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Basic Notions

Examples
R,C fields of real resp. complex numbers, K ∈ {R,C}

Kn := {x = (x1, . . . .xn)> : xi ∈ K, i = 1, . . . , n}

Example 1

Find the intersection of two lines in the plane

L1 = {x ∈ R2 : a1,1x∗1 + a1,2x∗2 = b1}, L2 = {x ∈ R2 : a2,1x∗1 + a2,2x∗2 = b1}

x∗ ∈ L1 ∩ L2 ⇔
a1,1x∗1 + a1,2x∗2 = b1

a2,1x∗1 + a2,2x∗2 = b1

⇔
(a1,1 a1,2

a2,1 a2,2

)(x∗1
x∗2

)
=
(b1

b2

)
⇔ Ax∗ = b

Matrix-vector multiplication:

A =


a1,1, . . . , a1,n

...
...

am,1, . . . , am,n

 =
(

a1, . . . , an︸ ︷︷ ︸
columns of A

)
∈ Km×n  Ax := x1a1 + · · ·+ xnan ∈ Km
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Basic Notions

The Core Questions

Given A = (ai,j )
m,n
i,j=1 ∈ Km×n, b ∈ Km, find x ∈ Kn s.t.

x1a1,1 + · · ·+ xna1,n = b1

...
...

...
...

x1am,1 + · · ·+ xnam,n = bm

⇔ Ax = b ⇔
n∑

j=1

xj aj = b

The driving issue in Linear Algebra is the “solvability” of such systems, more precisely:

under which conditions on A,b does there

exist exactly one solution x ∈ Kn

exist at least one solution x ∈ Kn

no solution?

what is the structure of the set of solutions?

These questions can be best answered by viewing the matrix A as a mapping

A : Kn → Km, A : x 7→ Ax
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Basic Notions

What has been used?

x ∈ K, a ∈ Km  xa :=


xa1

...

xam

 ∈ Km, a, b ∈ Km,  a + b :=


a1 + b1

...

am + bm

 ∈ Km

Definition 2

A set V is a Vector Space (linear space) over the field K (K-vector space) if the following holds:

∃ an “addition” + : V× V→ V which is commutative and associative

∃ a “multiplication” x ∈ K, a ∈ V 7→ xa ∈ V which is distributive

Example 3

1 V = Km is a vector space over K
2 Ck ([a, b]) := {f : [a, b]→ R : f (k) is continuous in every x ∈ [a, b]} is a vector space over

R where (af )(x) := af (x), (f + g)(x) := f (x) + g(x), x ∈ [a, b]
3

Pn :=
{

p(x) : p(x) =
n∑

j=0

aj x j , aj ∈ R, j = 0, . . . , n
}

is a vector space over R with the same operations as in (2)
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Basic Notions

Forms, Scalar (Inner) Products
Let X,Y be an K-vector spaces

K = R: b(·, ·) : X× Y→ R is called bilinear if ∀ x , z ∈ X, y , v ∈ Y, α, β ∈ R

b(αx + βz, y) = αb(x , y) + βb(z, y), b(x , αy + βv) = αb(x , y) + βb(x , v)

In other words b(·, y) : X→ R, b(x , ·) : Y→ R are for fixed x ∈ X, y ∈ Y linear functionals

b(·, ·) : X× X→ R is called symmetric if b(x , y) = b(y , x), x , y ∈ X

K = C: b(·, ·) : X× Y→ C is called sesquilinear if for fixed y ∈ Y, x ∈ X, b(·, y) : X→ K is
linear and b(x , ·) : Y→ K is semi-linear, i.e., b(x , αy) = αb(x , y). Hence
∀ x , z ∈ X, y , v ∈ Y, α, β ∈ R

b(αx + βz, y) = αb(x , y) + βb(z, y), b(x , αy + βv) = αb(x , y) + βb(x , v)

A sesquilinear form b(·, ·) : X× X→ C is called hermitian if b(x , y) = b(y , x)

Definition 4

Let b(·, ·) : X× X→ K be a symmetric, resp. hermitian form when K = R resp. K = C. Then
b(·, ·) : X× X→ K is called a scalar product (inner product, dot product) if it is positive definite,
i.e.,

b(x , x) > 0 ∀ x ∈ X \ {0}

W. Dahmen, J. Burkardt (DASIV Center ) I - Linear Algebra Basics 6 / 79



Basic Notions

Examples

K = R, X = Rn,Y = Rm, A ∈ Rn×m, b(x, y) := y>Ax
X = Y = Rn

b(x, y) = 〈x, y〉n := y>x =
n∑

k=1

xk yk =: x · y

show that this is a scalar product on Rn

K = C, X = Cn

b(x, y) = 〈x, y〉n := y∗x :=
n∑

k=1

xk yk , y∗ := y>

show that this is a scalar product on Cn

K = R, X = C([a, b])

〈f , g〉[a,b] :=

b∫
a

f (x)g(x)dx

is a scalar product on C([a, b])
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Basic Notions

Dimension
Recall:

a vector space V is generated by a set {v1 . . . , vk} ⊂ V (V = span {v1, . . . , vk}) if every
v ∈ V can be written as linear combination of the vj , j = 1, . . . , k , i.e., for some
c1, . . . , ck ∈ K

v =
k∑

j=1

cj vj

there exists a minimal n ∈ N such that V can be generated by n elements of V. n is called
the dimension of V, n = dimV
a minimal generating set is called a basis of V.

Exercise 5

Determine dimKn, dimPn, exhibit bases

What is the dimension of Ck ([a, b])?

The elements of a basis {v1, . . . , vn} are linearly independent, i.e.,

n∑
j=1

cj vj = 0 ⇒ cj = 0, j = 1, . . . , n
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Linear Mappings

Linear Mappings
Definition 6

X,Y vector spaces (over K), L : X→ Y is called a linear mapping (operator) if for any a, b ∈ K,
v ,w ∈ X

L(av + bw) = aLv + bLw ∈ Y

- L is injective (one-to-one) if L(v) = 0 ⇒ v = 0
- L is surjective (onto) if for y ∈ Y there exists x ∈ X such that L(x) = y
- L is bijective (one-to-one and onto, invertible) if L is injective and surjective

The set of all linear mappings from X to Y is denoted by L(X,Y)

• Any matrix A ∈ Km×n induces a linear mapping (operator) from Kn to Km by

x ∈ Kn 7→ Ax ∈ Km (recall Ax = x1a1 + · · ·+ xnan)  A(ax1 + bx2) = aAx1 + bAx2

• V a vector space over K, a (linear) mapping ` : V→ K is called a (linear) functional

Examples:

- V = C0([a, b]), `(f ) :=
b∫
a

f (x)ω(x)dx

- V as before, δx0 f := f (x0)

- V = Rn, a ∈ Rn fixed, `(x) :=
∑n

j=1 aj xj =: a · x = a>x
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Linear Mappings

Linear Mappings some further notions and facts

1 If X,Y are K-vector spaces then L(X,Y) is a K-vector space; identify the “+” in L(X,Y)
2 ker(L) := {x ∈ X : L(x) = 0} is a linear subspace of X
3 ran(L) := {y ∈ Y : ∃ x ∈ X, s.t. y = L(x)} is a linear subspace of Y
4 let dimX = n <∞, L ∈ L(X,Y) bijective implies dimY = n
5 compositions: L ∈ L(X,Y),B ∈ L(V,X), then LB, defined by LB(v) := L(B(v)), v ∈ V,

belongs to L(V,Y)
6 let L ∈ L(X,Y) be bijective, then L−1 : Y→ X, defined by L(x) = y ⇔ L−1(y) = x ,

belongs to L(Y,X); L−1 is called inverse of L and

LL−1 = IY, L−1L = IX, (IVv = v , v ∈ V, identity on V)

Thus, the set of bijective mappings in L(X,X) form a group with respect to composition as
multiplication.

Proposition 7

every K-vector space X of dimension dimX = n is isomorphic to Kn, in the sense that
there exists a bijection B ∈ L(X,Kn) such that Kn = {B(x) : x ∈ X}. Hence any two
n-dimensional K-vector spaces are isomorphic

If dim(X) = n, dim(Y) = m, then L(X,Y), L(Kn,Km), Kmn, Km×n are all isomorphic to
each other
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Linear Mappings

Proof of Proposition 7
Let X be an n-dimensional K-vector space and L ∈ L(X,X). Then there exists a basis
Φ = {φ1, . . . , φn} ⊂ X of X. Hence, every x ∈ X has a unique representation

x =
n∑

k=1

xkφk ∈ X. (3.1)

Define BΦ : X→ Kn by BΦ(x) := x = (x1, . . . , xn)> (BΦ depends on the choice of basis).
Clearly BΦ is linear and injective (by definition of a basis), i.e., BΦ ∈ L(X,Kn). Also M : Kn → X,
defined by M(x) :=

∑n
k=1 xkφk is linear, injective and obviously M(BΦ(x)) = x . Thus M = B−1

Φ .

Now suppose X,Y are K -vector spaces with bases Φ = {φ1, . . . , φn} ⊂ X,
Ψ = {ψ1, . . . , ψm} ⊂ Y, respectively. In particular, for each k ∈ {1, . . . , n} one has
BΨ(L(φk )) = (c1,k . . . , cm,k )> =: ck ∈ Km. Thus, for C = (c1, . . . , cn) ∈ Km×n

y := L(x)= L
( n∑

k=1

xkφk

)
=

n∑
k=1

xk L(φk ) =
m∑

r=1

( n∑
k=1

cr,k xk

)
ψr = B−1

Ψ

(
Cx) ∈ Y.

