
Weighted and Continuous Clustering

John Burkardt (ARC/ICAM)
Virginia Tech

..........
Math/CS 4414:

“Weighted and Continuous Clustering”
http://people.sc.fsu.edu/∼jburkardt/presentations/

clustering weighted.pdf
..........

ARC: Advanced Research Computing
ICAM: Interdisciplinary Center for Applied Mathematics

25 September 2009

Burkardt Weighted and Continuous Clustering

Weighted and Continuous Clustering

The K-Means algorithm is a simple and very useful tool for making
an initial clustering of data.

It does have the drawback that often stops at an answer that isn’t
the best one, but this can be detected and corrected by running
the program with several different starting points.

Because it can give some information about almost any set of
data, researchers have tried to extend it to handle new classes of
problems for which good clusterings are hard to find.

As an example, online image repositories may have thousands of
images classified as images of “an eagle”. It is important to be
able to return a few “typical” images.

Burkardt Weighted and Continuous Clustering

An Extension of K-Means

Burkardt Weighted and Continuous Clustering

An Extension of K-Means

Burkardt Weighted and Continuous Clustering

Weighted and Continuous Clustering

Today we will consider some extensions of the K-Means algorithm
that are not so ambitious but which let us consider new classes of
problems.

If we know that some data has a greater importance, we would like
to be able to include that information, so that the clustering can
take that into account.

When you cluster hundreds of points in a region, the points are
organized into polygonal subregions. Can we just go ahead and
cluster “all” the points in, say, the unit square? Instead of a
discrete set, we have a continuous set of points to consider.

Burkardt Weighted and Continuous Clustering

Weighted and Continuous Clustering

Weighted K-Means

A Weighted K-Means Algorithm

K-Means for Continuous Data

Weighted K-Means for Continuous Data

Burkardt Weighted and Continuous Clustering

Weighted K-Means: The Centroid

Suppose that we want to cluster a set of data points X, but now
we want to be able to stipulate that some points are more
”important” than others.

We might encounter this problem if we are deciding where to put
the capital city of a new state, or the hubs of an airline, or a brand
new set of elementary schools in a city.

In each of these cases, we are trying to choose convenient
“centers”, but now it’s not just the geographic location that we
have to consider, but also how many people or average flights or
school children will have to travel from the data points to the
cluster centers.

Burkardt Weighted and Continuous Clustering

Weighted K-Means: Using Weights

The natural way to record the varying importance of the different
points would be to assign weights to each one. Thus, our original
problem can be thought of as the simple case where each point
was given the same weight.

With the addition of weights, the K-Means algorithm can handle
situations in which some data points are so important that they
almost pull one of the cluster centers close to them by
gravitational attraction.

Burkardt Weighted and Continuous Clustering

Weighted K-Means: The Centroid

In the unweighted case, a cluster center cj was the centroid or
average of the coordinates of all the data points xi in the cluster:

cj =

∑
xi∈cj xi∑
xi∈cj 1

The centroid is a geometric quantity whose location can be
determined from just a picture of the points.

If we imagine the points being connected to the centroid, and
having equal weight, then this object is perfectly balanced around
the centroid. No matter how we turn it, it will be balanced.

Burkardt Weighted and Continuous Clustering

Weighted K-Means: The Centroid

Burkardt Weighted and Continuous Clustering

Weighted K-Means: The Cluster Variance

For unweighted clustering, we defined the cluster variance as:

var(x, c) =
k∑

j=1

var(x, cj)

=
k∑

j=1

∑
xi∈cj ‖xi − cj‖2∑

xi∈cj 1

where cj is the cluster center.

We noted that each step of the K-Means algorithm reduces the
variance, and that the best clustering has the minimum value of
the variance.

Burkardt Weighted and Continuous Clustering

Weighted K-Means: The Center of Mass

When point pi has weight wi, the formula for the center of mass is:

cj =

∑
xi∈cj wi xi∑
xi∈cj wi

and cluster center cj is the center of mass of its cluster.

The location of the center of mass can be anywhere within the
convex hull of the set of data points.

Similarly, if each point pi is connected to the center of mass, and
given weight wi, this object will also be perfectly balanced.

