈ RN
+, 

minimizew,b,ξ
1
2
‖w‖2

2 + C
N∑

j=1

ξj︸ ︷︷ ︸
objective functional

subject to yj (w · x + b) ≥ 1− ξj , 1 ≤ j ≤ N,︸ ︷︷ ︸
constraints

(3.9)

 ŵ, b̂, take again h(x) := sgn (ŵ · x + b̂).

This is still a quadratic optimization problem under linear constraints, more about solvability later.
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Classification Warm Up - Linear Separation

Soft-Margin Linear SVM

minimize over w, b:
1
2
‖w‖2

2 + C
N∑

j=1

ξj subject to yj (w · xj + b) ≥ 1− ξj , 1 ≤ j ≤ N.

C very large: this is very close to hard-margin SVM;

C very small: one achieves a small ‖bw‖2 and
hence a wide margin (see (3.5)) but at the expense
of many misclassifications.

The proper choice of C depends on the problem
and will be discussed later. It can be seen as Model
Selection.
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Classification Some Further Orientation

What if there is no reasonable linear separation? ...

Find a function f : X → R, taking positive values at data with positive labels and negative
values at data with negative labels;
Find the decision boundary {x ∈ Rd : f (x) = 0}. The classifier h : X → {±1} is then
defined as

h(x) =

 1 if f (x) > 0,

−1 if f (x) < 0.

 = sgn (f (x)) Plug-in-Estimator. (3.10)

This corresponds to a linear separation in the higher dimensional space Rd+1.
When f has the special form

f (x) = w ·Φ(x)+b, b ∈ R, w ∈ Rd̄ , Φ : Rd → Rd̄ , d̄ possibly larger than d , (3.11)

(x is replaced by Φ(x)) this leads to the concept of Support Vector Machines (SVM).
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Classification Some Further Orientation

What if things are really mixed up? ...
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Classification Some Further Orientation

What does this tell us? ...

1 Data contain outliers and reflect only statistical information about an underlying process.

2 Building classifiers that are exact on the training data may become very complex.

3 It may also cause overfitting which, in turn, may result in poor generalization properties,
i.e., due to increased variance, the ability to predict well on new samples.

4 One should therefore not insist on classifying the training data exactly.

5 Instead one should seek for a proper balance between exactness on training data and
generalization, i.e., the ability to predict well on new samples.

6 The main strategies for arriving at such a balance are:

(a) Complexity Penalization the classifier is constructed as the solution of an optimization
problem where the objective functional consists of a data-fit-term and a penalty term that
controls the complexity of the estimator; see the soft-margin linear SVM (3.9).

(b) Model Selection: one builds several classifiers subject to different design parameters
and “compares”.
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Classification Convex Optimization

Convexity

A function f : X → R is called convex if for any x, v ∈ X one has

f
(1

2
(x + v)

)
≤

1
2

(
f (x) + f (v)

)
,

i.e., the value of f at the average of two points is always bounded from above by the
average of the values of f Exercise: show that this is equivalent to the statement: for any
x1, . . . , xn ∈ X , λ1, . . . , λn ≥ 0 such that λ1 + · · ·+ λn = 1 one has
f
(
λ1x1 + · · ·+ λnxn) ≤ λ1f (x1) + · · ·+ λnf (xn).

Property: any local minimum of a convex function is also a global minimum.
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Classification Convex Optimization

QP-Problems
Recall from (3.9): linear soft-margin SVM leads to (given the data (xi , yi ))

minimizew,b,ξ
1
2
‖w‖2

2 + C
N∑

j=1

ξj︸ ︷︷ ︸
objective

subject to yj (w · xj + b) ≥ 1− ξj , 1 ≤ j ≤ N,︸ ︷︷ ︸
constraints

.

Since 1
2‖w‖

2
2 + C

∑N
j=1 ξj the objective is a quadratic function in (w, b, ξ).

The constraints are linear.
Such optimization problems are called Convex Quadratic Programming (QP) problems.
QP-problems can be solved by descent or greedy methods that decrease the objective in
an iterative fashion.

Remark 3

For zero slacks, i.e., ξj = 0, j = 1, . . . ,N, the problem has the form

minimizex∈Rd
1
2

x>Ax + c>x subject to (Bx− b) ≥ 0 (componentwise) (3.12)

where above A≤d,≤d = I ∈ Rd×d , B ∈ RN×d has rows yj xj , j = 1, . . . ,N, b ∈ RN has
components bj := yj b − 1, j = 1, . . . ,N, c = 0.
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Classification Convex Optimization

Model Problem
Consider the case d = 1 (w↔ x)

minimize over x:
1
2

(
x2

1 + x2
2
)

subject to x1 + x2 − 1 ≥ 0.
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Classification Convex Optimization

Lagrange Multipliers A Short Digression

Optimization with equality constraints: F : Rd → R convex, g : Rd → R

Minimizex∈Rd F (x) subject to g(x) = 0. (3.13)

Idea: find necessary conditions for x to be a local constrained minimum:

Recall that the direction of steepest descent of a function F at a point x is −∇xF (x).

Suppose x̄ is a feasible point, i.e., g(x̄) = 0. For F (x̄ + tz) < F (z̄) for some t > 0 and
some direction z, one must have

∇F (x̄) · z < 0, (why?) (3.14)

For x̄ + z to be tangential to the constraint surface, z must be perpendicular to the
constraint surface, i.e.,

z · ∇xg(x̄) = 0. (3.15)

If ∇xF (x̄) and ∇xg(x̄) point in the same direction, i.e.,

∇xF (x̄) = −a∇xg(x̄) for some a ∈ R (3.16)

one cannot satisfy (3.14) and (3.15) simultaneously. Hence, one cannot decrease F (x̄)
any further while staying feasible.
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Classification Convex Optimization

Lagrange Multipliers A Short Digression

Conclusion: A necessary condition for x̄ to be a minimizer of

Minimizex∈Rd F (x) subject to g(x) = 0

is in view of (3.16): ∃ ā ∈ R s.t.