In other words
L(x) = y ⇔ Cx = y for y = BΨ(y), x = BΦ(x) (3.2)

In that sense L ∈ L(X,Y) is represented by C ∈ L(Kn,Km) ≡ Km×n
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Linear Mappings

Linear Mappings, Matrices some further notions and facts

by (5) above A ∈ Km×n, B ∈ Kn×r ⇒ AB = (Ab1, . . . ,Abr ) ∈ Kr×m

change of bases: suppose a1, . . . , an, and b1, . . . ,bn are both bases for Kn, then there
exists a unique M ∈ Kn×n such that bj = Maj , j = 1, . . . , n
In fact: A := (a1, . . . , an),B := (b1, . . . ,bn) ∈ Kn×n then B = (BA−1)A, i.e., M = BA−1

A = (a1, . . . , an) ran(A) = span {a1, . . . , an}
rank(A) := dim(ran(A)) = #(linearly independent columns of A)

A ∈ Km×n, ker(A) = {x ∈ Kn : Ax = 0} = ran(A>)⊥, where

A = (ai,j )
m,n
i,j=1 ∈ Km×n  A> := (aj,i )

n,m
j,i=1 ∈ Kn×m (transpose of A)

and
V ⊂ Kn  V⊥ := {y ∈ Kn : y · v = 0, v ∈ V}

Exercise 8

show that #(linearly independent columns of A) = #(linearly independent rows of A)

show that for A ∈ Km×n one has m = dim(ran(A)) + dim(ker(A>))
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Linear Mappings

Solvability of Linear Systems

Given A ∈ Km×n, b ∈ Km, solve Ax = b:

Exercise 9

There is a unique solution if and only if b ∈ ran(A), m ≥ n, rank(A) = n.

There exists a unique solution for every b ∈ Rm if and only if m = n and rank(A) = n. In
this case x = A−1b.

For n = m there exists a unique solution for every b ∈ Rm if and only if ker(A) = {0}.
Recall: det : Kn×n → K is a multilinear anti-symmetric mapping and A−1 exists if and only
if det(A) 6= 0 in which case we call A non-singular.

More than one solution exists if and only if infinitely many solutions exist. The solution set
is the affine space

S(A) = x0 + ker(A) = {x = x0 + y : y ∈ ker(A)}

Notice: searching for a “solution” of Ax = b makes sense only if A ∈ Kn×n is non-singular, that is
solvability depends only on A, why? In all other cases the notion of “solution” has to be
generalized.
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Important Matrix Classes

Hermitian and Positive Definite Matrices
For A =

(
ak,j
)m,n

k,j=1 ∈ Km×n the transpose A> is defined by A> =
(
aj,k
)n,m

k,j=1 ∈ Kn×m (reflect
across the diagonal)

Recall: i imaginary unit, i2 = −1, z = x + iy ∈ C, z := x − iy  zz = |z|2 = x2 + y2

K = C : hermitian conjugate:

A∗ := A
>

=
(
aj,k
)n,m

j=1,k ∈ Cn×m (A∗ = A> when K = R)

Definition 10

A ∈ Kn×n is called symmetric (K = R), resp. hermitian (K = C) if A = A∗

A hermitian matrix A ∈ Kn×n is called positive (semi-)definite if

x∗Ax > (≥)0 ∀ x ∈ Kn \ {0}

Remark 11

For A ∈ Kn×n, one has 〈Ax, y〉n = 〈x,A∗y〉n, i.e., A∗ is called the adjoint of A for reasons to be
explained later.
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Important Matrix Classes

Examples of Symmetric/Hermitian Positive Definite Matrices

I is in each “club”

For any B ∈ Km×n the matrices A := B∗B ∈ Kn×n, A := BB∗ ∈ Km×m are hermitian
positive semi-definite. Under which conditions on B is which version positive definite?

Suppose that {φ1, . . . , φn} ⊂ X where X is a K-vector space and 〈·, ·〉X is a scalar product
on X. Then the Gramian matrix

G :=
(
〈φk , φj 〉X

)n,n
k,j=1 ∈ Kn×n (4.1)

is hermitian positive semi-definite. Under which condition on the set {φ1, . . . , φn} ⊂ X is G
positive definite?

Remark 12

Any hermitian positive definite matrix is nonsingular and its inverse is also hermitian positive
definite.

Proof: Suppose det(A) = 0,⇒ ∃ x ∈ Kn \ {0} s.t. Ax = 0,⇒ x∗Ax = 0 which is a contradiction

for x 6= 0. Now show that A−1 = (A∗)−1 !
= (A−1)∗ ⇔ I = A∗(A−1)∗. Indeed, (since

B∗C∗ = (CB)∗) one has A∗(A−1)∗ = (A−1A)∗ = I∗ = I. �
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Important Matrix Classes

Further Properties of Hermitian Positive Definite Matrices

Proposition 13

Let A ∈ Kn×n be hermitian positive semi-definite, then:
1 All principal submatrices of A are hermitian positive semi-definite. In particular, all diagonal

entries are real and non-negative ak,k ≥ 0, k = 1, . . . , n.

2 All eigenvalues of A are real and nonnegative.
3 The maximum modulus entry of A occurs on the diagonal of A.

Proof: For any J ⊂ {1, . . . , n} let AJ :=
(
aj,k
)

(j,k)∈J×J ∈ K#(J)×#(J). For J 6= ∅ and any

x ∈ Kn \ {0} supported in J let x̃ := x|J ∈ K#(J). Since x̃ 6= 0 we have 0 < x∗Ax = x̃∗AJ x̃.
Since x̃ 6= 0 is arbitrary (1) follows. As for (2), suppose Ax = λx, λ 6= 0. Then
0 < x∗Ax = λx∗x = λ

∑n
k=1 |xk |2 which implies λ > 0. Concerning (3), we know from Theorem

30 (later below) that then all principal minors (determinants of principal submatrices) are
nonnegative. Now suppose, that |aj,k | = max1≤r,s≤n |ar,s| and j 6= k . Then (w.l.o.g. j < k )

0 ≤ det
( aj,j ak,j

aj,k ak,k

)
= aj,j ak,k − ak,j aj,k = aj,j ak,k − |aj,k |2

which means that |aj,k |2 ≤ aj,j ak,k and hence max{aj,j , ak,k} ≥ |aj,k |. �
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Important Matrix Classes

Unitary Matrices

A ∈ Kn×n is called unitary (orthogonal if K = R): Q ∈ On = On(K) if Q∗Q = I

Properties:

Q∗Q = I means that the columns qj , j = 1, . . . , n, are an orthonormal basis of Kn, i.e.,

(qj )∗qk =
n∑

r=1

qr,j qr,k = δj,k , j, k = 1, . . . , n

Q ∈ On ⇔ Q∗ ∈ On, i.e., the rows of Q also form an orthonormal basis

Q, Q̃ ∈ On ⇒ QQ̃ ∈ On, i.e., On is a multiplicative group

|det(Q)| = 1 (since 1 = det(Q∗Q) = det(Q∗)det(Q) = det(Q)det(Q) = |det(Q)|2)

Permutation matrices belong to On: let π : {1, . . . , n} → {1, . . . , n} be a permutation,
ej := (0, . . . , 0, 1, 0 . . . , 0)> = (δk,j )

j
k=1 the j th coordinate vector. Then

Pπ :=
(
eπ(1), . . . eπ(n)

)
∈ On and APπ = (aπ(1), . . . ,Aπ(n))

Hence P>π A permutes the rows of A according to π
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How to Measure and Quantify Norms, Normed Linear Spaces

Normed Linear Spaces How to “measure” vectors, functions?

Let V be a K-vector space (finite or infinite dimensional). Any mapping ‖ · ‖ : V→ R+ is called a
norm on V if

(N1) ‖v‖ = 0 ⇒ v = 0

(N2) ‖αv‖ = |α| ‖v‖, α ∈ K, v ∈ V
(N3) ‖v + z‖ ≤ ‖v‖+ ‖z‖, v , z ∈ V (triangle inequality)

The pair (V, ‖ · ‖) is called a a normed linear space. When the choice of the norm is clear we
simply say that V is a normed linear space.

Remark 14

The absolute value is a norm on V = K. Up to a scaling factor this is the only norm on K = R.
For higher dimensional spaces many different norms exist. Their choice depends on the purpose
or application. Every norm is a Lipschitz continuous mapping with Lipschitz constant equal to
one, i.e., ∣∣‖v‖ − ‖z‖∣∣ ≤ ‖v − z‖, v , z ∈ V. (5.1)

To see (5.1), note that by (N3) ‖v‖ = ‖v − z + z‖ ≤ ‖v − z‖+ ‖z‖ ⇒ ‖v‖ − ‖z‖ ≤ ‖v − z‖.
The same argument shows that ‖z‖ − ‖v‖ ≤ ‖v − z‖.
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How to Measure and Quantify Norms, Normed Linear Spaces

Examples Vector and Sequence Norms

p-norms on Kn, 1 ≤ p ≤ ∞:

‖x‖p :=
( n∑

j=1

|xj |p
)1/p

, 1 ≤ p <∞, ‖x‖∞ := max
j=1,...,n

|xj |

For any fixed positive “weights” ωj , j = 1, . . . , n, the “weighted” counterparts

‖x‖p,ω :=
( n∑

j=1

ωj |xj |p
)1/p

(5.2)

define norms as well.

p-norms on K∞ (sequences), 1 ≤ p ≤ ∞:

‖x‖p :=
( ∞∑

j=1

|xj |p
)1/p

, 1 ≤ p <∞, ‖x‖∞ := sup
j=1,...,n

|xj |

In this case one often uses the notation ‖ · ‖`p and `p denotes the space of all sequences for
which ‖x‖`p is finite. When using specific index sets I different from N, one writes `p(I) viewing
a sequence as a function mapping a discrete domain I to K. To stress the dependence on a
finite dimension n we also write briefly `np = `p({1, . . . , n})
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How to Measure and Quantify Norms, Normed Linear Spaces

Examples Vector and Sequence Norms

‖ · ‖p, ‖ · ‖`p are indeed norms:

For p = 1,∞ this follows directly corresponding properties of the absolute value.

