

Intro Math Problem Solving
December 7

New Versions of Adjacency
The Traveling Salesman Problem
Example V (5 Cities)
Brute Force Algorithm & Permutations
Matlab’s travel.m example
48 State Capital Example
Random Sampling Algorithm
Nearest Neighbor Method
Swap-Two Method
Homework

Reference

Chapter 15 of our textbook covers Optimization; section 1, “Shortest
Route: The Combinatoric Explosion”, considers the traveling
salesman problem.

The TSPLIB website is full of information on the traveling salesman
problem, including the history, maps, programs, and references.

https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/

.

New Versions of Adjacency Matrix

New Versions of Adjacency

The classic adjacency matrix Adj(I,J) for a graph records a
1 if nodes I and J are neighbors, and 0 otherwise.

In MATLAB, we can also think of 1 and 0 values are
representing TRUE (nodes are connected) and FALSE
(they are not).

Graphs are so useful that they have been adapted to more
complicated problems.

If we are willing to modify our definition of the adjacency
matrix, then we can also describe these more
complicated graphs.

Multiple Edges between Nodes
We can handle this by letting Adj(I,J) count the

edges. This is sometimes called a “multigraph”.
 Here, some entries of Adj will be 2.

A node can be its own neighbor

Adj(i,i) = 1 is now possible. This is sometimes
called a graph with “loops” or “self-loops”.

Edges can have length or weight
Adj(i,j) = 7.5 means the “road” from node I to

node J is 7.5 miles long. This allows us to
compute city-to-city distances. This is called a
weighted graph.

Edges can have direction
Adj(i,j)=1 means there is an edge FROM I TO J, but it

does not mean there is an edge in the other
direction. This is a directed graph or digraph.

Edges with direction and weight
Our transition problems, studier earlier, can be

represented by a graph with loops, direction,
and weight (probability), a weighted digraph.

The Traveling Salesman Problem

TSP

The traveling salesman problem, known as “TSP” is a classic
example in operations research and computer science.

A traveler must visit every city on a list and return home.

The "adjacency matrix" is now a table of city-to-city distances.
Dist(I,J) is the distance between cities I and J.

If travel between cities I and J is not possible, Dist(I,J) is set to
"Infinity". In MATLAB, this is the special value Inf.

The traveler wants a round trip that lists the cities in the order
they are visited.

The traveler seeks the round trip of shortest total distance.

Seeking the Best Route

The traveling salesman problem is a simplified
version of an issue that arises in many ways:

* scheduling a machine to drill holes in a circuit board;

* DNA sequencing, connecting local genome maps;

* minimize the movements of a telescope that must
examine a set of stars;

* planning the route of a school bus;

* shortest cable network linking all offices;

Abstract Version of Problem

We assume there are N cities, identified by their index 1 through N.

We will assume we are given an NxN distance matrix Dist(*,*).

* all entries of Dist are nonnegative;

* D(I,J) = Infinity is allowed, indicating direct travel not possible.

* for every city I, Dist(I,I)=0,

* for every pair of cities I and J, Dist(I,J)=Dist(J,I).

A round trip is a list T of the N cities in any order.

The length of the trip is the sum of Dist (T(K), T(K+1)), for K = 1 to N.

We assume the trip finishes back at the first city in the list, so in the formula for the trip
length, when K is N, T(N+1) will actually be T(1).

How Hard is this Problem?

1) There is at least one satisfactory solution to this problem,
because we can imagine a list of all possible trips, and there
must be a shortest one. It’s of course logically possible for
more than one trip to have the same shortest length; the point
is, there’s at least one solution!

2) Every possible ordering of the N cities represents a round
trip. There are N! such orderings, and when N=10, this is
more than 3 million possibilities. If we were visiting all 50
state capitals, the number of possibilities is unbelievable.

3) Although the problem involves geometry, it is not clear that
there are any geometric ideas that will help us.

Example V: Five Cities

Distance Table

 1 2 3 4 5

 --- --- --- --- ---

1 | 0 100 30 120 70

2 | 100 0 70 100 90

3 | 30 70 0 120 50

4 | 120 100 120 0 140

5 | 70 90 50 140 0

v_distance.m

function dist = v_dist ()

 dist = [0, 100, 30, 120, 70;

 100, 0, 70, 100, 90;

 30, 70, 0, 120, 50;

 120, 100, 120, 0, 140;

 70, 90, 50, 140, 0];

 return

end

trip_distance.m

function total = trip_distance (dist, t)

%% TRIP_DISTANCE computes the total length of a round trip.