∇xF (x̄) + ā∇xg(x̄) = 0 and g(x̄) = 0 (⇔ ∂a(F (x) + ag(x)) = 0). (3.17)

By similar arguments one can show the following:

Proposition 4

Let g = (g1, . . . , gm)> : Rd → Rm be vector-valued and define the Lagrangian
L(x, a) := F (x) + a · g(x) = F (x) +

∑m
i=1 ai gi (x). Then if x̄ ∈ Rd is a local minimizer of

Minimizex∈Rd F (x) subject to g(x) = 0, (3.18)

there exists a ā ∈ Rm such that (x̄, ā) ∈ Rd × Rm is a critical point of the Lagrangian, i.e.,

∇xL(x̄, ā) = 0 and ∇aL(x̄, ā) = 0, (3.19)

The vector a ∈ Rm is called Lagrange Multiplier.
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Classification Convex Optimization

KKT-Conditions A Short Digression

Optimization with inequality constraints: F : Rd → R convex, g : Rd → Rm

Minimizex∈Rd F (x) subject to g(x) ≥ 0 (meaning gj (x) ≥ 0, j = 1, . . . ,m). (3.20)

Theorem 5

Karush-Kuhn-Tucker Conditions: Let L(x, a) := F (x) + a · g(x). Then, if x̄ is a local minimum of
(3.20) there exists a ā ∈ Rm such that the KKT-conditions hold:

∇xL(x̄, ā) = 0 (3.21)

ā ≥ 0 componentwise (3.22)

ā · g(x̄) = 0 (3.23)

g(x̄) ≥ 0 componentwise. (3.24)

Note: (3.22) - (3.24) replace ∇aL(x̄, ā) = 0.

Proof: Let R := {x ∈ Rd : g(x) > 0} be the feasible region (constraints are satisfied).

Case 1: the unconstrained local minimum x̄ belongs to R, i.e., g(x̄) > 0. Then x̄ must be a
critical point of F , i.e., ∇xF (x̄) = 0 and (3.24) holds. Taking ā = 0 satisfies (3.22) and (3.23).
Because of ā = 0 and ∇xF (x̄) = 0 (3.21) follows. Hence the KKT-conditions hold at x̄.
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Classification Convex Optimization

KKT-Conditions A Short Digression

Proof of Theorem 5 continued: Consider now:

Case 2: The unconstrained local minimum lies outside the feasible region R. Consider first the
case m = 1, i.e., g : Rd → R, the case m > 1 follows the same ideas and will be sketched later.

Then x̄ ∈ ∂R, i.e., g(x̄) = 0 which is (3.23) and (3.24). Thus, we have a minimization problem
with one equality constraint.

By the previous reasoning we must therefore have that ∇xF (x̄) = −ā∇xg(x̄) for some ā ∈ R
which is (3.21). Also the direction of steepest descent of F at x̄ must point outside the feasible
reagion. Since g(x) > 0 inside R, g grows when moving inside the feasible reagion, i.e., the
direction of steepest descent −∇xg(x̄) must also point outside R. Hence, we must have ā > 0
which is (3.22). This completes the argument for m = 1.

Now consider m > 1. Again, we know that the constrained minimizer must lie on the boundary
∂R of the feasible region R, i.e., x̄ ∈ ∂R.

The argument is slightly more complicated because the feasible region
R := {x ∈ Rd : g(x) > 0} = {x ∈ Rd : gj (x) > 0, j = 1, . . . ,m} is slightly more complicated. In
fact, defining the componentwise feasible regions

Rj := {x ∈ Rd : gj (x) > 0}, j = 1, . . . ,m, one has R =
m⋂

i=1

Rj .
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Classification Convex Optimization

KKT-Conditions A Short Digression

Proof of Theorem 5 continued: Hence, the boundary of R is more complicated

∂R =
m⋃

j=1

(∂Rj ∩ R).

Suppose for a moment that the constrained minimizer x̄ belongs to just a singe boundary facet
∂Ri ∩ R which means gi (x̄) = 0, gl (x̄) > 0 for all l 6= i . By the same argument as before we can
conclude that there must exist a āi > 0 such that ∇xF (x̄) + āi∇xgI(x̄) = 0. If we set āl = 0,
l 6= i , it follows that ∇xL(x̄, ā) = 0 which is (3.21), and (3.22) - (3.24) are obviously valid.

The case where the constrained minimizer x̄ belongs to the intersection of several facets,⋂s
r=1(∂Rir ∩R), one cannot move in any of these facets to decrease F . This means the direction
−∇xF (x̄) of steepest descent must point into the cone formed as the intersection of half spaces
defined by the tangent planes to R at x̄. This means −∇xF (x̄) must be a linear combination

−∇xF (x̄) =
s∑

r=1

āir∇xgir (x̄), āir ≥ 0, r = 1, . . . , s.

Setting again āl = 0, for l 6∈ {i1, . . . , is}, it follows that (3.21) - (3.24) hold for x̄, ā. This finishes
the proof. �
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Classification Convex Optimization

Active Constraints

Remark 6

The above discussion can be summarized as follows:

The ith constraint is called active at x̄ if gi (x̄) = 0, i.e., x̄ lies on ∂Rj .

For x̄ to belong to the boundary ∂R of the feasible region R, at least one constraint has to
be active.

If the ith constraint is active the above reasoning showed that ∇xF (x̄) = −āi∇xgi (x̄) for
some positive āi .

If the jth constraint is inactive, i.e., gj (x̄) > 0, the two KKT-conditions (3.22), (3.23) just say
that āj = 0.