For 1 < p <∞ properties (N1), (N2) for ‖ · ‖p, ‖ · ‖`p follow directly as well. The triangle
inequality (N3) is in this case less obvious. The main tool for verifying (N3) as well is the
following important inequality:

Hölder’s Inequality: for 1
p + 1

p∗ = 1 one has

∣∣∣∑
j∈I

xj ȳj

∣∣∣ ≤ ‖x‖`p(I)‖y‖`p∗ (I), x ∈ `p(I), y ∈ `p∗ (I). (5.3)

We’ll show later for the special case p = 2 how this implies the triangle inequality (N3).

Defining xȳ := (xj ȳj )j∈I , (5.3) implies

‖xȳ‖`1 ≤ ‖x‖`p(I)‖y‖`p∗ (I).
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How to Measure and Quantify Norms, Normed Linear Spaces

Operator Norms
One can “measure” the mapping properties of a linear operator by monitoring how it distorts the
unit ball:

‖L‖L(X,Y) := sup
x∈X;‖x‖X=1

‖L(x)‖Y = sup
x∈X\{0}

‖L(x)‖Y
‖x‖X

Verify: ‖L‖L(X,Y) is a norm on L(X,Y)

The operator norm ‖L‖L(X,Y) is induced by and thus depends on the norms ‖ · ‖X, ‖ · ‖Y.

L is called bounded if ‖L‖L(X,Y) <∞

 ‖L(x)‖Y = ‖L(x)‖Y
‖x‖X

‖x‖X ≤ supy∈X\{0}
‖L(y)‖Y
‖y‖X

‖x‖X  

‖L(x)‖Y ≤ ‖L‖L(X,Y)‖x‖X, x ∈ X. (5.4)

In other words, if L ∈ L(X,Y) is bounded there exists a constant C <∞ such that
‖L(x)‖Y ≤ C‖x‖X, x ∈ X, and C = ‖L‖L(X,Y) is the smallest such constant.
A bounded linear operator is Lipschitz continuous with Lipschitz constant ‖L‖L(X,Y):

‖L(x)− L(z)‖Y = ‖L(x − z)‖Y ≤ ‖L‖L(X,Y)‖x − z‖X;

L ∈ L(X,Y),R ∈ L(Y,W) ‖R ◦ L‖L(X,W) ≤ ‖R‖L(Y,W)‖L‖L(X,Y).
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How to Measure and Quantify Norms, Normed Linear Spaces

Matrix Norms
When viewing A ∈ Km×n as a “vector” in Kmn one could, in principle, use p-norms for matrices
as well. However, these norms would not reflect the properties of A when viewed as a linear
operator from Kn to Km. Here are some operator norms for matrices: let A ∈ Km×n ≡ L(Kn,Km)

‖A‖∞ = ‖A‖L(`∞,`∞) = sup
x 6=0

‖Ax‖∞
‖x‖∞

= max
j=1,...,m

n∑
k=1

|aj,k | (maximal row sum)

‖A‖1 = ‖A‖L(`1,`1) = sup
x 6=0

‖Ax‖1

‖x‖1
= max

k=1,...,n

m∑
j=1

|aj,k | (maximal column sum)

The so called spectral norm, induced by the Euclidean norm ‖ · ‖2 requires the notion of
eigenvalue of a matrix. The set of eigenvalues of A is often called “spectrum” of A. This will be
discussed in more detail a little later. Here it sufficies to know that λ ∈ K, x ∈ Kn are called
eigenvalue and eigenvector of A if Ax = λx, i.e., A just strechtes or shortens an eigenvector
while preserving its direction. Moreover (see Proposition 13 later below) the matrix A∗A has only
nonnegative eigenvalues. We denote by λmax(A∗A) the largest eigenvalue of A∗A. Then one
can show that for A ∈ Km×n

‖A‖2 = ‖A‖L(`n
2,`

m
2 ) =

√
λmax(A∗A) (5.5)
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Unitary Matrices “Love” the Euclidean Norm

Proposition 15

Let Q ∈ On

1 Unitary matrices map Euclidean spheres into themselves: ‖Qx‖2 = ‖x‖2, x ∈ Kn;
2 they have minimal condition numbers: κ2(Q) = 1;
3 multiplying a matrix with a unitary matrix does not change the spectral norm of the matrix:
‖A‖2 = ‖QA‖2 = ‖AQ‖2;

4 multiplying a matrix with a unitary matrix does not change the spectral norm of the matrix:
κ2(A) = κ2(QA) = κ2(AQ)

Proof: (1): ‖Qx‖2
2 = (Qx)∗Qx = x∗Q∗Qx = x∗x = ‖x‖2

2;

(2): (1)⇒ ‖Q‖2 = 1⇒ ‖Q∗‖2 = ‖Q−1‖2 = 1⇒ κ2(Q) = ‖Q‖2‖Q−1‖2 = 1;
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Well-Posedness

A problem is called well posed if

1 There exists a solution;
2 the solution is unique;
3 the solution depends continuously on the data

The problem is called ill-posed if at least one of these requirements fails to hold.

To deal with ill-posed data one has to regularize the problem, i.e., one seeks a nearby
well-posed problem and solves this one

In finite dimensions “continuous dependence” is independent of a specific norm. In the
infinite dimensional case the choice of the norm may be essential.
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Condition of a Problem, Condition Numbers
The notion of Condition of a problem attempts to quantify how strongly the output depends on
perturbations of the input data.

The relative condition of a linear operator L ∈ L(X,Y) can be estimated by the (relative)
condition number κX,Y(L) of L which is the smallest constant κ satisfying

‖L(x)− L(x̃)‖Y
‖L(x)‖Y

≤ κ
‖x − x̃‖X
‖x‖X

, x , x̃ ∈ X, (5.6)

hence quantifying how the relative output accuracy is controlled by the relative input error.

Proposition 16

One has

κX,Y(L) =
supx∈X;‖x‖X=1 ‖L(x)‖Y

infx ;‖x‖X=1 ‖L(x)‖Y
=

‖L‖L(X,Y)

infx ;‖x‖X=1 ‖L(x)‖Y
(5.7)

If L is invertible one has
κX,Y(L) = ‖L‖L(X,Y)‖L−1‖L(Y,X). (5.8)

Thus, L and L−1 have the same condition number.

κX,Y(L) is the ratio of maximal expansion and maximal compression that can be caused by L.
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Proof of Proposition 16

‖L(x)− L(x̃)‖Y = ‖L(x − x̃)‖Y
(5.4)
≤ ‖L‖L(X,Y)‖x − x̃‖X, (5.9)

and

‖L(x)‖X =
‖L(x)‖Y
‖x‖X

‖x‖X ≥ inf
x′ 6=0

‖L(x ′)‖Y
‖x ′‖X

‖x‖X = inf
‖x′‖X=1

‖L(x ′)‖Y‖x‖X (5.10)

provide
‖L(x)− L(x̃)‖Y
‖L(x)‖Y

≤
‖L‖L(X,Y)

inf‖x′‖X=1 ‖L(x ′)‖Y
‖x − x̃‖X
‖x‖X

which shows that κX,Y(L) ≤
‖L‖L(X,Y)

inf‖x′‖X=1 ‖L(x′)‖Y
. Show that one cannot do better.

Regarding (5.8), notice

1
inf‖x′‖X=1 ‖L(x ′)‖Y

= sup
x′ 6=0

‖x ′‖X
‖L(x ′)‖Y

(y=L(x′))
= sup

y∈Y

‖L−1(y)‖X
‖y‖Y

= ‖L−1‖L(Y,X)

which completes the proof �
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Condition Numbers and Residuals

Let A ∈ Kn×n ≡ L(Kn,Kn) be nonsingular, let ‖ · ‖ be any norm on Kn, and κ(A) = ‖A‖‖A−1‖
the corresponding condition number.

Question: suppose that x̃ is an approximate solution of Ax = b. The residual r := b− Ax̃ is a
computable and hence known quantity. What does the residual tell us about the unknown error
x̃− x?

‖x− x̃‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

(5.11)

Hence, the smaller κ(A) the more accurate is the information provided by the (known) residual
about the (unknown) error. To see (5.11), note

‖x− x̃‖ = ‖A−1A(x− x̃)‖ = ‖A−1(b− Ax̃)‖ ≤ ‖A−1‖‖b− Ax̃‖ = ‖A−1‖‖r‖, ‖b‖ ≤ ‖A‖‖x‖

which gives (5.11).

Why does this imply immediately also

‖b− Ax̃‖
‖b‖

=
‖r‖
‖b‖
≤ κ(A)

‖x− x̃‖
‖x‖

? (5.12)
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Further Comments

Applying an operator L ∈ L(X,Y) to some input x ∈ X, i.e., L : x 7→ L(x) (e.g. a matrix
vector multiplication A : x 7→ Ax) and solving an “operator equation” L(x) = y ,.e.,
y 7→ L−1(y) (x 7→ A−1b) are mathematical operations with the same condition numbers.