Burkardt Weighted and Continuous Clustering

Weighted K-Means: The Center of Mass

Burkardt Weighted and Continuous Clustering

Weighted K-Means: Center of Mass Minimization

The center of mass of a set of weighted points minimizes the
weighted variance. For one cluster with data points x and weights
w, the variance with respect to an arbitrary point c is

var(x,w, c) =

∑
wi‖xi − c‖2∑

wi

and this is minimized if we take c to be the center of mass.

Proof: Solve ∂var(x ,w ,c)
∂c = 0.

Burkardt Weighted and Continuous Clustering

Weighted K-Means: Weighted Cluster Variance

For weighted clustering, we define the weighted cluster variance as:

var(x,w, c) =
k∑

j=1

var(x,w, cj)

=
k∑

j=1

∑
xi∈cj wi‖xi − cj‖2∑

xi∈cj wi

where cj is the cluster center.

Each step of the weighted K-Means algorithm reduces the weighted
cluster variance, and the best clustering minimizes this quantity.

Burkardt Weighted and Continuous Clustering

Weighted and Continuous Clustering

Weighted K-Means

A Weighted K-Means Algorithm

K-Means for Continuous Data

Weighted K-Means for Continuous Data

Burkardt Weighted and Continuous Clustering

WKMeans Algorithm

The weighted K-Means algorithm is very similar to the K-Means
algorithm.

Changes occur mainly in two places:

update centers, we use centers of mass instead of centroid;

variance, where we compute a sum of weighted variances.

Burkardt Weighted and Continuous Clustering

WKMeans Algorithm: Main Program

f u n c t i o n [c , ptoc] = wkm (dim , n , p , w, k)

%% WKM c a r r i e s out the we ighted K−Means a l g o r i t hm .
%

%
% I n i t i a l i z e the c l u s t e r c e n t e r s .
%

c = km e a n s i n i t i a l i z e (dim , n , p , k) ;
%
% Repea t ed l y update c l u s t e r s and c e n t e r s t i l no change .
%

v = −1;
wh i l e (1)

ptoc = kmean s upd a t e c l u s t e r s (dim , n , p , k , c) ;

c = wkmeans update cen te r s (dim , n , p , w, k , ptoc) ;

v o l d = v ;
v = wkmeans var i ance (dim , n , p , w, k , c , ptoc) ;

i f (v == v o l d)
break

end

end

r e tu rn
end

Burkardt Weighted and Continuous Clustering

WKMeans Algorithm: Update the Centers

f u n c t i o n c = wkmeans update cen te r s (dim , n , p , w, k , ptoc)

%% WKMEANS UPDATE CENTERS r e s e t s the c l u s t e r c e n t e r s to the we ighted data a v e r ag e s .
%

wp (1 : dim , 1 : n) = p (1 : dim , 1 : n) ∗ w(1 : n) ;

f o r j = 1 : k
i ndex = f i n d (ptoc (1 : n) == j) ;
c (1 : dim , j) = sum (wp (1 : dim , i nd ex) , 2) / sum (w(i ndex)) ;

end

r e tu rn
end

Burkardt Weighted and Continuous Clustering

WKMeans Algorithm: Compute the Variance

f u n c t i o n v = wkmeans var i ance (dim , n , p , k , c , ptoc)

%% WKMEANS VARIANCE computes the v a r i a n c e o f the we ighted K−means c l u s t e r i n g .
%

pmc (1 : dim , 1 : n) = p (1 : dim , 1 : n) − c (1 : dim , ptoc (1 : n)) ;

v = 0 . 0 ;
f o r j = 1 : k

i ndex = f i n d (ptoc (1 : n) == j) ;
wpmc(i ndex) = w(i ndex) .∗ (norm (pmc (1 : dim , i nd ex))) ˆ 2 ;
va r (j) = sum (wpmc(i ndex)) / sum (w(i ndex)) ;
v = v + var (j) ;

end

r e tu rn
end

Burkardt Weighted and Continuous Clustering

Weighted and Continuous Clustering

Weighted K-Means

A Weighted K-Means Algorithm

K-Means for Continuous Data

Weighted K-Means for Continuous Data

Burkardt Weighted and Continuous Clustering

Continuous Data

So far, our data set X has been a set of N objects in
D-dimensional space. Whether the objects are actually
geometrical, we can think of them as points in that space.

It’s natural to ask whether it’s essential that X is a finite set; in
particular, we’d be interested in knowing whether we can cluster a
set X that comprises all the points in a geometric region, perhaps
a square, or a circle or perhaps the surface of a sphere.