%

 n = length (t);

%

% Copy first city to end of list to make a round trip.

%

 t = [t, t(1)];

 total = 0.0;

 for i = 1 : n

 total = total + dist (t(i), t(i+1));

 end

 return

end

Sample Round Trips
dist = v_distance ();

1: Cities in order:

T = [1,2,3,4,5]

length = trip_distance (dist, t) = 500

2: Go around outside first:

T = [1,4,5,2,3]

length = trip_distance (dist, t) = 450

3: Zigzag up

T = [1,5,3,2,4]

length = trip_distance (dist, t) = 410

4: Random

T = randperm (5) = [3, 5, 1, 2, 4]

length = trip_distance (dist, t) = 440

Brute Force & Permutations

Our Problem is Simple

Our problem is neat and simple in several ways.

There are only "so many" possible trips to consider. That means we could
imagine creating a list of all these trips.

For each trip, the distance matrix allows us to compute the total length, so we can
imagine that our list includes both the itinerary and the length.

We seek the shortest trip. We could imagine sorting our list of trips and lengths,
so that the shortest trip appears first on our list:

 length: city#1, city#2, ..., city#n

 We have considered all possibilities, so our result is guaranteed to be the best.

A solution approach like this, which doesn't bother with mathematical elegance,
but simply marches through the data sequentially, is called a brute force
method.

Permutations

Our brute force method must create a list of all possible
trips, T.

Each trip T is a permutation of the integers 1 through N,
a list that includes each integer exactly once.

To list all possible trips, we must list all possible
permutations of the N integers.

To do this in a systematic fashion, we would like to think
of the permutations as having some natural ordering.

A natural choice is lexicographic ordering.

Lexicographic Ordering
Here are the 24 permutations of 1 through 4, in lexicographic order:

1: 1, 2, 3, 4 #13: 3, 1, 2, 4

2: 1, 2, 4, 3 #14: 3, 1, 4, 2

3: 1, 3, 2, 4 #15: 3, 2, 1, 4

4: 1, 3, 4, 2 #16: 3, 2, 4, 1

5: 1, 4, 2, 3 #17: 3, 4, 1, 2

6: 1, 4, 3, 2 #18: 3, 4, 2, 1

7: 2, 1, 3, 4 #19: 4, 1, 2, 3

8: 2, 1, 4, 3 #20: 4, 1, 3, 2

9: 2, 3, 1, 4 #21: 4, 2, 1, 3

#10: 2, 3, 4, 1 #22: 4, 2, 3, 1

#11: 2, 4, 1, 3 #23: 4, 3, 1, 2

#12: 2, 4, 3, 1 #24: 4, 3, 2, 1

For permutations, lexicographic order looks somewhat like numerical
order, if we ignored the commas, so "1234" is first, than "1243",
and so on, up to "4321".

Generating Permutations

To make our list of possible trips, we need to generate all
the permutations of N integers, one at a time, in order,
without missing any.

It's obvious that there is a mathematical pattern going on
here, but it's not obvious, right away, how to follow it.

Permutations are an object of study in the mathematical
fields of combinatorics and of abstract algebra.

There are many algorithms for the generation problem.

Algorithm: nextperm

Start with 1, 2, 3, ..., n

1) Starting with last entry, p(n), select the longest
string of decreasing digits, indices i through n. (If
i = 1, we are done.)

2) Find the smallest value p(j) (i <= j <= n) that is
bigger than p(i-1).

3) Swap p(j) and p(i-1).

4) Sort entries p(i) through p(n) in increasing order.

Demonstrate nextperm

0) Our current permutation is:

 p = 7 9 10 5 8 3 4 6 2 1

 We need to compute the “next” permutation.

1) Longest string of decreasing digits, starting at the end, is "6, 2, 1" in
positions 8, 9, 10.

2) p(7)=4, and in the string "6, 2, 1", smallest value that is bigger than 4 is
p(8)=6.