A linear operator on a finite dimensional space is always bounded (hence continuous). In
fact, on account of Proposition 7, this has to be verified only for matrices and some fixed
norm. For instance, the maximal row-sum norm is trivially bounded. Whenever A is
non-singular A−1 has for the same reason a finite norm as well. Therefore,

Ax = b is a well-posed problem ⇔ A−1 exits ⇔ κ(A) <∞ (any norm)
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Stability of a Basis

Suppose that X is a finite-dimensional normed linear space and Φ = {φ1, . . . , φn} ⊂ X is a basis
for X. We wish to quantify the quality of the basis in the following sense: suppose we know only
perturbed coefficients x̃j , j = 1, . . . , n of the representation x =

∑n
j=1 xjφj , how much does

x̃ =
∑n

j=1 x̃jφj differ from x? If we decide to measure the perturbation of the coefficient vector in

the norm ‖ · ‖p on Kn, say, we ask to estimate the relative error ‖x̃−x‖X
‖x‖X

in terms of the relative
error

‖x̃− x‖p

‖x‖p
=
‖BΦ(x̃)− BΦ(x)‖p

‖BΦ(x)‖p

???↔
‖x̃ − x‖X
‖x‖X

(5.13)

Thus, the relation between these relative errors is precisely described by the condition number
κX,`n

p
(BΦ) of the mapping BΦ : X→ Kn, induced by (3.1). By the previous comments, BΦ is a

linear and bijective mapping between finite dimensional spaces and thus has a bounded
condition number. Hence, the basis Φ is “the more stable” the smaller κX,`n

p
(BΦ) is. Stability of a

basis Φ (in a quantitative sense) is therefore synonimous to a small condition number of the
coordinate mapping BΦ.
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Finite vs. Infinite Dimensional Spaces

`p(I) := {x ∈ KI : ‖x‖`p(I) <∞}, Br (`p(I)) := {x ∈ KI : ‖x‖`p(I) ≤ r} ball of radius r .

There are essential differences between #(I) = n <∞ and #(I) =∞: (KI = (K \ {∞})I )

‖x‖p <∞ for all x ∈ Kn. For #(I) =∞ there exist x ∈ KI for which ‖x‖`p(I) =∞, i.e.,
`p(I) is a strict subset of KI and `p(I) differs from `q(I) when p 6= q.

For #(I) =∞ closed balls Br (`p(I)) are not compact (they are for #(I) <∞).

Visualize B1(`2p) for different p, including p = 1, 2,∞
Determine the volume of B1(`np) for p = 1, 2,∞.

If you draw N points in [−1, 1]n = B1(`n∞) randomly according to the uniform distribution.
How many of those points do you expect to find on average in the Euclidean ball B1(`n2)
and in the `1-ball B1(`n1)?

Linear operators on infinite dimensional spaces are no longer automatically bounded.
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Finite vs. Infinitely Dimensional Spaces

How different can different norms be?

Proposition 17

Let V be K-vector space. If dim(V) = n <∞ then all norms on V are equivalent, i.e., for any two
norms ‖ · ‖∗, ‖ · ‖∗∗ on V there exists constants 0 < c,C <∞ such that

c‖v‖∗ ≤ ‖v‖∗∗ ≤ C‖v‖∗, ∀ v ∈ V. (5.14)

This is in essence a consequence of the fact that any closed bounded subsets of a
finite-dimensional space is compact and that continuous functions on compact sets attain their
extrema in those sets.

In particular, recall:

Theorem (Heine-Borel):

All bounded closed sets in Kn are compact.
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Sketch of Proof of Prop. 17: Note that (5.14) is equivalent to

c ≤ ‖v‖∗∗ ≤ C ∀ v ∈ B1((V, ‖ · ‖∗)). (5.15)

Now, fix a basis {φ, . . . , φn} for V. As shown earlier every v ∈ V has a unique coefficient vector
v = Φ(v) ∈ Kn. Define ‖v‖n := ‖v‖∞. Then it suffices to show that (5.15) holds for any norm
‖ · ‖∗∗ on V and ‖ · ‖∗ = ‖ · ‖n. To that end, recall
Moreover, we know that every continuous function attains its minimum and maximum on a
compact set. The function F (v) :=

∥∥∥∑n
j=1 vjφj

∥∥∥
∗∗

= ‖B−1
Φ (v)‖∗∗ is clearly continuous because

B−1
Φ : v→

∑n
j=1 vjφj is easily seen to be continuous and v → ‖v‖∗∗ is by (5.1) even Lipschitz

continuous. Since by Heine-Borel, B1(`n∞) is compact, F (v) attains its minimum and maximum
on B1(`n∞). Since by linear independence, B−1

Φ (v) 6= 0 iff v 6= 0 (N1) implies that
c := minv∈B1(`n

∞) ‖B−1
Φ (v)‖∗∗ > 0. The upper bound is handeled analogously. �
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Finite vs. Infinitely Dimensional Spaces

Remark 18

The statement in Proposition 17 needs to be read with caution. The equivalence constants c,C
in (5.14) depend on the dimension n. For instance,

‖x‖∞ = max
j=1,...,n

|xj | ≤
( n∑

j=1

|xj |2
)1/2

= ‖x‖2 ≤
√

n‖x‖∞.

Hence, the larger the dimension the more the choice of a norm matters.

In infinite dimensions there could be issues with convergence. In that regard, the `p-spaces are
not so bad in the following sense

Definition 19

A normed linear space (V, ‖ · ‖) is called complete if every Cauchy sequence in V converges to
an element in V, i.e.,

‖vk − vn‖ → 0, k , n→∞, ⇒ ∃ v ∈ V, s.t. ‖vk − v‖ → 0, k →∞.

Complete normed linear spaces are called Banach spaces.
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Norms on Function Spaces
Remark 20

Obviously, completeness is useful to be sure that, if one constructs a sequence, the Cauchy
property (which one may be able to verify) already ensures that this sequence has a limit in the
space one is working in.

All finite dimensional spaces, endowed with any norm, are always complete.

`p(I) are Banach spaces.

Things get more subtle when dealing with function spaces. One can formally define again for
1 ≤ p ≤ ∞ and a given function f : Ω ⊂ Rn → K, say:

‖f‖Lp(Ω) :=
(∫

Ω

|f (x)|pdx
)1/p

, 1 ≤ p <∞, ‖f‖L∞(Ω) := sup
x∈Ω
|f (x)|. (5.16)

This is an obvious analogy to sequence norms replacing discrete arguments j ∈ I and
summation by continuous arguments x and integration.

Again, the verification of properties (N1), (N2) (and (N3) when p =∞) is straight forward. For
1 < p <∞ the triangle inequality (N3) - also referred to as Minkowski’s inequality, rests again
the continuous version of Hölder’s Iequality∣∣∣ ∫

Ω

f (x)g(x)dx
∣∣∣ ≤ ‖f‖Lp(Ω)‖g‖Lp∗ (Ω),

1
p

+
1

p∗
. (5.17)

W. Dahmen, J. Burkardt (DASIV Center ) I - Linear Algebra Basics 36 / 79



How to Measure and Quantify Well-Posedness, Condition Numbers

Lp-Spaces Continued Can be skipped, just for interested readers

When Ω is a bounded domain and f is continuous, the expressions (5.16) are well defined and
C(Ω;K) := {f : Ω→ K : f continuous in Ω}, endowed with any of the norms ‖ · ‖Lp(Ω) becomes a
normed linear space. However, completeness is an issue.

Remark 21

Consider Ω = (−1, 1) ⊂ R, fn(x) := 1, x ∈ (−1, 0], fn(x) := max{0, 1− xn}. One easily checks
that this is a Cauchy sequence for every 1 ≤ p <∞ but not for p =∞. All fn are continuous, but
the fn don’t have a limit in C((−1, 1)). In fact, the pointwise limit is
f (x) = 1, x ∈ (−1, 0], f (x) = 0, x ∈ (0, 1) which is also the limit in Lp((−1, 1)) for 1 ≤ p <∞.
This hints at the facts:

(C(Ω), Lp(Ω)) is not a complete normed linear space for p <∞;

(C(Ω), ‖ · ‖L∞(Ω)) is complete and hence a Banach space.

Regarding a suitable notion of normed linear spaces for 1 ≤ p <∞, completeness is an issue. First, one should employ the
right notion of integration is used. The conceptually simple Riemann integration will not lead to complete spaces. Instead,
integration is always understood in the Lebesgue sense based on Measure Theory. Starting form measurable sets and
measurable functions, the space Lp(Ω) is defined as the closure of step functions with respect to the above norms. So these
spaces are complete by definition. Then the following has to be kept in mind:

• The elements of the spaces (Lp(Ω), ‖ · ‖Lp (Ω)) are, stricty speaking only equivalence classes of functions, where elements of
one class differ only on sets of measure zero. For instance, points have measure zero in R, points, lines, curves have mesure
zero in R2, etc. Therefore, it does not make sense to ask for point values of elements in Lp(Ω). Keeping this in mind, we simply
speak of “functions” in Lp(Ω).

• In the definition of L∞(Ω) which is a strictly larger Banach space than C(Ω) with the same norm.
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Pre-Hilbert Spaces
Norms induced by scalar products play an important role:

Remark 22

Suppose V is K-vector space with a scalar product 〈·, ·〉V. Then

‖v‖V := 〈v , v〉1/2
V (5.18)

is a norm on V. A linear space with a scalar product and associated norm is called a Pre-Hilbert
space. If V is complete under this norm it is called a Hilbert space. Hilbert spaces are in some
sense closest to finite dimensional Euclidean spaces.

Properties (N1), (N2) of a norm follow directly from the properties of a scalar product. The
triangle inequality (N3) follows from the Cauchy-Schwarz Inequality

|〈v ,w〉V| ≤ ‖v‖V‖w‖V, v ,w ∈ V. (5.19)

In fact,

‖v + w‖2
V = 〈v + w , v + w〉V = 〈v , v〉V + 〈w ,w〉V + 〈v ,w〉V + 〈w , v〉V

= ‖v‖2
V + ‖w‖2 + 〈v ,w〉V + 〈w , v〉V ≤ ‖v‖2

V + ‖w‖2 + 2‖v‖V‖w‖V
=

(
‖v‖V + ‖w‖V

)2
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Proof of the Cauchy Schwarz Inequality

Assume that v ,w 6= 0 (otherwise the inequality is trivial). Then for any λ ∈ K

0 ≤ 〈v − λw , v − λw〉V = ‖v‖2
V + |λ|2‖w‖2

V − λ〈w , v〉V − λ̄〈v ,w〉V.