It may seem like an awfully big jump, but the idea is to take what
we have done with finite sets and see how far we can extend it.

Burkardt Weighted and Continuous Clustering

Continuous Data

Ignore for a moment the question of how we can do the clustering.

Instead, let’s ask, What would be the result of clustering points in
a square?.

We’ve already seen that clustering produces a set of special center
points C with the property that each data point is close to one of
the centers.

This idea makes perfectly good sense for points in a square.

Burkardt Weighted and Continuous Clustering

Continuous Data

So how does our algorithm begin?

We first have to initialize C with some random values. Well, that’s
easy if the region is a square. For other regions, we would clearly
need to be able to produce K random points that lie in the region.
So keep in mind that we have to be able to sample the region.

Burkardt Weighted and Continuous Clustering

Continuous Data: Initial Centers

Burkardt Weighted and Continuous Clustering

Continuous Data - Can’t List the Cluster Assignments

Our next step was to assign each data point to the nearest cj in C.

In the discrete case, we recorded this information in a vector ptoc,
and used that information several times. But if X is infinite, we
can’t store the cluster map in a vector.

So no matter how many times we want to know which cluster some
point xi belongs to, we have to figure the answer out from scratch.

So keep in mind that it will be expensive to determine cluster
membership, and that we can’t save the results for later reference.

Burkardt Weighted and Continuous Clustering

Continuous Data - Update Centers by Averaging

Next we averaged the xi belonging to each cj.

cj =

∑
xi∈cj xi∑
xi∈cj 1

I wrote the discrete average that way to suggest how we can
replace sums by integrals:

cj =

∫
xi∈cj xi dx∫
xi∈cj 1 dx

This calculation is harder than it looks, because we are integrating
over an irregular region. (We will come back to this point!)

Burkardt Weighted and Continuous Clustering

Continuous Clusters - Example of Centers and Clusters

Burkardt Weighted and Continuous Clustering

Continuous Data - The Variance

Finally, knowing the new cj, we computed the variance.

var(x, c) =
k∑

j=1

var(x, cj)

=
k∑

j=1

∑
xi∈cj ‖xi − cj‖2∑

xi∈cj 1

This becomes:

var(x, c) =
k∑

j=1

var(x, cj)

=
k∑

j=1

∫
xi∈cj ‖xi − cj‖2 dx∫

xi∈cj 1 dx

Burkardt Weighted and Continuous Clustering

Continuous Data - Time for Details

Now, what we have done is to think about our new problem with a
continuous X and decide that everything we did in the discrete
case can pretty much be copied or slightly adjusted, and the next
thing you know we’ll be solving these problems too!

But it’s time for some more careful analysis. In particular, when we
replaced sums by integrals, we went from a simple task to a very
hard one!

Burkardt Weighted and Continuous Clustering

Continuous Data - Approximating an Integral

To focus attention, let’s ask how we could compute an integral like∫
xi∈cj

1 dx

which represents the area or volume or hypervolume of the points
that belong to the cluster centered at cj. If we were working in a
2D region, this cluster would probably be a convex polygon, but we
have no idea of how many sides it has or where the vertices are!

If we are willing to live with an estimate of this value, then there is
a reasonable approach that will work for any shape, and any
number of dimensions, called Monte Carlo sampling.

Burkardt Weighted and Continuous Clustering

Continuous Data - Approximating an Integral

The integral ∫
xi∈cj

1 dx

represents, in the 2D case, the area of the cluster. Let’s suppose
we’re working in the unit square. The cluster associated with cj is
a polygonal portion of the unit square.

So we compute a large number S of sample points (we said we
would have to know how to do that). We count the number of
sample points that are part of cj’s cluster to estimate for the
relative area of that cluster. Since the total area is 1 in this case,
we actually are estimating the area itself.

Using this same idea, we can estimate the area of each cluster.

Burkardt Weighted and Continuous Clustering

Continuous Data - Approximating an Integral

OK, but how do we approximate integrals like∫
xi∈cj
‖xi − cj‖2 dx

which we need for the variance?