3) Swap p(7) and p(8):

 p = 7 9 10 5 8 3 6 4 2 1

4) Sort p(8) through p(10):

 p = 7 9 10 5 8 3 6 1 2 4

nextperm.m
function p = extperm (p)

% Find non-increasing suffix

 n = length (p)

 i = n;

 while (i > 1 && p(i - 1) >= p(i))

 i = i - 1;

 end

 if (i <= 1)

 p = [];

 return;

 end

% Find successor to pivot

 j = n;

 while (p(j) <= p(i – 1))

 j = j - 1;

 end

 temp = p(i - 1);

 p(i - 1) = p(j);

 p(j) = temp;

% Reverse suffix

 p(i : end) = p(end : -1 : i);

 return

end

Our Brute Force Algorithm

while (true)

 initialize P=1:n, or get next P from nextperm

 compute length of this trip

 if this trip is shorter than best_length so far,

 save best_P, best_length

 end

end

tsp_brute.m
function [tsp_distance, tsp_trip] = tsp_brute (distance)

 [n, ~] = size (distance);

 i = 0;

 while (true)

 i = i + 1;

 if (i == 1)

 this_trip = 1 : n;

 else

 this_trip = nextperm (this_trip);

 if (isempty (this_trip))

 break;

 end

 end

 this_distance = trip_distance (distance, this_trip);

 if (i == 1 || this_distance < tsp_distance)

 tsp_distance = this_distance;

 tsp_trip = this_trip;

 end

 end

 return

end

Demo

dist = v_dist ();

[tsp_distance, tsp_trip] = tsp_brute (dist)

tsp_distance =

 270

tsp_trip =

 1 3 5 2 4

MATLAB’s travel.m Demo

MATLAB’s travel.m Demo

MATLAB includes a build-in example program
called travel.m which sets up a random
arrangment of cities on an US map, and then
seeks an optimal TSP solution.

To view the source code, inside of MATLAB:

 type travel.m

The program uses two methods to improve the
initial random path:

 * swap-two-edges (we will see this later)

 * point-insertion (randomly move one itinerary
item).

TSP by Simulated Annealing

Here is another TSP demo, using a method called
simulated annealing.

This method uses an artificial temperature. While the
temperature is large, the solution is violently modified.

As the temperature is reduced, only milder and milder
modifications are allowed.

This approach samples a very wide range of possibilities,
and gradually approaches one of the best ones.

See the file “tsp_simulated_annealing.gif”.

48 US Capital Example

48 State Capital Example

To make a more realistic example, let’s consider the
problem of a lobbyist who has to visit all 48 state
capitals (excluding Hawaii and Alaska to keep the map
simple.)

We will assume the lobbyist has a private jet, so that the
distance between any two capitals is simply the flying
distance. This way, we don’t have to deal with the
highway map.

But how do we compute the flying distance between two
cities?

Longitude and Latitude Location

City locations are registered using longitude and
latitude.

Latitude is an angle measured north or south of the
equator. The North Pole is at Latitude 90 degrees
North, and Blacksburg is at 37.22 degrees North.

Longitude is an angle measured east or west of a
line that runs from pole to pole through Greenwich
in the United Kingdom. Blacksburg is at 80.41
degrees east.

Longitude and Latitude

Longitude and Latitude Distance
To compute the distance between two cities whose coordinates are (Lat1,Lon1) and

(Lat2,Lon2), we also need to know the radius of the earth, R = 3,959 miles

We convert degrees to radians:

 theta1 = Lat1 * pi / 180; phi1 = Lon1 * pi / 180

 theta2 = Lat2 * pi / 180; phi2 = Lon2 * pi / 180

and then:

 X = cos(theta1)*cos(phi1) – cos(theta2)*cos(phi2)

 Y = cos(theta1)*sin(phi1) – cos(theta2)*sin(phi2)

 Z = sin(theta1) – sin(theta2)

 XYZ = sqrt (X^2 + Y^2 + Z^2)

to compute the distance in miles:

 D(City1,City2) = 2 * R * asin (XYZ / 2)

Compute Distance Table, Let’s Go!
The function “capitals.m” stores the name, latitude and longitude of each of

the 48 capitals.

The function “city_dist_table.m” takes the information from capitals() and
creates a 48x48 city-to-city distance table “Dist”.

We seem to have everything we need in order to schedule an efficient round
trip for the traveling lobbyist!

When we start the program, we get no result, but no error. What could be
going on? Why is the 5 city problem solved quickly, but the 48 city
problem is choking?