Choose λ = 〈v,w〉V
‖w‖2

V
to obtain

0 ≤ ‖v‖2
V +
|〈w , v〉V|2

‖w‖4
V
‖w‖2

V − 2
|〈w , v〉V|2

‖w‖2
V

= ‖v‖2
V −
|〈w , v〉V|2

‖w‖2
V

,

which implies (5.19). �
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Examples

(V, ‖ · ‖) = (Kn, ‖ · ‖2),

〈x, y〉n = y∗x, ‖x‖2
2 = x∗x =

n∑
j=1

|xj |2

(`2(N), ‖ · ‖`2(N))

〈x, y〉N =
∑
j∈N

xj yj = y∗x

(L2(Ω), ‖ · ‖L2(Ω)),

〈f , g〉L2(Ω) =

∫
Ω

f (x)g(x)dx , ‖f‖2
L2(Ω) =

∫
Ω

|f (x)|2dx

(L2,π , ‖ · ‖L2(−π,π)), 2π-periodic square integrable functions

〈f , g〉(−π,π) :=
1

2π

π∫
−π

f (x)g(x)dx ,

ek (x) := eikx , f̂ (k) := 〈f , ek 〉(−π,π) =
1

2π

π∫
−π

f (x)e−ikx dx (Fourier coefficients)
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Dual Spaces
Let (X, ‖ · ‖X) be a Banach space. The collection of all bounded linear functionals X∗ := L(X,K)
is also a Banach space under the norm

‖g‖X∗ := sup
x∈X\{0}

g(x)

‖x‖X
. (5.20)

Examples:
Ck (Ω) := collection of all continuously differentiable functions on Ω,
‖f‖Ck (Ω) := max0≤j≤k ‖f (j)‖L∞(Ω); then δ

(k)
x0

: f 7→ f (k)(x0) belongs to (Ck (Ω))∗ because

‖δ(k)
x0
‖(Ck (Ω))∗ = sup

f∈Ck (Ω)

δ
(k)
x0

(f )

‖f‖Ck (Ω)

= sup
f∈Ck (Ω)

f (k)(x0)

‖f‖Ck (Ω)

≤ 1

A ∈ Km×n, y ∈ Kn fixed, then g(x) := (Ay)∗x belongs to (`m2 )∗ = L((Km, ‖ · ‖2),K) and
‖g‖(`m

2 )∗ = ‖Ay‖2

Theorem 23

Riesz Representation Theorem: let (V, ‖ · ‖V) be a Hilbert space. There exists a linear mapping
R = RV∗→V : V∗ → V such that for any g ∈ V∗, v ∈ V, one has g(v) = 〈v ,Rg〉V and
‖Rg‖V = ‖g‖V∗ , i.e., R is an isometry ‖R‖L(V∗,V) = 1.
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Orthogonal Projections and Best Approximations
Given a (finite dimensional) subspace U of a normed linear space V and given any v ∈ V, the
problem of best approximation to v from U is to find an element u(v) ∈ U that is closest to v with
respect to a given norm. In general, this is a difficult problem but when V is a Hilbert space, it
amounts to a linear projection.

Theorem 24

Let (V, ‖ · ‖V) be a Hilbert space and let U ⊂ V be a finite dimansional subspace (this holds in
greater generality). Given any v ∈ V, then some u(v) ∈ U satisfies

‖v − u(v)‖V = min
u∈U
‖v − u‖V (5.21)

if and only if
〈v − u(v), u〉V = 0 ∀ u ∈ U i.e., v − u(v) ⊥ U (5.22)

Remark 25

1 If u ∈ U and 〈u,w〉V = 0, ∀w ∈ U then u = 0, i.e., the only element in a linear space that
is orthogonal to all elements in the same space is the zero element. In fact, for w = u one
has 0 = 〈u, u〉V = ‖u‖2

V which, by (N1) implies u = 0.

2 Given v ∈ V there exists at most one ū ∈ U such that 〈v − ū, u〉V = 0, ∀ u ∈ U. In fact,
suppose u1, u2 ∈ U have that property. Then
0 = 〈v − u1,w〉V − 〈v − u2,w〉V = 〈u2 − u1,w〉V, ∀w ∈ U, so, by (1), u1 = u2.
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Proof of Theorem 24

The proof uses a standard variational argument. Consider a candidate u ∈ U for (5.21) and any
t ∈ R, w ∈ U. We wish to see under which circumstances a perturbation u + tw ∈ U could do
better.

‖v − (u + tw)‖2
V = 〈(v − u)− tw , (v − u)− tw〉V = ‖v − u‖2

V + t2‖w‖2
V (5.23)

−2tRe(〈v − u,w〉V)

(5.21)⇒ (5.22): Suppose u = u(v) is the minimizer but there exists a w ∈ U, w 6= 0 such that
〈v − u,w〉V = α 6= 0, and hence 〈v − u, iw〉V 6= 0. Without loss of generality we can assume
β := Re(α) > 0, ‖w‖V = 1. Then, by optimality of u = u(v) we must have

0 < ‖v − (u + tw)‖2
V − ‖v − u‖2

V = t2 − 2tβ ∀ t ∈ R.

But choosing t = β, yields β2 − 2β2 < 0, which is a contradiction.

(5.22)⇒ (5.21): By (5.23) we have in this case ‖v − (u + w)‖2
V − ‖v − u‖2

V = ‖w‖2
V for all

w ∈ U, which implies (5.21). �
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Orthogonal Projections and Best Approximations

Remark 26

Theorem 24 doesn’t explicitly state existence of a minimizer only the equivalence of (5.21) and
(5.22). Existence of a minimizer in (5.21) can be argued as follows: the search can be restricted
to a ball in U. Since U is finite dimensional this ball is compact. Since F (u) = ‖v − u‖V is a
continuous function it attains its minimum. The uniqueness of the minimizer, by the equivalence
of (5.21) and (5.22), follows from Remark 25, (1).

Theorem 27

Let (V, ‖ · ‖V) be a Hilbert space and U ⊂ V a finite dimensional subspace. For every v ∈ V
there exists a unique u = u(v) ∈ U such that

〈v − u(v),w〉V = 0, ∀w ∈ U, (5.24)

i.e., the difference v − u(v) is perpendicular to the subspace U. Hence, PU : V→ U given by
PUv = u(v) is well-defined and has the following properties:

1 PU is linear and idempotent PU ◦ PU = PU, i.e., PU is a projector.
2 PU is self-adjoint, i.e., 〈PUv , z〉V = 〈v ,PUz〉V, v , z ∈ V.
3 ‖PU‖L(V,V) = 1.
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Proof of Theorem 27
PU is well-defined: This follows from Remark 25, (2) and Remark 26.

(1): It is also linear because for all w ∈ U one has for all w ∈ U

〈PU(v1 + v2)− (PUv1 + PUv2),w〉V = 〈PU(v1 + v2)− (v1 + v1),w〉V + 〈(v1 + v1)

−(PUv1 + PUv2),w〉V
= 0 + 〈v1 − PUv1,w〉V + 〈v2 − PUv2,w〉V = 0

Since both PU(v1 + v2) and PUv1 + PUv2 belong to U, Remark 25, (1), implies
PU(v1 + v2) = PUv1 + PUv2 In the same way one verifies PU(αv) = αPUv which shows the first
part of (1). Moreover, 0 = 〈PUv − PU(PUv),w〉V which, by Remark 25, (1), again shows that
PUv = PU(PUv) which is (1).

(2): 0 = 〈PUv , z − PUz〉V  〈PUv , z〉V = 〈PUv ,PUz〉V. Likewise, 0 = 〈v − PUv ,PUz〉V  
〈v ,PUz〉V = 〈PUv ,PUz〉V. Thus 〈PUv , z〉V = 〈v ,PUz〉V.

(3): ‖PUv‖2
V = 〈PUv ,PUv〉V

(1),(2)
= 〈v ,PUv〉V

CS
≤ ‖PUv‖V‖v‖V. ⇒ ‖PU‖L(V,V) ≤ 1,

‖PUu‖U
(1)
= ‖u‖U ⇒ (3). �

Pythagoras’ Theorem:

‖v − PUv‖2
V = 〈v − PUv , v − PUv〉V = 〈v , v〉V + 〈PUv ,PUv〉V − 〈PUv , v〉V − 〈v ,PUv〉V

= ‖v‖2
V + ‖PUv‖2

V − 2‖PUv‖2
V = ‖v‖2

V − ‖PUv‖2
V
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Computing Orthogonal Projections/Best Approximations

Suppose Φ = {φ1, . . . , φn} is a basis for U. Since

〈v − PUv , u〉V = 0, ∀ u ∈ U ⇔ 〈v − PUv , φk 〉V = 0, for k = 1, . . . , n,

substituting PUv =
∑n

j=1 ujφj , yields (see (4.1))

n∑
j=1

uj 〈φj , φk 〉V = 〈v , φk 〉V =: bk , k = 1, . . . , n, ⇔ GΦu = b (5.25)

where GΦ =
(
〈φk , φj 〉V

)n
j,k=1 is the Gramian matrix associated with Φ. We already know that GΦ

hermitian positive definite and hence non-singular, so that the computing PUv amounts to solving
a linear system of equations for the unknown expansion coefficient vector u = (u1, . . . , un)>.