Again, we can use the same set of S sample points. Each sample
point sj that lies in cj’s cluster will contribute to our estimate. The
integral estimate is simply∫

xi∈cj
‖xi − cj‖2 dx ≈ Area(cj)

∑
si∈cj ‖si − cj‖2∑

si∈cj 1

Burkardt Weighted and Continuous Clustering

Continuous Data: A CKMeans Program

Our MATLAB program for this problem is similar to the others,
except that we can’t compute the ptoc array. Instead, we rename
our current centers c old, we use sampling to find all the points
nearest each centroid, and average those to get the new set of
centers c.

Then we estimate the variance to see if we should keep working.

These calculations are all estimated using sampling, so we may find
that increasing the size of the sampling set S will improve our
answers.

Burkardt Weighted and Continuous Clustering

Continuous Data - Main Program

f u n c t i o n c = ckm (dim , n , p , w, k)

%% CKM c a r r i e s out the con t i nuou s K−Means a l g o r i t hm .
%

%
% I n i t i a l i z e the c l u s t e r c e n t e r s .
%

c = c km e a n s i n i t i a l i z e (dim , n , p , k) ;
%
% Repea t ed l y update c l u s t e r s and c e n t e r s t i l no change .
%

v = −1;
wh i l e (1)

c o l d = c ;
c = ckmean s upda t e c en t e r s (dim , n , p , w, k , c o l d) ;

v o l d = v ;
v = ckmeans va r i ance (dim , n , p , w, k , c , ptoc) ;

i f (v == v o l d)
break

end

end

r e tu rn
end

Burkardt Weighted and Continuous Clustering

Continuous Data - Main Program

Despite all the approximation that goes on, the results can have
some surprising structure.

We only talked about the unit square, but you can do this kind of
process on any region for which you can produce sample points.

Often, an engineer or scientist needs to break down a region into
simple subregions for analysis. This method gives you polygonal
regions (in 2D). The subdivision, which assigns each point to the
nearest center, is known as the Voronoi diagram.

Burkardt Weighted and Continuous Clustering

Continuous Data: On a Square

Burkardt Weighted and Continuous Clustering

Continuous Data: In a Triangle

Burkardt Weighted and Continuous Clustering

Continuous Data: In an Ellipse

Burkardt Weighted and Continuous Clustering

Continuous Data: Delaunay Triangulation

Often you want your original region to be broken up into triangular
subregions.

This is especially true in engineering problems which use finite
elements, and in graphics applications which expect a regular mesh
of triangles.

Because our continuous K-Means algorithm is giving us a Voronoi
Diagram, we can draw lines that connect the centers to create the
dual graph, which is known as the Delaunay triangulation. This
will have the correct structure.

Burkardt Weighted and Continuous Clustering

Continuous Data: Voronoi/Delaunay Step 1

Burkardt Weighted and Continuous Clustering

Continuous Data: Voronoi/Delaunay Step 5

Burkardt Weighted and Continuous Clustering

Continuous Data: Voronoi/Delaunay Step 50

Burkardt Weighted and Continuous Clustering

Weighted and Continuous Clustering

Weighted K-Means

A Weighted K-Means Algorithm

K-Means for Continuous Data

Weighted K-Means for Continuous Data

Burkardt Weighted and Continuous Clustering

Weighted Continuous Data

Just as in the discrete case, it is often the case that some parts of
the data are much more important that others.

If an engineer is using the continuous K-Means algorithm to form a
mesh of an aircraft, it may be important that there be lots of
points near places where cracks are likely to form, such as where
the wings connect to the body.

It is easy to add weights to the continuous case. Instead of a
weight vector, we have a weight function w(x), which shows up in
the integrals.

Burkardt Weighted and Continuous Clustering

Weighted Continuous Data: A Circle

Burkardt Weighted and Continuous Clustering

Weighted Continuous Data: A Square, Step 1

Burkardt Weighted and Continuous Clustering

Weighted Continuous Data: A Square, Step 5

Burkardt Weighted and Continuous Clustering

Weighted Continuous Data: A Square, Step 50

Burkardt Weighted and Continuous Clustering

Conclusion

The K-Means algorithm can be extended to use weights, and it can
be extended to the case where the objects we are grouping are
actually regions in space.

Weighting allows for a more sophisticated grouping, which takes
into account that some things are more important, or more
valuable, or have more information.

Clustering continuous regions of space is only possible when we use
approximations. However, it enables us to achieve regular
subdivisions of regions even when those regions have unusual
shapes, and to deal with weight functions.

Burkardt Weighted and Continuous Clustering