Hence, the support supp (ā) := {i : āi 6= 0} identifies the active constraints at a local minimum x̄,
i.e., when x̄, ā satisfy the KKT-conditions, then

{i ∈ {1, . . . ,m} : pi (x̄) = 0 (i is active)} = supp (ā). (3.25)
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Classification Convex Optimization

KKT-Conditions A Short Digression

We specialize this to a quadratic problem: Let A ∈ Rd×d be symmetric positive semi-definite and
B ∈ RN×d , b ∈ RN , see Remark 3. Consider

minimizex∈Rd
1
2

x>Ax + c>x︸ ︷︷ ︸
=:F (x)

subject to Bx− b︸ ︷︷ ︸
=:g(x)

≥ 0. (3.26)

Remark 7

Since If F (x) = 1
2 x>Ax is convex when A is symmetric positive definite, and since the feasible

region for g(x) = Bx− b is the intersection of half-spaces and hence again convex, the
constrained minimization problem has a solution. By convexity each local solution is a global
solution which must satisfy the KKT-conditions. Thus, x̄ is a constrained minimizer if and only if
the KKT-conditions hold.

The Lagrangian reads

L(x, a) =
1
2

x>Ax + c>x + a>(Bx− b), x ∈ Rd , a ∈ RN . (3.27)

The KKT-conditions (3.21) - (3.24) are

∇xL(x̄, ā) = Ax̄ + B>ā = 0, ā>(Bx̄− b) = 0, ā ≥ 0, Bx̄ ≥ b. (3.28)
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Classification Convex Optimization

Saddle Points A Geometric Interpretation

Suppose for a moment that we have only equality constraints Bx− b = 0. Then, Proposition 4
(see (3.19)) says that the KKT-conditions (3.28) reduce to

Ax̄ + B>ā = 0, Bx̄ = b, (3.29)

or equivalently

∇x,aL(x, a) =

 A B>

B 0

 x

a

−
 0

b

 = 0 (3.30)

Thus, the Hessian of L(x, a) is given by

D2L(x, a) =

 A B>

B 0

 .

Remark 8

For A positive semi-definite the Hessian D2L is in general indefinite, i.e., it has positive and
negative eigenvalues (by symmetry all eigenvalues are real, see Lecture I). This is easily
confirmed when A = a > 0, B = b ∈ R \ {0} since the determinant is then −b2 < 0.
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Classification Convex Optimization

Saddle Points
By Remark 8, the critical point (x̄, ā) of L(x, a) satisfying (3.30), cannot be a minimum of L. It is a
saddle point

L(x̄, ā) = inf
x∈Rd

L(x, ā) = sup
a∈RN

L(x̄, a) = sup
a∈RN

inf
x∈Rd

L(x, a). (3.31)
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The Dual Problem equality constraints

An important strategy in quadratic programming is the passage to the so called dual problem
which is to solve the right most version (3.31), i.e.,

H(a) := inf
x∈Rd

L(x, a)  sup
a∈RN

H(a). (3.32)

H(a) is often called the dual function.

Remark 9

Notice that (3.32) is now an unconstrained optimization problem. Here this is, however, a
consequence of the fact that we had only equality constraints and changes slightly when dealing
with inequality constraints. - But: how to compute H(a)?

Idea: Assume for a moment that A is non-singular.
1 For fixed a the Lagrangian L(x, a) as a function of x is convex. Therefore, its

(unconstrained) minimum is a critical point ∇xL(x, a) = 0 which is the first KKT-condition
(3.21).

2 Eliminate x from the first KKT-condition (3.21) x = −A−1B>a and substitute this into
L(x, a).

3 This yields
x>Ax = a>BA−1AA−1B>a = a>B

¯
A−1B>a, a>(Bx− b) = −a>B

¯
A−1B>a− a>b

which gives
H(a) = −

1
2

a>B
¯
A−1B>a− a>b. (3.33)
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Classification Convex Optimization

The Dual Problem equality constraints

maximizea H(a) = −
1
2

a>B
¯
A−1B>a− a>b

⇔
Minimizea∈Rm

1
2

a>Ma + a>b, where M := BA−1B> is symm. pos. def. (3.34)

⇔

0 = ∇H(ā) = Mā + b ⇔ Mā = −b  x̄
(3.29)

= −A−1B>ā. (3.35)

Remark 10

Thus, if one only has equality constraints, passing to the dual formulation, reduces the QP
problem to solving a linear positive definite system of equations.

We have assumed that det A 6= 0 to form the matrix M. If A is singular the system

∇xL(x, a) = 0
(3.27)⇔ Ax = −B>a,

has more than one solution (infinitely many in this case, but it always has at least one). We
can solve then instead the least squares problems

min
a
‖Ma + b‖2 → a, min

x
‖Ax + B>a‖2

2 (e.g. by SVD)
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Classification Convex Optimization

The Dual Problem inequality constraints

Back to inequality constraints (3.26): minimizex∈Rd
1
2 x>Ax subject to Bx− b ≥ 0.

The associate dual problem now reads (with H(a) from (3.33))

Maximizea H(a) subsect to a ≥ 0. (3.36)

Remark 11

Even if the objective function F is not convex, the dual function
H(a) = infx∈Rd

{
F (x) + a>g(x)

}
as a pointwise limit is affine in a and hence convex.

Hence it is in general easier to optimize.

The value δ∗ := supa∈Rd ,a≥0 H(a) is in general strictly smaller than π∗ := minx∈R F (x).
This is called duality gap . For convex F, as in our case, and if the feasibility region
R = {x ∈ Rd : Bx− b > 0} is not empty (Slater condition), then one can show that
δ∗ = π∗ (strong duality holds), that is the duality gap is zero, see e.g. [3, Chapter 5].