Orthonormal Bases: The orthogonal projection is very easy to compute if the basis Φ is
orthonormal, i.e., 〈φj , φk 〉V = δj,k , j, k = 1, . . . , n. In fact, then GΦ = I and

uj = 〈v , φj 〉V, j = 1, . . . , n. (5.26)

Example: V = L2,π , show that the ek (x) = eikx , k ∈ Z, form an orthonormal system respect to

〈f , g〉 = 1
2π

π∫
−π

f (x)g(x)dx , so that orthogonal projection to the space spanned by the 2n + 1 first

harmonics ek ,−n ≤ k ≤ n, is the Fourier partial sum

Sn(f ; x) =
∑
|k|≤n

f̂ (k)eikx , f̂ (k) = 〈f , ek 〉, |k | ≤ n.
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Gram-Schmidt Orthogonalization

Let U be an n-dimensional linear space with scalar product 〈·, ·〉 and norm ‖ · ‖ = 〈·, ·〉1/2. Given
a basis {φ1, . . . , φn} of U one can always generate an orthonormal basis {ψ1, . . . , ψn} as
follows:

normalize ψ1 := φ1
‖φ1‖

;

while k < n, given an orthonormal basis {ψ1, . . . , ψk} for span{φ1, . . . , φk}, let

ψ′k+1 := φk+1 −
k∑

j=1

〈φk+1, ψj 〉ψj

and normalize

ψk+1 :=
ψ′k+1

‖ψ′k+1‖
.

Show that {ψ1, . . . ψn}, generated in this fashion, is indeed an orthonormal basis of U.
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Orthonormal Bases Continued
Remark 28

An orthonormal basis is “optimally stable” in the sense of (5.13), i.e.,

κU,`n
2
(BΨ) = 1. (5.27)

In fact, for any u =
∑n

j=1 ujψj ∈ U, Ψ = {ψ1, . . . , ψn} orthonormal, one has

‖u‖2 = 〈u, u〉 =
〈 n∑

j=1

ujψj ,
n∑

k=1

ukψk

〉
= u∗GΨu = u∗u = ‖u‖2

2

which implies ‖B−1
Ψ (u)‖ = ‖BΨ(u)‖2 = 1.

Consider the monomial basis φj (x) := x j , j = 0, . . . , n of U := Pn equipped with the scalar

product 〈f , g〉 :=
1∫
0

f (x)g(x)dx (K = R). What can you say about the condition number of BΦ in

this case. Intuitively, it is very large for large n. What does this mean about the Gram-Schmidt

process turning Φ into an orthonormal basis Ψ for Pn? Since this is a change of bases it can be

represented by a matrix whose condition describes the stability of the change of bases.
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Eigenvectors, Eigenvalues
Let X be a K-vector space. Then λ ∈ K, x ∈ X are called eigenvalue, resp. (right-)eigenvector of
L ∈ L(X,X) if

Lx = λx We also say (λ, x) is an eigenpair of L. Also (λ−1
, x) is an eigenpair of L−1 if it exists (6.1)

Proposition 29

When X is finite dimensional there always exists an eigenpair (λ, x) ∈ C× Cn. x is determined
only up to normalization.

Proof: Fix bases Φ,Ψ for X,Y as before. Then, by Proposition 7 and (3.2) we have

L(x) = λx ⇔ Cx = λx ⇔ (C− λI)x = 0, ⇔ det(C− λI) = 0. (6.2)

By Laplace’s expansion rule of determinants, it follows that is a polynomial in Pn(K) of degree at
most n. This is called the characteristic polynomial. By the Fundamental Theorem of Algebra,
any polynomial in Pn(K) has exactly n (possibly complex) roots (counting multiplicities). �

It therefore suffices (in the finite dimensional case) to understand eigenproblems for matrices
A ∈ Kn×n, K ∈ {R,C}:

Ax = λx (6.3)

Theorem 30

For A ∈ Cn×n one has det(A) =
∏n

k=1 λk ,where λ1, . . . , λn ∈ C are the n eigenvalues of A.
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Spectral Theorem for Hermitian Matrices

Theorem 31

Let A ∈ Kn×n be hermitian, then:
1 all eigenvalues of A are real;
2 eigenvectors corresponding to distinct eigenvalues are pairwise orthogonal;
3 there exists an orthonormal basis of Kn, consisting of eigenvectors.

Hence, A is diagonalizable, i.e., there exists a unitary matrix U ∈ On(K) such that

U∗AU = Λ = diag(λ1, . . . , λn), λj ∈ R, j = 1, . . . , n.

Proof: (1): suppose Ax = λx⇒ x∗Ax = λx∗x. Since x∗x > 0 we also have
λx∗x = x∗Ax = (x>Ax)> = x>A

>
x = x∗A∗x = x∗Ax = λx∗x⇒ λ = λ.

(2): Assume that Ax = λx,Ay = µy but y∗x 6= 0. Since (A∗)−1 = A−1 one has
y∗x=y∗A∗A−1x = µλ−1y∗x = µλ−1y∗x, where we have used (1). Since y∗x 6= 0, this can only
holde when λ = µ which is a contradiction.

(3): By Proposition 29, there exists an eigenpair (λ1,u1) (‖u1‖2 = 1) for A. Let

V1 := {z ∈ Kn : z∗u1 = 〈u1, z〉n = 0}

be the orthogonal complement of span {u1}. Observe next that A maps V1 into itself.
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Proof of (3) continued:

In fact, when z ∈ V1

(Az)∗u1 = z∗A∗u1 = z∗Au1 = z∗λu1 = λz∗u1 = 0,

i.e., z ∈ V1 implies Az ∈ V1. Therefore, the operator L(x) := Ax belongs to L(V1,V1). By
Proposition 29 there exists an eigenpair (λ2,u2) ∈ C× V1 and 〈u1,u2〉n = 0. Clearly
dimV1 = n − 1. Now, by the same reasoning, we consider the orthogonal complement V2 to u2

in V1 (which is therefore also orthogonal to u1) and find the next eigenpair (λ3,u3) ∈ V2. Since
each time the dimension of the subsequent orthogonal complement decreases by one, this
process terminates after n − 1 steps. �

Remark 32

Not every matrix A ∈ Kn×n can be diagonalized (is similar to a diagonal matrix, meaning
there exists a matrix C such that C−1AC = diag(λ1, . . . , λn)). It is diagonalizable iff there
exists a basis of eigenvactors.

For K = R the eigenvectors are in Rn, i.e., U ∈ On(R) is an orthogonal matrix.
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Spectral Theorem for Unitary Matrices

Theorem 33

Q ∈ On(K) unitary, then:
1 all eigenvalues of Q have absolute value equal to one;
2 eigenvectors corresponding to distinct eigenvalues are pairwise orthogonal;
3 there exists an orthonormal basis of Kn, consisting of eigenvectors.

Hence, Q is diagonalizable, i.e., there exists a unitary matrix U ∈ On(K) such that

U∗QU = Λ = diag(λ1, . . . , λn), |λj | = 1, j = 1, . . . , n.

Proof: (1): asume that Qx = λx, x 6= 0, λλx∗x = (Qx)∗Qx = x∗Q∗Qx = x∗x⇒ |λ|2 = 1.

(2): Assume that Qx = λx,Qy = µy but y∗x 6= 0 y∗x = y∗Q∗Qx = µλy∗x⇒ µλ = 1⇒
λ/µ = 1 which is a contradiction to µ 6= λ.

(3): Let Ax = λx and V1 := {z ∈ Kn : z∗x = 0}. Now for any z ∈ V1 one has

(Qz)∗x = z∗Q∗x = z∗Q−1x = λ−1z∗x = 0. Hence, the orthogonal complement of any

eigenvector is an invariant subspace of Q, i.e., QV1 ⊆ V1. As in the proof of Theorem 31, one

can therefore successively peel off invariant subspaces of decreasing dimension which are

orthogonal to previously found eigenvectors. �
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Application: Direct Solvers for Systems of Linear Equations

Common principle: given A ∈ Kn×n find a factorization A = CB, where both B,C ∈ Kn×n are
“easy to invert”

then, since Ax = C (Bx)︸ ︷︷ ︸
=:y

= b

first solve Cy = b → y, then solve Bx = y → x

One “difficult” solve is traded against two “easy solves”

Such factorizations are typically generated in a step-wise fashion using, for instance Gauß
elimination, in which case C is a product of “simple” lower triangular matrices, or rotations,
in which case C is a unitary matrix successively built from products of “simple” unitary
matrices.

The factors belong to special matrix classes to be discussed below

W. Dahmen, J. Burkardt (DASIV Center ) I - Linear Algebra Basics 57 / 79



Matrix Factorizations LR- and QR-Factorization

Easy to invert matrices ...

I = (δi,j )
n,n
i,j=1 trivial I−1 = I

Upper/lower triangular matrices:

R =
(
ri,j
)n,n

i,j=1, j < i ⇒ ri,j = 0, L =
(
`i,j
)n,n

i,j=1, j > i ⇒ `i,j = 0,

R non-singular if and only if det(R) =
∏n

j=1 rj,j 6= 0.

Backsubstitution: Rx = b ⇒ xn = bn/rn,n, knowing xn, xn−1, . . . , xn−j ⇒

xn−j−1 =
(

bn−j−1 −
j∑

k=0

rn−j−1,n−k xn−k

)
/rn−j−1,n−j−1

Complexity: ∼ n2 flops

same for Lx = b
Orthogonal (K = R)/unitary (K = C) matrices: Q ∈ On iff Q∗Q = I. i.e

Qx = b ⇔ x = Q∗b
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Properties of Triangular Matrices

An upper triangular matrix R ∈ Kn×n is non-singular iff rj,j 6= 0, j = 1, . . . , n, and

det (R) =
n∏

j=1

rj,j .

