
Handout 6 10/03/03 1

Lecture 5: C Program Compilation

A simple C program

For this lecture, we will learn how to write, compile, and run a very basic C program, and we
will discuss the steps that are involved in creating the executable. The following C program
prints out the text “Hello world!” to the screen:

/*

* File: hello.c

* -------------

* This simple C program prints out the text "Hello world!".

*

* COS315 Operating Systems

* 10 Mar 2003

*

*/

#include<stdio.h>

int main(void) {

printf("Hello world!\n");

}

To compile this program, we will be using the gcc compiler in Linux, which stands for “Gnu
Compiler Collection”, and it is used as follows:

$ gcc hello.c

This creates an executable called a.out. To run the executable, you would type

$./a.out

Hello world!

If we wanted to create an executable that is named something other than a.out, we would
use the -o option in the form

$ gcc -o hello hello.c

and we could run the hello executable with

$./hello

Hello world!

In what follows we will go over the details of what actually happens when you invoke the C
compiler gcc.

Handout 6 10/03/03 2

The C compilation model

When you invoked the gcc compiler, a series of steps were performed in order to generate
an executable from the text you entered as your C program. These steps are as follows

Source Code (hello.c)
↓

Preprocessor

↓
Compiler

↓
Assembly Code

↓
Assembler

↓
Object Code (hello.o)

+
Libraries

↓
Linker

↓
Executable (a.out or hello)

The preprocessor

The main function of the C preprocessor is to remove comments from the source code and
interpret preprocessor directives which are given by the statements that begin with #. In our
simple hello.c code, the preprocessor would strip the source of the comments contained
within the /*...*/ and would include the file called stdio.h, which contains the standard
input/output functions that are usually called within a C program. The #include statement
can either be called with

#include<file.h>

or with

#include ‘‘file.h’’

The first method tells the preprocessor to look for the file in the standard include directories,
which for Linux are in /usr/include. The second method, which uses the quotes, tells the
preprocessor that the file to be included is in the local directory. We will go into more detail
on different preprocessor directives as we look at different facets of the C programming
language.

Handout 6 10/03/03 3

Compiling and Assembling

Once the C preprocessor has stripped the source code of the comments and expanded the
preprocessor directives given by the lines that begin with # , the compiler translates the C
code into assembly language, which is a machine level code that contains instructions that
manipulate the memory and processor directly, in a layer beneath the operating system.
Usually, you do not need to see the assembly code. But you can create the assembly code
with

$ gcc -S hello.c

This will create a file called hello.s, which looks like

.file "hello.c"

.section .rodata

.LC0:

.string "Hello world!\n"

.text

.align 2

.globl main

.type main,@function

main:

pushl %ebp

movl %esp, %ebp

subl $8, %esp

andl $-16, %esp

movl $0, %eax

subl %eax, %esp

subl $12, %esp

pushl $.LC0

call printf

addl $16, %esp

leave

ret

.Lfe1:

.size main,.Lfe1-main

.ident "GCC: (GNU) 3.2 20020903 (Red Hat Linux 8.0 3.2-7)"

This file contains machine-level instructions like pushl and movl, which we will not go over
in much detail. What is important to understand is that the compiler is directly responsible
for converting C syntax into this machine level code.

You do not usually see this level of compilation. Instead, you see what is known as
the object code. The compiler creates the assembly code and converts the machine-level
instructions into binary code. You can create object code from a C source with

$ gcc -c hello.c

This creates a binary file called hello.o that cannot be viewed with a text viewer.

Handout 6 10/03/03 4

Linking

The object file hello.o contains a binary version of the machine language that was created
from your source code hello.c. In order to create the executable hello or a.out, you need
to use the linker to process your main function and any possible input arguments you might
use, and link your program with other programs that contain functions that your program
uses. In this very simple example, we used the printf function. The printf function is
a standard function that is provided by the C compiler that your current object file knows
nothing about. In order to use this function, we need to use the linker in order to link our
program with the precompiled libraries provided to us by the C compiler. The linker links
other precompiled object files or libraries together and creates the executable hello. When
you type

$ gcc -o hello hello.c

the gcc compiler creates an object file and does the linking for you. However, when you use
the -c option, you create an object file called hello.o. In order to link this object file and
create the executable, you can do the linking yourself by again using the gcc compiler, but
this time you provide the object files as the command line arguments rather than the source
codes. Then you would type

$ gcc hello.o -o hello

When gcc sees object files, it invokes the linker automatically and links the necessary files
to create the hello executable.