A particular interest in the dual formulation arises if d � m, i.e. there are many more
primal variables than constraints. In fact, the dual problem involves than far fewer variables.
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Classification SVM - Optimization

SVM Optimization Problem Primal/Dual Formulations

Back to linear SVM (slacks ξj = 0 hard-margin SVM): Recall

minimize over w, b
1
2

N∑
j=1

w2
j︸ ︷︷ ︸

objective

subject to yj (w · xj + b) ≥ 1, 1 ≤ j ≤ N︸ ︷︷ ︸
constraints

. (3.37)

This is the primal formulation of a QP problem with d + 1 variables b,wi , i = 1, . . . , d , and
N constraints, i.e. d ↔ d + 1, m ↔ N in the above general situation.
By Remark 3, this is a special case of the QP-problem (3.12) with

(w1, . . . ,wd , b)> ↔ x, A =

 Id 0

0> 0

 ,

Bi,d+1 = yi , , i = 1, . . . ,N,

Bi,k = yi x i
k , i = 1, . . . ,N, k = 1, . . . , d ,

bi = 1, i = 1, . . . ,N.
(3.38)

i.e., b ∈ RN , B ∈ RN×(d+1).
SVMs work robustly even when d � N. Therefore, it is of interest to consider the dual
formulation.
In this case: A is singular.
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Derivation of the Dual Formulation

Primal Formulation:

minimize over w, b
1
2

N∑
j=1

w2
j︸ ︷︷ ︸

objective

subject to yj (w · xj + b) ≥ 1, 1 ≤ j ≤ N,︸ ︷︷ ︸
constraints

.

In the present case the Lagrangian associated with the above problem reads

L(w, b; a) :=
1
2

d∑
j=1

w2
j −

N∑
j=1

aj
(
yj (w · xj + b)− 1

)
(3.39)

For fixed a it is convex in (w, b). Therefore, a(n unconstrained) minimizer of L(w, b; a) over
(w, b) for fixed a must be a critical point:

0 = ∇w,bL(w, b; a).
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Computation of the Dual Function

L(w, b; a) :=
1
2

d∑
j=1

w2
j −

N∑
j=1

aj
(
yj (w · xj + b)− 1

)
To compute H(a) := inf(w,b)∈Rd+1 L(w, b; a) compute the critical points ∇w,bL(w, b; a)

!
= 0 :

∂wi L(w, b; a) = wi −
N∑

j=1

aj yj x
j
i

!
= 0, i = 1, . . . , d , (3.40)

∂bL(w, b; a) = −
N∑

j=1

aj yj
!

= 0, (3.41)

Thus

(3.40) ⇒ w =
N∑

j=1

aj yj xj ;

(3.41) ⇒
N∑

j=1

aj yj = 0 = a · y, y ∈ {−1, 1}N .

(3.42)
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Classification SVM - Optimization

Computation of the Dual Function
Using the relations (3.42) for w, yields:

1
2

d∑
j=1

w2
j =

1
2

w · w (3.42)
=

1
2

( N∑
j=1

aj yj xj
)>( N∑

q=1

aqyqxq
)

=
1
2

N∑
i,j=1

ai aj yi yj xi · xj

N∑
j=1

aj
(
yj (w · xj + b)− 1

) (3.42)
=

N∑
j=1

aj (yj (w · xj )− 1) (b drops out)

=
N∑

j=1

aj yj

( N∑
q=1

aqyqxq · xj
)
−

N∑
i=1

ai

=
N∑

i,j=1

ai aj yi yj xi · xj −
N∑

i=1

ai .

Subtracting yields

H(a) =
N∑

i=1

ai −
1
2

N∑
i,j=1

ai aj yi yj xi · xj =
N∑

i=1

ai −
1
2

a>Ma, M = (yi xi · xj yj )
N,N
i,j=1. (3.43)
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The Dual Problem

maximizea∈RN :
N∑

i=1

ai −
1
2

N∑
i,j=1

ai aj yi yj xi · xj

︸ ︷︷ ︸
Objective: a>1− 1

2 a>Ma

subject to ai ≥ 0, and
N∑

j=1

aj yj = 0

︸ ︷︷ ︸
Constraints

. (3.44)

1 Retrieve w: (3.42)  w :=
∑N

j=1 aj yj xj

2 Retrieve b: let I+ := {i ∈ supp ā : yi = +1}, take i0 := argmin {w · xi : i ∈ I+}, set
b := 1− w · xi0

3 Classifier: h(x) := sgn (w · x + b).
Comments:

If the dimension d is very large (e.g. document classification d ≥ 106) and N � d the dual
problem involves much fewer variables (e.g. if a microarray dataset contains 20, 000 genes
and N = 100.
One doesn’t have to access the original data but only the inner products xi · xj , w · x.
The optimization problem can actually be reduced to a(n often) much smaller size. In fact,
the solution ā of the dual problem has has only #supp (ā) = # of active constraints
positive entries. For an active constraint j one has yj (w · xj + b)− 1 = 0. This means xj is
a support vector. So what counts is the number of support vectors, identified by supp (ā).
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Summary
Recall from (3.9): linear soft-margin SVM leads to (given the data (xi , yi ), i = 1, . . . ,N,

minimizew,b,ξ
1
2
‖w‖2

2 + C
N∑

j=1

ξj︸ ︷︷ ︸
objective

subject to yj (w · xj + b) ≥ 1− ξj , 1 ≤ j ≤ N,︸ ︷︷ ︸
constraints

.

This is again the primal form of a QP problem (this time with primal variables
w = (w1, . . . ,wd )>, ξ = (ξ1, . . . , ξN )>, b ∈ R) and can therefore be treated in the same way as
before. Concluding Remarks:

We have shown so far only how to formulate linear SVMs QP problems.
Depending on d and N (which one is larger) the actual optimization code can be applied to
the primal or dual formulation.
The complexity of the dual formulation depends essentially on the number of active
constraints.
The discussion so far therefore concerned only setting up the mathematical problem.
Discussing the concrete numerical algorithms needed to solve such QP problems is a
course by itself.
QP-algorithms are typically iterative, often based on a prediction step, eg. as a
Newton-step for solving (3.21) followed by a correction step to restore feasibility. Key
words: interior point methods, barrier methods, see e.g. [2, 3, 8].
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Classification Kernel Methods

Kernel Trick

The class of problems where data with different lables can be (nearly) linearly separated is, of
course, restricted. A way of extending the viability of linear separators is to “lift” the feature
vectors xj first into a higher dimensional feature space where they can be (at least
approximately) linearly separated.

Kernel Trick:

Choose a mapping Φ := X (= Rd )→H(= RD), called feature map, that takes the data xj ,
j = 1, . . . ,N, into a (typically) higher dimensional space H.