The inverse of an upper (lower) triangular non-singular matrix is upper (lower) triangular.

Products of upper (lower) triangular matrices (of the same dimension) are again upper
(lower) triangular. Hence, such matrices form a multiplicative group with I as the neutral
element.

Exercise 34

Prove the above statements
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LR Factorization
Theorem 35

For every nonsingular A ∈ Rn×n there exists a permutation matrix P a normalized lower
triangular matrix L, i.e., `j,j = 1, j = 1, . . . , n, and an upper triangular matrix R, such that

PA = LR

The construction of this factorization is a by-product of Gauß-elimination with pivoting, i.e.,
A is reduced to an upper triangular matrix R by columnwise elimination of all non-zero
entries below the diagonal, starting with the first column. More precisely, at the j th step
rows are exchanged so as to move the largest entry in column j to th diagonal position
(multiplication by a permutation matrix P j , followed by an elimination step, realized by
multiplication with a specific lower triangular normalized matrix Lj (Frobenius matrix). Thus

R = Ln−1Pn−1Ln−2 · · ·L1P1A = L̃n−1 · · · L̃1︸ ︷︷ ︸
=:L−1

Pn−1 · · ·P1︸ ︷︷ ︸
=:P

A

The computational cost is ∼ n3/3 multiplications

Exercise 36

What is the complexity of computing A−1?

What is the complexity of computing det(A)?
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QR Factorization

Theorem 37

For every A ∈ Km×n there exist Q ∈ Om and an upper triangular R ∈ Km×n (with the natural
interpretation when m 6= n) such that

A = QR

Remark 38

There is neither any restriction on the dimension m × n nor on ranks.

The factorization is computed by repeated multiplication by special “elementary” unitary matrices
so as to successively eliminate sub-triangular entries:

Qn−1Qn−2 · · ·Q1A = R ⇔ Q∗1 Q∗2 · · ·Q
∗
n−2Q∗n−1︸ ︷︷ ︸

=:Q

R = A

An ingredient: dyades - rank-one matrices: x ∈ Km, y ∈ Kn  

xy∗ =
(
ȳ1x, . . . , ȳnx

)
∈ Km×n

Hence, for z ∈ Kn one has (xy∗)z = x(y∗z) = 〈z, y〉nx, i.e., rank(xy∗) = 1
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Householder-Reflections
Given v ∈ Kn let

Qv := I−
2

v∗v
vv∗

The following facts can be verified by corresponding calculations:

1 Q∗v = Qv

2 Q2
v = I, i.e., Qv ∈ On

3 Qv = Qαv for any α ∈ K \ {0}
4 Qvv = −v; interprete this geometrically in terms of the hyperplane

Hv := {x ∈ Kn : v∗x = 0}

Claim:

Given a ∈ Kn, take v(a) = v := a + sgn(a1)‖a‖2e1, ej := (0, . . . , 0, 1, 0, . . . , 0)>. Then

Qva = −sgn(a1)‖a‖2e1,

i.e., Qv rotates a into a multiple of the first coordinate vector. The particular sign is chosen so as
to avoid numerical cancellation in the first component of a + sgn(a1)‖a‖2e1
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QR-Factorization
Recall:

v(a) = v := a + sgn(a1)‖a‖2e1 (6.4)

Given A = (a1, a2, . . . , an), aj ∈ Km, choose v1 := v(a1), let Q1 := Qv1  

Q1A =

 ã1,1 0

0 Ã1

 =: A1, ã1,1 = a1,1 + sgn(a1,1)‖a1‖2, Ã
1 ∈ K(m−1)×(n−1)

Given Aj , let Q̃j+1 = Qv((Ãj )
1) ∈ On−j where (Ãj )

1 is the first column in Ãj ∈ K(m−j)×(n−j) and set

Qj+1 :=

 Ij 0

0 Q̃j+1

 ∈ Om  Qj+1Aj = Aj+1 (Ij is the j × j identity matrix)

Then An =: R is upper triangular and

Qn−1 · · ·Q1A = R,  A = Q∗1 · · ·Q
∗
n−1R = QR
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Orthonormalization in Kn

Suppose that {b1, . . . ,bn} are n linearly independent vectors in Km, m ≥ n, i.e., the bj span an
n-dimensional subspace U of Km (all of Km if m = n). One could generate an orthonormal basis
for U by applying Gram-Schmidt orthogonalization. Alternatively, let B ∈ Km×n be the matrix with
columns bj and compute a QR factorization

B = QR Q ∈ Om, R ∈ Km×n (upper triangular).

Recall: the range ran(B) is the linear span of the columns bj , i.e.,

ran(B) = {y = Bx : x ∈ Kn} = {y = Q(Rx) : x ∈ Kn}.

Note: rank(B) = n = rank(R). Since R is upper triangular, all entries in R with row-index larger
than n are zero. Therefore the vectors z = Rx, x ∈ Kn have all the form z = (z̃>, 0>)>, i.e, all its
components n + 1, . . . ,m are zero. Hence QRx = Qz = Qnz̃, where Qn = (q1, . . . ,qn) ∈ Km×n

is the matrix comprised of the first n columns qj of Q. This yields

ran(B) = ran(Qn),

i.e., q1, . . . ,qn form an orthonormal basis for ran(B).

Upshot: while the Gram-Schmidt procedure could be ill-conditioned (when κ2(B)� 1), the
matrix Q is generated by a successive application of unitary matrices (Householder reflexions)
each of which can be generated in a stable way.
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Definition and Existence

The following factorization has a multitude of applications in data science and machine learning.
Unlike the spectral decompositions or LR-factorization it holds for matrices of any dimension (as
the QR-factorization).

Theorem 39

For every matrix A ∈ Km×n there exist unitary matrices U ∈ Om, V ∈ On and a diagonal matrix
S ∈ Rm×n

+
S = diag(σ1, . . . , σp, 0, . . . , 0), p := min{m,n},

with
σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0, (6.5)

so that
U∗AV = S ⇔ A = USV∗ (6.6)

The second relation in (6.6) can be written as

A =

p∑
k=1

σk uk (vk )∗ (6.7)

where uk , vk are the columns of U,V, respectively - write A as a sum of rank-one matrices.
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Proof of Theorem 39: Assume A 6= 0, let

σ1 := ‖A‖2 = max
‖x‖2=1

‖Ax‖2 > 0.

Let v ∈ Kn, with ‖v‖2 = 1 a vector satisfying ‖A‖2 = ‖Av‖2 and u := 1
σ1

Av ∈ Km. Then
‖u‖2 = ‖Av‖2/σ1 = 1. We can extend the vectors v und u to orthogonormal bases
{v, ṽ2, . . . , ṽn} resp. {u, ũ2, . . . , ũm} of Kn resp. Km. We view the elements of these bases as
columns of corresponding unitary matrices V1 ∈ On(K), U1 ∈ Om(K):

V1 =
(

v Ṽ1

)
∈ Kn×n, unitary,

U1 =
(

u Ũ1

)
∈ Km×m, unitary .

Since ũ∗i Av = σ1ũ∗i u = 0, i = 2, . . . ,m, the matrix U∗1 AV1 has the form

A1 := U∗1 AV1 =

 σ1 w∗

0 B

 ∈ Km×n ,

for some w ∈ Kn−1. We show next that w = 0. In fact, from∥∥∥A1

(σ1

w

)∥∥∥
2

=
∥∥∥( σ2

1 + w∗w
Bw

)∥∥∥
2
≥ σ2

1 + w∗w =
∥∥∥(σ1

w

)∥∥∥2

2

and ‖A‖2 = ‖A1‖2 it follows that

σ1 = ‖A1‖2 ≥
‖A1

(σ1
w

)
‖2

‖
(σ1

w

)
‖2
≥
√
σ2

1 + w∗w ⇒ w = 0 ⇒ U∗1 AV1 =

 σ1 0

0∗ B

 ∈ Km×n.
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This proves the assertion for m = 1 or n = 1.

For m, n > 1 one can use induction. Suppose that U∗2 BV2 = S2 with U2 ∈ Om−1(K),

V2 ∈ On−1(K) and S2 ∈ R(m−1)×(n−1)
+ is diagonal. For the largest diagonal entry σ2 of S2 we

have again σ2 := ‖B‖2 ≤ ‖U∗1 AV1‖2 = ‖A‖2 = σ1. Furthermore, with the unitary matrices

U = U1

 1 0∗

0 U2

 , V = V1

 1 0∗

0 V2


we obtain the decomposition

U∗AV =

 σ1 0∗

0 S2


from which the assertion follows by induction. �
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Basic Properties
Proposition 40

For A ∈ Km×n, U∗Av = S as before with

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · · = σp = 0, p = min{m, n},

one has:
1 Avj = σj uj , A∗uj = σj vj , j = 1, . . . , p.

2 rank(A) = r ,
3 range(A) = span{u1, . . . ,ur}, ker(A) = span{vr+1, . . . , vn}.
4 ‖A‖2 = σ1.
5 The strictly positive singular values σk , k ≤ r are the square roots of the (strictly positive)

eigenvalues of A∗A:

σj =
√
λj (A∗A), j = 1, . . . , r .

(1) - (4) follow immediately from A = USV∗ (and its hermitian conjugate) and ‖A‖2 = ‖S‖2 = σ1.