We can experiment by using small versions of the distance matrix. In other
words, we can pass in the submatrix Dist(1:5,1:5) to solve a problem with
just 5 state capitols, and see if the program works, and then move on from
there.

Experiments: 48 versus 5

city = capitals () ;

distance = city_dist_table (city);

[tsp_distance, tsp_trip] = tsp_brute (distance);

...Long long wait (seconds, minutes, hours) with no result...

d5 = distance(1:5,1:5);

[tsp_distance, tsp_trip] = tsp_brute (d5);

...Answer comes back almost immediately!

Solve a sequence of problems
function capital_timing()

 city = capitals ();

 distance = city_dist_table (city);

 for s = 5 : 12

 tic

 [tsp_d, tsp_t] = tsp_brute (distance(1:s,1:s));

 toc

 end

return

end

>> capital_timing

5: Elapsed time is 0.000596 seconds.

6: Elapsed time is 0.002287 seconds.

7: Elapsed time is 0.013985 seconds.

8: Elapsed time is 0.067820 seconds.

9: Elapsed time is 0.483606 seconds.

10: Elapsed time is 4.799959 seconds.

11: Elapsed time is 53.652944 seconds.

12: Elapsed time is 708.086179 seconds.

Problem N is N times as hard as
Problem N-1

>> capital_timing

5: Elapsed time is 0.000596 seconds.

6: Elapsed time is 0.002287 seconds. 6 * 0.000596 = 0.0036

7: Elapsed time is 0.013985 seconds. 7 * 0.002287 = 0.0160

8: Elapsed time is 0.067820 seconds. 8 * 0.013985 = 0.1119

9: Elapsed time is 0.483606 seconds. 9 * 0.067820 = 0.6104

10: Elapsed time is 4.799959 seconds. 10 * 0.483606 = 4.8361

11: Elapsed time is 53.652944 seconds. 11 * 4.799959 = 52.7995

12: Elapsed time is 708.086179 seconds. 12 * 53.652944 = 643.8348

Brute Force Impossible for 48 Cities

If a 12 city calculation takes about 10 minutes, then a 13
city calculation takes about 13 * 10 minutes, and a 48
city calculation would take about 48*47*46*...*13*10
minutes or more than 2*10^53 (2 followed by 53
zeros) minutes.

The universe is about 13.7 billion years old, which works
out to about 7*10^15 (7 followed by 15 zeros) minutes.

Our algorithm is correct, but our problem becomes
unbelievably difficult as the size N increases.

What Is To Be Done?

Every day, businesses and researchers need to
solve large versions of the TSP.

The Brute Force method cannot be used to
provide an exact answer except for very small
problems.

If we can't guarantee the best solution, perhaps
we can try for reasonable approximations.

Random Sampling

TSP Random Sampling

Our brute force search checked every possible
permutation, but we see there are too many to do a
complete check.

MATLAB provides a function to compute a random
permutation of integers 1 to N:

 p = randperm (n);

Perhaps we could use this function to sample a large
number of possible trips and take the best one we
encounter as an approximation to the solution.

tsp_random.m
function [tsp_distance, tsp_trip] = tsp_random (distance, trip_num)

 [n, ~] = size (distance);

 for i = 1 : trip_num

 this_trip = randperm (n);

 this_distance = trip_distance (distance, this_trip);

 if (i == 1 || this_distance < tsp_distance)

 tsp_distance = this_distance;

 tsp_trip = this_trip;

 end

 end

 return

end

48 Capital Test

 Samples Shortest Length

 100 37,275 miles

 1,000 37,939

 10,000 36,973

 100,000 33,978

 1,000,000 30,976

 10,000,000 31,834

100,000,000 29,316 (338 seconds)

Limits to Sampling

Our random sampling method seems to produce better
answers as we increase the sample size.

However, because the results drop substantially as we
increase the sample size, we are probably still far from a
good route.

In fact, the shortest route has length of about 10,618 miles,
so we really are far off.

Randomness may not be enough to solve this problem.
Perhaps we need to try to add some simple rules of
thumb to guide our code to a better solution faster.

Nearest Neighbor Method

The Nearest Neighbor Idea

Suppose we start our round trip without a plan, but we know
we want to minimize the total travel distance.