Use a linear SVM to separate the data in H.
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Classification Kernel Methods

Kernel SVMs
Given Φ : X → H, solve

Minimizew∈RD ,b :
1
2
‖w‖2

2 subject to yj (w · Φ(xj ) + b) ≥ 1, 1 ≤ j ≤ N. (3.45)

Now, the dimension is D in which the optimization takes place. So, it is the more important to go
by the dual method: In view of (3.44), this reads

maximizea∈RN :
N∑

i=1

ai −
1
2

N∑
i,j=1

ai aj yi yj Φ(xi ) · Φ(xj )︸ ︷︷ ︸
K (xi ,xj )

subject to ai ≥ 0, and
N∑

j=1

aj yj = 0.

(3.46)
Once a = (a1, . . . , aN )> ∈ RN

+ has been computed:

1 Retrieve w: (3.42)  w :=
∑N

j=1 aj yj Φ(xj )

2 Retrieve b: let I+ := {i ∈ supp ā : yi = +1}, take i0 := argmin {w · Φ(xj ) : i ∈ I+}, set
b := 1− w · Φ(xi0 )

3 Classifier: (3.42) ⇒

h(x) := sgn (w · Φ(x) + b)
(1)
= sgn

({ N∑
j=1

aj yj Φ(xj ) · Φ(x)
}

+ b
)

= sgn
( N∑

j=1

aj yj K (xj , x) + b
)
. (3.47)
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Classification Kernel Methods

Comments:

One does not need to know the mapping Φ. One only needs to know the kernel
K (x, y) : Rd × Rd → R.
The objective function in (3.46) can be rewritten as

N∑
i=1

ai −
1
2

N∑
i,j=1

ai
(
yi K (xi , xj )yj

)
aj = 1 · a−

1
2

a>K̂ a, (3.48)

where
K̂ =

(
yi K (xi , xj )yj

)N
i,j ∈ RN×N . (3.49)

Maximizing 1 · a− 1
2 a>K̂ a is equivalent to minimizing 1

2 a>K̂ a− 1 · a subject to the same
constraints from (3.46). This is again precisely a QP-problem of the general type (3.26)
provided that the matrix K̂ is symmetric positive definite.
Note: K̂ is symmetric positive (semi-)definite if and only if K :=

(
K (xi , xj )

)N
i,j=1 is

symmetric positive (semi-)definite - verify !.
This is where Φ enters the picture:

v>Kv =
N∑

i,j=1

vi Φ(xi ) · Φ(xj )vj =
N∑

i,j=1

vi

{ D∑
k=1

φk (xi )φk (xj )
}

vj

=
D∑

k=1

N∑
i,j=1

(viφk (xi )(vjφk (xj )) =
D∑

k=1

( N∑
i=1

viφk (xi )
)2
≥ 0. (3.50)
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Classification Kernel Methods

Comments continued:

Algorithmically things work therefore as in the linear case.

The transition to the dual problem is the more important since
The vector w belongs to RD with D > d , so the primal problem is posed in an even
higher dimensional space and hence harder to handle.
The constraints in the primal problem are now in general nonlinear because of Φ.
The size of the dual problem is still the same N, the number of data and the
constraints are still linear.
The main operations involve inner products.

The classifier (3.47) is of the form h(x) = sgn
(
f (x)

)
where here

f (x) =
N∑

j=1

aj yj K (xj , x) + b. (3.51)

Remark 12

The estimator is a plug-in-estimator, where f is a linear combination (up to a constant shift b) of
the functions kj (x) = K (xj , x), j = 1, . . . ,N (which happens to depend on the data), and is
therefore (for fixed data) a linear estimator.

Which kernels should be used?
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Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Frequently Used Kernels

Since computationally only the kernel (not the explicit feature map Φ) matters we wish to better
understand what makes a kernel useful. A kernel is called legal kernel if it is a dot-product:

K (xi , xj ) = Φ(xi ) · Φ(xj ) =
D∑

k=1

φk (xi )φk (xj ), (3.52)

where Φ : Rd → RD could be any feature map. For the actual computations only the kernel
matters. The following are legal kernels.

Examples:

1 K (xi , xj ) = xi · xj linear SVM

2 K (xi , xj ) = ε−γ‖x
i−xj‖2

2 , γ > 0 Gaussian kernel
3 K (xi , xj ) = (a + xi · xj )q , a ≥ 0, q ∈ N polynomial kernel

4 K (xi , xj ) = (a + xi · xj )qε−γ‖x
i−xj‖2

2 , a ≥ 0, q ∈ N hybrid kernel
5 K (xi , xj ) = tanh(kxi · xj + b) sigmoidal kernel

Why are these indeed legal kernels, i.e., have the structure (3.52)?
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Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Useful Kernel Rules

Proposition 13

1 A positive constant is a legal kernel.
2 Let K (x, y) be a legal kernel and c be a positive consant. Then cK (x, y) is a legal kernel.
3 If K (x, y) is a legal kernel and f any scalar function, then f (x)f (y)K (x, y) is a legal kernel

(with the same feature dimension as before).
4 The sum of legal kernels is a legal kernel where the new feature dimension is the sum of

the original ones.
5 The product of legal kernels is a legal kernel where the new feature dimension is the

product of the original ones.

Proof: (1), (2) and (3) are obvious. As for (4), let K1(x, y) = Φ(x) · Φ(y), K2(x, y) = Ψ(x) ·Ψ(y).
Then

Φ(x) · Φ(y) + Ψ(x) ·Ψ(y) =

DΦ∑
k=1

φk (x)φk (y) +

DΨ∑
k=1

ψk (x)ψk (y)

=
(Φ

Ψ

)
(x) ·

(Φ

Ψ

)
(y), D = DΦ + DΨ.
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Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Proof of Proposition 13 continued: Concerning (5),

(Φ(x) · Φ(y))((Ψ(x) ·Ψ(y)) =
( DΦ∑

k=1

φk (x)φk (y)
)( DΨ∑

j=1

ψj (x)ψj (y)
)

=

DΦ,DΨ∑
k,j=1

(φk (x)ψj (x))(φk (y)ψj (y)) =:

DΘ∑
ν=1

θν(x)θν(y)

= Θ(x) ·Θ(y), DΘ = DΦ · DΨ. �

One can now confirm that the above examples of kernels are indeed legal:

Example (1): trivial

Example (3): follows from Proposition 13, (1), (2), (4), and (5).