Since A∗A = VS∗U∗USV∗ = Vdiag(σ2
1 , . . . , σ

2
r , 0, . . . , 0)V∗, we have determined the spectral

decomposition of A∗A which confirms (5).
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More Properties and the Pseudo-Inverse of A

Likewise one could have argued AA∗ = USS∗U∗ which reveals the roles of U,V regarding
the eigenspaces of AA∗ ∈ Km×m,A∗A ∈ Kn×n, respectively.
Denoting by Ur ,Vr (r = rank(A) as above) the matrices formed by the first r columns of
U,V, respectively, which refines (6.7)

A =
r∑

k=1

σk uj (vj )∗. (6.8)

If r � p = min{m, n}, computing first cj := (vj )∗x, j = 1, . . . , r and then summing∑r
k=1 σk ck uk , requires roughly r(n + m) operations as opposed to the order of mn

operations when applying A to x directly.
For S as above define S† := diag(σ−1

1 , . . . , σ−1
r , 0, . . . , 0) ∈ Rn×m (the dimension of the

transpose with inverses of the positive singular values on the diagonal). One then defines
the pseudo-inverse of A as:

A† := VS†U∗ ∈ Kn×m. (6.9)

One checks that

A† =

 A−1 if m = n and A is non-singular,

(A∗A)−1A∗ if m > n and rank(A) = n.
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An Application of the Pseudo-Inverse Least Squares

A ∈ Kn×n non-singular  Ax = b has a unique solution x = A−1b
b→ x is a linear process;
A ∈ Km×n, m > n, it makes no longer sense to pose Ax = b. Instead: find

x̂ ∈ argmin
x∈Kn

‖Ax− b‖2 (6.10)

Comment: one could take as well any other norm but, as shown later, the Euclidean norm
has significant advantages and comes with a favorable statistical interpretation

A has full rank n  (6.10) has the unique solution x̂ = (A∗A)−1A∗b
again b→ x̂ is a linear process;
rank(A) < min{n,m} (6.10) has infinitely many solutions, but  x̂ = A†b is
the unique minimizer of minimal Euclidean norm

See Theorem 45 later below for more details.

Remark 41

Finding x̂ in (6.10) is called a Least Squares problem (minimizing the squares of residual
components). It plays an eminent role for the design of estimators in machine learning,
especially regression. It can be seen as generalizing the solution of linear systems which is
well-posed only if one has as many equations (conditions) as unknowns. Least squares methods
will therefore be discussed in more detail later.
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Best Low-Rank Approximation
Many applications of the SVD, used later, are based on the following fact:

Theorem 42

Let A = USV∗ and rank(A) = r ≤ p := min{m, n}. Defining the truncated matrices Uk ,Vk as
before, one has for k ≤ p

‖A− Uk SkV∗k‖2 = min{‖A− B‖2 : B ∈ Km×n, rank(B) ≤ k} = σk+1. (6.11)

Moreover, defining the Frobenius norm ‖A‖F :=
(∑m,n

j,k=1 |aj,k |2
)1/2

= (trace(A∗A))1/2, one has

‖A− Uk SkV∗k‖
2
F =

∑
j>k

σ2
j . (6.12)

Proof: Since the spectral norm of a diagonal matrix is the maximal diagonal entry in absolute
value, one has ‖A−Uk SkV∗k‖2 = ‖U(S− Sk)V∗‖2 = ‖S− Sk‖2 = σk+1. It remains to show that
for every matrix B of rank k one has ‖B− A‖2 ≥ σk+1. Now suppose B ∈ Km×n has rank ≤ k .
Then dim(ker(B)) ≥ n − k . Hence U := ker(B) ∩ span{v1, . . . , vk+1} 6= {0}. Let
z =

∑k+1
j=1 αj vj ∈ U,

∑k+1
j=1 |α|

2 = 1. Then

‖A− B‖2
2 ≥ ‖(A− B)z‖2

2 = ‖Az‖2
2

Prop.40,(1)
=

∑k+1
j=1 σ

2
j |αj |2 ≥ σk+1

∑k+1
j=1 |αj |2 = σk+1. �
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A Greedy Characterization Principal Component Analysis (PCA)

Given a point cloud {aj : j = 1, . . . , n} ⊂ Rm, find its best simultaneous approximation by a line
L1 := {x = tu1 : t ∈ R} where u1 ∈ Rm, ‖u1‖2 = 1, i.e., u1 solves

u1 = argmin
u∈Rm

‖u‖2=1

n∑
i=1

‖ai − (u∗ai )u‖2
2. (6.13)

Lemma 43

The unit vector u1, defined by (6.14) is characterized as follows

u1 = argmax
u∈Rm

‖u‖2=1

u∗AA∗u, = max
u∈Rm

‖u‖2=1

u∗AA∗u = λmax(AA∗) = σ2
1 . (6.14)

Remark 44

Thus, u1 is the normalized eigenvector for the largest eigenvalue of AA∗. This matrix will later be
seen as a “covariance” matrix in a statistical context, and the direction u1 maximizes the
“variance”.
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Proof of Lemma 43: Recall that

trace(A∗A) =
n∑

j=1

(A∗A)j,j =
n∑

k=1

m∑
j=1

a2
k,j =

n∑
j=1

‖aj‖2
2.

Therefore

n∑
j=1

‖ai − (u∗aj )u‖2
2 =

n∑
j=1

‖aj‖2
2 − 2(aj )∗(u∗aj )u + (u∗aj )2 =

n∑
j=1

‖aj‖2
2 − (u∗aj )2

= trace(A∗A)− ‖A∗u‖2
2 = trace(A∗A)− u∗AA∗u. (6.15)

Maximizing u∗AA∗u over ‖u‖2 = 1, minimizes the left hand side of (6.15) as claimed. As hinted
at in Remark 44, this yields the first eigenvector and maximal eigenvalue of AA∗ and hence, by
Proposition 40 (4), the first column of the matrix U in the SVD and the square of the first singular

value σ1. �
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A Greedy Characterization Principal Component Analysis (PCA)

u1 given by (6.14);

given u1, . . .uk , determine uk+1 by

uk+1 = argmax
u∈Rm,‖u‖2=1

u⊥u,...,buk

u∗AA∗u, (6.16)

 this is the successive construction of the columns uj of the U in SVD A = USV∗.

Statistical Interpretation: If aj are random samples of an m-variate random variable the AA∗ is
the corresponding covariance matrix which is diagonalized by the above process PCA (i.e., by
the SVD). u1 is the direction that maximizes the variance - largest contribution to the total
variance of the underlying distribution - providing most information.

If the probability distribution is normal with mean zero - N (0, σ) - then the uj are uncorrelated
and statistically independent cluster analysis, pattern recognition, feature
discrimination,...more on this later ...

Example: consumer behavior; the vector aj contains characteristic consumer traits such as age,

gender, income, debts, location, etc.  PCA helps identifying those possibly few characteristics

with largest impact on buying patterns
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Least Squares Method

Theorem 45

Let A ∈ Km×n, b ∈ Km and consider

‖Ax− b‖2 →x∈Kn min (6.17)

Then
1 x ∈ Kn is a solution of (6.17) if and only if

A∗Ax = A∗b called “normal equations”. (6.18)

2 (6.17) has a unique solution x if and only if n ≤ m and rank(A) = n.
3 For any n,m ∈ N and rank(A) ≤ min{m, n} arbitrary, there exists a unique x̃ ∈ Kn

satisfying

‖Ax̃− b‖2 = min
x∈Kn

‖Ax− b‖2 and ‖ũ‖2 ≤ ‖x′‖2 for which ‖Ax′ − b‖2 = min . (6.19)

Moreover, x̃ is given by x̃ = A†b. (minimal norm solution)
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Proof of Theorem 45: Let V = Km,U := ran(A) = {u = Ax : x ∈ Kn} ⊂ V. ad (1): Then, by
Theorem 24,

‖Ax− b‖2 = min
x′∈Kn

‖Ax′ − b‖2 ⇔ u∗(Ax− b) = 0, ∀ u ∈ U = ran(A)

⇔ (Az)∗(Ax− b) = 0, ∀ z ∈ Kn

⇔ z∗
(
A∗Ax− A∗b

)
= 0, ∀ z ∈ Kn

Remark 25,(1)⇔ A∗Ax− A∗b = 0,  (6.18).

ad (2): If m ≥ n = rank(A) then A∗A is hermitian positive definite and hence non-singular (see
Remark 12), which by (1) confirms (2).

By (2), it suffices to consider the case rank(A) < min{m, n}. In this case the solution set

S(A,b) := {x ∈ Kn : ‖Ax− b‖2 = min}

is easily seen to be given by

S(A,b) = x0 + ker(A) = {x0 + z : z ∈ Kn, Az = 0}, (6.20)

where x0 is any fixed minimizer of ‖Ax− b‖2. Taking U := ker(A) ⊂ V := Kn, we know again

from Theorem 24 that there exists a unique z̄ ∈ ker(A) = U such that

‖x0 − z̄‖2 = minz∈ker(A) ‖x0 − z‖2 and z̄ is characterized by z∗(x0 − z̄) = 0, z ∈ ker(A). Hence

x̃ := x0 − z̄ ∈ S(A,b) is the unique minimal norm minimizer.
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Proof of Theorem 45 continued: It remains to show that x̃ is given by A†b.

To that end, let y := A†b and recall that A = USV∗, A† = VS†U∗.

Show that y ∈ S(A,b) by verifying that A∗Ay = A∗b (see (1)):

A∗Ay = (USV∗)∗(USV∗)A†b = VS∗U∗USV∗VS†U∗b
= VS∗SS†U∗b = VS∗U∗b = A∗b,

i.e., y is a solution of the normal equations and hence a minimizer.

Show that y has minimal Euclidean norm:
As shown before, this is equivalent to showing that y ⊥ ker(A). By Proposition 40, it suffices to
show that (vk )∗y = 0, k = r + 1, . . . , n, where r = rank(A). To that end,

(vk )∗y = (vk )∗A†b = (vk )∗VS†U∗ = (vk)∗VrS†r U∗r = 0

since k > r and the columns of V are pairwise orthogonal. Hence y solves Problem (6.19) and,
by uniqueness, agrees with x̃. �
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