Libraries and linking in Linux

The beauty of the C programming language is that C itself is a relatively simple and small
compiler. The power of C becomes obvious when you use the wealth of precompiled libraries
that have already been written that you can use in your codes. We will illustrate the use of
one of the standard C libraries in an example.

Let’s say we would like to use the math library in order to take the square root of the
number 7 in our C code. All of the standard libraries in Linux are located in the /usr/lib

directory. With every standard library, there is a header file that contains information about
how to execute each of the functions in that library. In order to determine which header
file contains the function we are looking for, we use the man 3 command at the command
prompt. Let’s say we want to know which header file contains the sqrt function and how
to use this function. To do so, we type

$ man 3 sqrt

This give us information about the function and the appropriate header file to use

NAME

sqrt - square root function

Handout 6 10/03/03 5

SYNOPSIS

#include <math.h>

double sqrt(double x);

From this we know that in order to use the sqrt function, we need to use it as sqrt(7), since
the number 7 will be type cast as a double precision number. This also tells us that details
about the sqrt function can be found in /usr/include/math.h. Our simple C program that
computes square root of 7 would then be given by (Leaving out the lengthy comments for
space-conservation, but you should never leave out comments! In this case we use shorter
comments with the //):

// Program math.c

int main(void) {

sqrt(7);

}

If we try and compile our program, we will see that we get an error:

$ gcc math.c -o math

/tmp/cciMjg1a.o: In function ‘main’:

/tmp/cciMjg1a.o(.text+0x1b): undefined reference to ‘sqrt’

collect2: ld returned 1 exit status

This is an error given to us by the linker. In this case the linker is complaining to us of an
“undefined reference to sqrt”. When you get this error, it means that you did not provide
enough information to the linker because you need to tell the linker where the sqrt function
exists. You can tell the linker where certain libraries exist that must be linked with your
program with the -l flag. In our case, the standard math library is linked with our program
using the -lm flag, as in

$ gcc math.c -lm -o math

Compilation occurs without errors because the linker was able to find the sqrt function in
the standard math library. Note that in our first simple program hello.c, we did not need
to do any linking because functions in the standard C library like printf are automatically
linked with the linker. We could, however, have use the linker implicitly with

$ gcc -o hello.c -lc -o hello

and this would have linked our program with the standard C library. But the -lc flag is
redundant here because gcc does this linking automatically.

When you need header files

Now let’s assume that in our program we would also like to use a variable that is defined in the
standard math library. Variables are defined in C programs using the #define precompiler
directive. We will get into this in more detail later, but for now let’s say we need to use the
M_PI variable that is defined in the math library, which is in /usr/include/math.h. We
can find the line with the grep command with

Handout 6 10/03/03 6

$ grep M_PI /usr/include/math.h

define M_PI 3.14159265358979323846 /* pi */

which shows us that it is defined in /usr/include/math.h as the value of π to 20 decimal
places. If we tried to use the value of M_PI in our simple C program, as in

// Program math.c

int main(void) {

sqrt(7*M_PI);

}

we get the following compiler error:

$ gcc -c math.c

math.c: In function ‘main’:

math.c:2: ‘M_PI’ undeclared (first use in this function)

It is important to understand that this error is produced by the compiler and not by the
linker. The compiler is attempting to create the object file math.o but can’t in this case
because there is no definition of the variable M_PI. In order for the compiler to know what
the value of M_PI is, we need to include the header file math.h. If we do so, and our code
looks like

// Program math.c

#include <math.h>

int main(void) {

sqrt(7*M_PI);

}

then we will get no errors when we try to create the object file with

$ gcc -c math.c

But remember, even by including the header file we still need to tell the linker about the
library that contains the sqrt function if we want to create an executable.