Example (2): write

e−γ‖x−y‖2
2 = e−γ‖x‖

2
2 e−γ‖y‖

2
2 e2γx·y = f (x)f (y)

( ∞∑
k=0

(x · y)k

k!

)
.

By Proposition 13, (2), (5), each summand in the series on the right is a legal kernel. By

Proposition 13, (4), the series is a legal kernel as well. The rest follows from Proposition 13, (3).
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Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Some Illustrations (see [9])

The Gaussian kernel: K (x, xj ) = K (xj , x) = e−γ‖x−xj‖2
2 , some γ > 0

Geometrically: a local “bump” which is very concentrated when γ is large and flat when γ is small.

The plug-in-function f from (3.51) is in this case a linear combinations of Gaussian “bumps” and

“cavities”.
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Some Illustrations (see [9])

Linear combinations of Gaussian “bumps” and “cavities”.
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Some Illustrations (see [9])

Linear combinations of Gaussian “bumps” and “cavities”.
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Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Some Illustrations (see [9])

Polynomial kernel: K (x, y) = (1 + x · y)3, d = 2, D = 10
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Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Some Illustrations (see [9])

Polynomial kernel: K (x, y) = (x · y)2, d = 2, D = 3

... is however not needed.W. Dahmen, J. Burkardt (DASIV) V - Classification 69 / 88
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Some Illustrations (see [9])

Polynomial kernel: K (x, y) = (x · y)2, d = 2, D = 3
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Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Mercer Kernels

• Question: What Qualifies a function K (x, y) on X × X as a legal kernel?

• The Key Property: that makes the dual formulation work is that for any samples xj ∈ X ,
j = 1, . . . ,N, the matrix

K =
(
K (xi , xj )

)N
i,j=1 ∈ RN×N , (3.53)

is symmetric positive (semi-)definite.

Definition 14

A continuous symmetric funktion K ∈ C(X × X ) such that for any xj ∈ X , j = 1, . . . ,N, any
N ∈ N, the matrix K from (3.53) is symmetric positive definite, is called a positive definite kernel
or Mercer kernel, see [6].

• Being induced by a feature map K (x, y) = Φ(x) · Φ(y) =
∑D

k=1 φk (x)φk (y) is
by (3.50) sufficient for a kernel to be positive definite. D =∞ could happen.

• We’ll see that it is in essence also necessary. The following Theorem is a special case of
what is called Hilbert-Schmidt Decomposition tailored to the current needs. It can be
regarded as an infinite-dimensional version of the SVD or the spectral decomposition
theorem (see Lecture I, Theorem 31, Theorem 39).
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Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Hilbert Schmidt Decompositions Background Material

Theorem 15

Assume that p is a separable density on X × Y (i.e., p(x, y) = p(x)p(y)) and
G ∈ L2(X × Y; p) = ‖G‖L2(X×Y;p), i.e.,

∫
X×Y

|G(x, y)|2dP(x, y) <∞. Then, the operator

MG : Y → X defined by

(MG)(v) :=

∫
Y

G(·, y)v(y)dP(y), (3.54)

is compact and there exist orthonormal systems {φk : k ∈ I} ⊂ X , {ψk : k ∈ I} ⊂ Y such that

G(x, y) =
∑
k∈I

σkφk (x)ψk (y), a.e. where σ1 ≥ σ2 ≥ · · · ≥ σk ≥ · · · ≥ 0, σk → 0. (3.55)

Moreover
‖MG‖L(Y,X ) = σ1, ‖MG‖HS = ‖G‖L2(X×Y;p) =

(∑
j∈I

σ2
k

)1/2
. (3.56)

Here I ⊆ N is the largest subset for which the σk are strictly positive.

cf. Lecture I, Theorem 3.9
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Spectral Decomposition for Compact Positive Definite Operators

Theorem 16

Assume that p is a probability density on X and G ∈ L2(X × X ; p ⊗ p) = ‖G‖L2(X×X ;p⊗p), i.e.,∫
X×X

|G(x, y)|2dP(x)dP(y) <∞. Moreover, assume that G is symmetric positive definite, i.e.,

∫
X×X

v(x)G(x, y)v(y)dP(x)dP(y) ≥ 0 ∀ v ∈ H, G(x, y) = G(y, x), x, y ∈ X . (3.57)

Then, (MG)(v) :=
∫
X

G(·, y)v(y)dP(y) (see (3.54)) is a compact symmetric positive definite

operator and there exists an orthonormal system {φk : k ∈ I} ⊂ X such that

G(x, y) =
∑
k∈I

λkφk (x)φk (y), a.e. where λ1 ≥ λ2 ≥ · · · ≥ 0, λk → 0, (3.58)

i.e., MGφk = λkφk , k ∈ I (eigensystem of MG). Moreover, one has

‖MG‖L(X ,X ) = σ1, ‖MG‖HS = ‖G‖L2(X×X ;p⊗p) =
(∑

j∈I
λ2

k

)1/2
. (3.59)

cf. Lecture I, Theorem 3.1
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Mercer Kernels

The compactness of the operator MG induced by G, i.e., the fact that
‖G‖L2(X×X ,⊗2p) <∞ is responsible for the fact that MG has always a discrete spectrum
also when I = N with σk , λk → 0.

Without positive definiteness but only symmetry in (3.57) one could still conclude a
decomposition like (3.58) but without the sign condition on the spectrum {λk}k∈I .

Theorem 16 says that if G is symmetric positive definite and square integrable in X × X
then, there exists a feature map Φ : X → L2(X , p)I , where

Φ(x) = (
√
λkφk (x))k∈I , D = #(I)(=∞ if I = N) (3.60)

This almost what we need for G to qualify as a kernel, except that pointwise evaluations
need to be well-defined, i.e., a kernel has to be continuous.