Instead of worrying about our entire itinerary, let’s just pick
our next city. If we’re going to minimize distance, it makes
sense to travel to the closest city.

Our next choice is similar: travel to the nearest city (as long
as you haven’t already been there.)

This simple rule will produce a complete itinerary very
quickly. It may not be the best solution, but let’s see how it
compares to our tsp_random results!

Nearest Neighbor Program

1) We need to specify a starting city.

2) If we are at city I, we look in row I of the
distance matrix for the smallest value.

3) Actually, the smallest value associated with a
city we haven’t yet visited.

4) As we visit each city, we can reset its distances
to Infinity, so we automatically won’t visit it
again.

tsp_nearest.m
function t = tsp_nearest (dist, nearest)

 [n, n] = size (dist);

 t = zeros (1, n);

 for i = 1 : n

 here = nearest

 dist(1:n,here) = Inf;

 t(i) = here;

 dmin = Inf;

 nearest = 0;

 for j = 1 : n

 if (dist(here,j) < dmin)

 dmin = dist(here,j);

 nearest = j;

 end

 end

 end

 return

end

Demo on Five City Example

Start Trip Length

----- ------------- ------

 1: 1, 3, 5, 2, 4 270 miles

 2: 2, 3, 1, 5, 4 310

 3: 3, 1, 5, 2, 4 290

 4: 4, 2, 3, 1, 5 270

 5: 5, 3, 1, 2, 4 280

Actually, 270 miles is the shortest route, but for this small problem, our success
is not a surprise. What happens if we look at the bigger problem?

Will it take a long time?
Will it get a good result?

Demo on the 48 US Capital Data

dist = capital_distance ();

t = tsp_nearest (dist, 1);

tsp_dist = trip_distance (dist, t);

tsp_dist => 11,378 (less than 1 second)

t = tsp_nearest (dist, 2);

tsp_dist => 11,738

t = tsp_nearest (dist, 3);

tsp_dist => 11,657

and so on.

Remember that the exact solution is 10,618 miles. Our brute force method never
finished, and our random sampling gave trips of lengths 30,000 or more, so this
nearest neighbor idea is a huge improvement.

Swap Two Method

The Swap-Two Method

Suppose we have a proposed itinerary T. Unless
we have done a brute force method, we
probably can’t be sure that T is the shortest
possible route.

This is true whether we picked T using random
samping, or the nearest neighbor method, or
any other procedure for the TSP.

The Swap-Two method is one way to look at T
and see whether small modifications might
reduce the total distance.

Consider Swapping Two Edges

Especially if we chose our T at random, it’s
possible that a simple change would make a
big improvement.

For instance, if two edges of the itinerary cross
each other, then a shorter itinerary is always
possible by removing those two edges and
connecting the four affected cities in a simpler
way.

Removing a Crossing

The Two-Swap Method

Even if a crossing does not occur, it’s possible that a trip
can be shortened by picking two edges at random and
considering the same kind of reconnection.

So the algorithm goes as follows:

 given a trip T,

 pick random edges I -> J, and K -> L.

 consider I -> K and J -> L

 if this makes a shorter trip, modify T accordingly.

tsp_2opt in words

function [tsp_dist, tsp_trip] = tsp_2opt (distance, tsp_trip, tries)

% Set TSP_DIST to current length of TSP_TRIP.

% Repeat TRIES times:

% Randomly choose I, J=I+1, K, L=K+1.

% Set TRIP2 equal to TRIP, except I->K and J->L

% D2 = length of TRIP2

% if D2 < TSP_DIST, then

% TSP_TRIP <= TRIP

 % TSP_DIST <= D2

tsp_2opt demo

distance = capitals_distance ();

tsp_trip = randperm (48)

[tsp_distance, tsp_trip] = tsp_2opt (distance, tsp_trip, 20);

1: Decrease trip length to 53778

3: Decrease trip length to 51860.5

9: Decrease trip length to 51192.6

12: Decrease trip length to 50006.5

13: Decrease trip length to 48658.3

15: Decrease trip length to 48076.2

16: Decrease trip length to 47458.2

19: Decrease trip length to 46999.5

20: Decrease trip length to 46074.7

Repeated calls can reduce the trip length significantly.

Homework

Homework #12 is due by midnight tomorrow.

Your final project is due by midnight Tuesday,
December 12.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