W. Dahmen, J. Burkardt (DASIV) V - Classification 74 / 88



Classification Mercer Kernels and Reproducing Kernel Hilbert Spaces

Mercer’s Theorem

Theorem 17

Suppose that K is a Mercer kernel on X × X , i.e., K (·, ·) ∈ L2(X × X ,⊗2p) ∩ C(X × X ) be
symmetric positive definite (3.57). Then, K can be expanded as

K (x, y) =
∑
k∈I

λkφk (x)φk (y), a.e. where λ1 ≥ λ2 ≥ · · · ≥ 0, λk → 0. (3.61)

where {φk : k ∈ I} ⊂ L2(X × X ,⊗2p) is an orthonormal system and the series (3.61)
converges absolutely and uniformly on compact subsets of X ,i.e., for any compact D ⊆ X × X
one has

lim
n→∞

sup
(x,y)∈D

∣∣∣K (x, y)−
∑
k≤n

λkφk (x)φk (y)
∣∣∣ = 0.

Moreover, for any xj ∈ X , j = 1, . . . ,N, any N ∈ N, the matrix

K =
(
K (xi , xj )

)N
i,j=1 ∈ RN×N

is symmetric positive definite.
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Comments on the Proof of Theorem 17: The existence of the decomposition (3.61) follows
directly from Theorem 16.

Since K is continuous and K →
∫
X

K (x, y)φk (y)dP(y) = λkφk (x) is continuous we conclude that

the φk are continuous. One can also show that MK maps into C(X ).
Thus, the feature map Φ(x) := (

√
λkφk (x))k∈I is well defined and (3.61) says that

K (x, y) = Φ(x) · Φ(y) and therefore

v>Kv =
N∑

i,j=1

vi K (xi , xj )vj =
N∑

i,j=1

vi

(∑
k∈I

λkφ(xi )φk (xj )vj

)
=

∑
k∈I

λk

N∑
i,j=1

viφk (xi )φk (xj )vj =
∑
k∈I

λk

( N∑
i=1

viφk (xi )
)( N∑

j=1

vjφk (xj )
)

=
∑
k∈I

λk

( N∑
i=1

viφk (xi )
)2
≥ 0. �

The next observation shows that K (x, y) can be viewed as a similarity measure for a pair of
features x, y

K (x, y)2 ≤ K (x, x) K (y, y). (3.62)

In fact, applying Cauchy-Schwartz to (3.61) gives

|K (x, y)| ≤
(∑

k∈I
λkφk (x)2

)1/2(∑
k∈I

λkφk (y)2
)1/2

= K (x, x)1/2K (y, y)1/2.
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Positive Definite Functions

An important class of kernels are of the form

K (x, y) = g(‖x− y‖2), x, y ∈ X , (3.63)

where g is a scalar valued function. Collections gj (x) = g(‖x− xj‖2) are often called radial
basis functions (RBFs). For instance, the Gaussian kernel is of this form

There is an elaborate Theorie about such radial basis systems that are positive definite which
means that the corresponding kernels are psoitive definite in the above sense, see e.g. [7].
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Reproducing Kernel Hilbert Space

This is all closely related to the concept of Reproducing Kernel Hilbert Space (RKHS). Roughly
speaking this means the following: suppose H is a Hilbert space of functions on X with norm
‖v‖H = 〈·, ·〉1/2 for which point evaluations are continuous, i.e., there exists a constant C such
that for f ∈ H one has |f (x)| ≤ C‖f‖H. Then, essentially as a consequence of the Riesz
Representation Theorem there exists a reproducing kernel K ∈ H⊗H such that

〈K (·, x), f 〉H = f (x), (3.64)

that is, the kernel K represents the Dirac functional in H.

L2-spaces do not have a reproducing kernel, since point evaluation is not well-defined. But they
contain subspaces for which this is the case.

There is an important result by Aronszajn-Moore [1] stating the converse, namely whenever one
has a kernel K (·, ·) with certain properties, then there exists a Hilbert space for which this kernel
is a reproducing kernel.

In the present context, this is relevant for the following reasons: kernel methods can be also used
for regression in which case accuracy is naturally measured in an L2-norm (with respect to the
underlying probability density). However, the training is based on samples, i.e., point evaluations
with which the estimators, of course, should comply. This is the situation we are in.
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Mercer Kernels and RKHS

Theorem 18

Suppose that K (·, ·) ∈ L2(X × X ,⊗2p) ∩ C(X × X ) is a Mercer kernel. Then, there exists a
Hilbert space HK ⊂ L2(X ×X ,⊗2p) with inner product 〈·, ·〉K in which K is a reproducing kernel
and point evaluations are continuous. HK is generated by elements of the form
f (x) =

∑N
i=1 fi K (x, xi ), see the plug-ins for SVM classifiers in (3.51).

Step 1. Given (3.61), consider the bilinear form

〈u, v〉K :=
∑
k∈I

λ−1
k (u, φk )X (v , φk )X , where (f , g)X :=

∫
X

f (x)g(x)dP(x). (3.65)

One easily checks that this is indeed a bilinear form, see Lecture I, page 6. Clearly,

〈u, u〉K =
∑
k∈I

λ−1
k (u, φk )2

X ≥ 0

Since λ−1
k →∞ one may have 〈u, u〉 =∞. We are looking for a closed subspace

HK ⊂ L2(X , p) for which 〈·, ·〉K is an inner product and a closed subspace

‖v‖2
K := 〈v , v〉K <∞.
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Reproducing Kernel Hilbert Space
Step 2. Reproducing property: with the above bilinear form 〈··〉K one has

〈K (·, x),K (·, y)〉K = K (x, y) (3.66)

In fact, by (3.61) and orthonormality of the φk , one has (K (·, x), φk )X = λkφk (x) and therefore

〈K (·, x),K (·, y)〉K =
∑
k∈I

λ−1
k (K (·, x), φk )X (K (·, y), φk )X

=
∑
k∈I

λ−1
k λ2

kφk (x)φk (y) = K (x, y). (3.67)

Proposition 19

As in (3.64), consider the operator

f (x)→ (PK f )(x) := 〈K (·, x), f 〉K . (3.68)

Then, for any f ∈ L2(X , p) of the form f (x) =
∑N

i=1 fi K (x, xi ), one has

(PK f )(x) = f (x). (3.69)

Moreover, PK : L2(X ; p)→ span {φk : k ∈ I} is the L2-orthogonal projection to the span of the
φk , k ∈ I.
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Proof of Proposition 19: First, by the reproducing property (3.67),one has

(PK f )(x) =
N∑

j=1

fj 〈K (·, x),K (·, xj )〉K
(3.67)

=
N∑

j=1

fj K (x, xj ) = f (x), (3.70)

which shows (3.69).

As for the rest of the claim, expanding K according to (3.61), using the definition of 〈·, ·〉K , and
orthonormality of the φk , yields

(PK f )(x) = 〈K (·, x), f 〉K =
∑
k∈I

λ−1
k (K (·, x), φK )X (f , φk )X

(3.61)
=

∑
k∈I

λ−1
k λkφk (x)(f , φk )X

=
∑
k∈I

(f , φk )Xφk (x), as claimed �

Now for f of the form

f (x) =
N∑

i=1

fi K (x, xi ), f := (f1 . . . , fN )> ∈ ker
( (

K (xi , xj )
)N

i,j=1︸ ︷︷ ︸
=K

)⊥
, (3.71)

one has for ‖ · ‖K = 〈·, ·〉1/2
K , defined by (3.65),

‖f‖2
K = 〈f , f 〉K =

N∑
i,j=1

fi fj 〈K (·, xi ),K (·xj )〉K =
N∑

i,j=1

fi fj K (xi , xj ) = f>Kf > 0.

Thus, ‖ · ‖K is a norm on the class of those functions.
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Step 3. RKHS and Continuity:

• Let HK be the closure of all f of the form (3.71) under the norm ‖ · ‖K .

• As a closed subspace of L2(X , p) it is a Hilbert space with inner product 〈·, ·〉K .

• Since by (3.68), (3.69), f (x) = 〈K (·, x), f 〉K , Cauchy-Schwartz yields

|f (x)| = |〈K (·, x), f 〉K | ≤ ‖K (·, x)‖K ‖f‖K = 〈K (·, x),K (·, x)〉1/2
K ‖f‖K

(3.67)
= K (x, x)1/2‖f‖K ,

which says that point-evaluation is continuous in HK , i.e, C(X ) ⊂ HK with a continuous
embedding:

|f (x)| ≤ sup
x∈X

K (x, x)‖f‖K  ‖f‖L∞(X ) ≤ C‖f‖K , f ∈ HK . (3.72)
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A Bigger Picture ...

SVMs work very well in high dimensions d � 1, especially when d � N, the number of
samples. The computational complexity does not depend too strongly on d .

An important emerging concept is Deep Neural Networks which contain linear SVMs as
“nuclei” and can treat all regimes of d , [5].

The performance of SVMs with regard to generalization and classification accuracy will be
discussed in the next section.

For lower spatial dimension d , especially when N � d , SVMs are not necessarily the
method of choice. One of the many alternatives are decision trees or nearest neighbor
methods.

A simple key ingredient: Partition Trees

L(T )Λ(T )

Split the domain X into a fixed number of
cells - the “children”;

repeating this splitting for selected cells,
creates a tree;

the cells are the nodes. The leaf nodes
form a partition of X
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The Idea of Decision Trees

Given a sample set ZN = {(x1, y1), . . . , (xN , yN )} ⊂ Z = X × {−1,+1}, constructing a
classifier can be viewed as finding a subset S ⊂ X such that for any new x ∈ X

x ∈ S  y = +1, x ∈ Sc := X \ S  y = −1.

The set S should be generated from the data ZN . The classifier has no loss if xi ∈ S iff
yi = 1.

The boundary ∂S is called the decision boundary, for any new query x the label depends
on which side of the boundary ∂S this point is located.

For linear SVMs the decision boundary is a hyperplane. For general kernel based SVMs
the decision boundary is the zerolevel set of a trained linear combination of the kernel
snapshots K (·, xi ), i = 1, . . . ,N.

Adaptive partition trees can be used to “zoom” into the decision boundary of the “ideal set”
S∗.

Such trees are called decision trees. With every leaf cell C of the tree - a cell in the
partition generated by the tree - one associates a label y(C) ∈ {±1}. For a new query x,
one finds the leaf cell C containing x and assignes to x the label y(C).
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There is more than classification ...

Regression not only asks for label decisions but for the whole functional relation behind the data:

Y

Xx x’

P unknown probability measure on Z := X ×Y
Factorization into conditional and marginal
densities dP(x , y) = dP(y |x)dPX (x)

Goal: estimate the regression function

fp(x) :=

∫
Y

ydP(y |x) = E(y |x)

see Lecture II, (8.3)

Risk functional: R[f ] :=
∫
Z

(y − f (x))2dP  

R[f ] = R[fρ] + ‖f − fp‖2
L2(X ,pX ), ‖ · ‖ := ‖ · ‖L2(X ,pX )

Task: construct an estimator f̂Z , e.g. minimizing the least squares risk 1
N
∑N

i=1
(
yi − f̂Z(xi )

)2

using kernel SVMs, that approximates fp well in L2(X , pX ).
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The Idea of Decision Trees

L(T )Λ(T )

One should not keep refining until each leaf cell contains only
one xi  overfitting

The principles of generating the “right” tree are connected
with the learning principles discussed in the next section.

This concerns e.g. complexity penalization and model
selection. An important variant that first refines too much and
then prunes back is CART, [4]

There are different ways of assigning a label to a leaf cell
based on several data contained in that cell. The simplest
one is to take the sign of the average of the labels in that cell.
Alternatively, one could use an SVM for the data in that cell.

∂Ω∗ ∂Ω∗
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