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Reference

Chapter 15 of our textbook covers Optimization; section 1, “Shortest 
Route: The Combinatoric Explosion”, considers the traveling 
salesman problem.

The TSPLIB website is full of information on the traveling salesman 
problem, including the history, maps, programs, and references.

https://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/

 

.



  

New Versions of Adjacency Matrix



  

New Versions of Adjacency

The classic adjacency matrix Adj(I,J) for a graph records a 
1 if nodes I and J are neighbors, and 0 otherwise.

In MATLAB, we can also think of 1 and 0 values are 
representing TRUE (nodes are connected) and FALSE 
(they are not).

Graphs are so useful that they have been adapted to more 
complicated problems.

If we are willing to modify our definition of the adjacency 
matrix, then we can also describe these more 
complicated graphs.



  

Multiple Edges between Nodes
We can handle this by letting Adj(I,J) count the 

edges.  This is sometimes called a “multigraph”. 
 Here, some entries of Adj will be 2.



  

A node can be its own neighbor

Adj(i,i) = 1 is now possible.  This is sometimes 
called a graph with “loops” or “self-loops”.



  

Edges can have length or weight
Adj(i,j) = 7.5 means the “road” from node I to 

node J is 7.5 miles long.  This allows us to 
compute city-to-city distances.  This is called a 
weighted graph.



  

Edges can have direction
Adj(i,j)=1 means there is an edge FROM I TO J, but it 

does not mean there is an edge in the other 
direction.  This is a directed graph or digraph.



  

Edges with direction and weight
Our transition problems, studier earlier, can be 

represented by a graph with loops, direction, 
and weight (probability), a weighted digraph.



  

The Traveling Salesman Problem



  

TSP

The traveling salesman problem, known as “TSP” is a classic 
example in operations research and computer science.

A traveler must visit every city on a list and return home.  

The "adjacency matrix" is now a table of city-to-city distances.  
Dist(I,J) is the distance between cities I and J. 

If travel between cities I and J is not possible, Dist(I,J) is set to 
"Infinity".  In MATLAB, this is the special value Inf.

The traveler wants a round trip that lists the cities in the order 
they are visited.

The traveler seeks the round trip of shortest total distance.



  

Seeking the Best Route

The traveling salesman problem is a simplified 
version of an issue that arises in many ways:

* scheduling a machine to drill holes in a circuit board;

* DNA sequencing, connecting local genome maps;

* minimize the movements of a telescope that must 
examine a set of stars;

* planning the route of a school bus;

* shortest cable network linking all offices;



  

Abstract Version of Problem

We assume there are N cities, identified by their index 1 through N.

We will assume we are given an NxN distance matrix Dist(*,*).

* all entries of Dist are nonnegative;

* D(I,J) = Infinity is allowed, indicating direct travel not possible.

* for every city I, Dist(I,I)=0, 

* for every pair of cities I and J, Dist(I,J)=Dist(J,I).

A round trip is a list T of the N cities in any order.  

The length of the trip is the sum of Dist ( T(K), T(K+1) ), for K = 1 to N.  

We assume the trip finishes back at the first city in the list, so in the formula for the trip 
length, when K is N, T(N+1) will actually be T(1).



  

How Hard is this Problem?

1) There is at least one satisfactory solution to this problem, 
because we can imagine a list of all possible trips, and there 
must be a shortest one.  It’s of course logically possible for 
more than one trip to have the same shortest length; the point 
is, there’s at least one solution!

2) Every possible ordering of the N cities represents a round 
trip.  There are N! such orderings, and when N=10, this is 
more than 3 million possibilities.  If we were visiting all 50 
state capitals, the number of possibilities is unbelievable.

3) Although the problem involves geometry, it is not clear that 
there are any geometric ideas that will help us.



  

Example V: Five Cities



  

Distance Table

            1       2         3         4        5

    ---  ---  ---  ---  ---

1 |   0  100   30  120   70

2 | 100    0   70  100   90

3 |  30   70    0  120   50

4 | 120  100  120    0  140

5 |  70   90   50  140    0



  

v_distance.m

function dist = v_dist ( )

  dist = [   0, 100,  30, 120,  70;

           100,   0,  70, 100,  90;

            30,  70,   0, 120,  50;

           120, 100, 120,   0, 140;

            70,  90,  50, 140,   0 ];

  return

end



  

trip_distance.m

function total = trip_distance ( dist, t )

%% TRIP_DISTANCE computes the total length of a round trip.

%

  n = length ( t );

%

%  Copy first city to end of list to make a round trip.

%

  t = [ t, t(1) ];

  total = 0.0;

  for i = 1 : n

    total = total + dist ( t(i), t(i+1) );

  end

  return

end



  

Sample Round Trips
dist = v_distance ( );

1: Cities in order:

T = [1,2,3,4,5]

length = trip_distance ( dist, t ) = 500

2:  Go around outside first:

T = [1,4,5,2,3]

length = trip_distance ( dist, t ) = 450

3: Zigzag up

T = [1,5,3,2,4] 

length = trip_distance ( dist, t ) = 410

4: Random

T = randperm ( 5 ) = [ 3, 5, 1, 2, 4 ] 

length = trip_distance ( dist, t ) = 440

 



  

Brute Force & Permutations



  

Our Problem is Simple

Our problem is neat and simple in several ways.

There are only "so many" possible trips to consider.  That means we could 
imagine creating a list of all these trips.

For each trip, the distance matrix allows us to compute the total length, so we can 
imagine that our list includes both the itinerary and the length.

We seek the shortest trip.  We could imagine sorting our list of trips and lengths, 
so that the shortest trip appears first on our list:

      length: city#1, city#2, ..., city#n

 We have considered all possibilities, so our result is guaranteed to be the best.

A solution approach like this, which doesn't bother with mathematical elegance, 
but simply marches through the data sequentially, is called a brute force 
method.



  

Permutations

Our brute force method must create a list of all possible 
trips, T.

Each trip T is a permutation of the integers 1 through N, 
a list that includes each integer exactly once.

To list all possible trips, we must list all possible 
permutations of the N integers.

To do this in a systematic fashion, we would like to think 
of the permutations as having some natural ordering.  

A natural choice is lexicographic ordering.



  

Lexicographic Ordering
Here are the 24 permutations of 1 through 4, in lexicographic order:

# 1: 1, 2, 3, 4          #13: 3, 1, 2, 4

# 2: 1, 2, 4, 3          #14: 3, 1, 4, 2

# 3: 1, 3, 2, 4          #15: 3, 2, 1, 4

# 4: 1, 3, 4, 2          #16: 3, 2, 4, 1

# 5: 1, 4, 2, 3          #17: 3, 4, 1, 2

# 6: 1, 4, 3, 2          #18: 3, 4, 2, 1

# 7: 2, 1, 3, 4          #19: 4, 1, 2, 3

# 8: 2, 1, 4, 3          #20: 4, 1, 3, 2

# 9: 2, 3, 1, 4          #21: 4, 2, 1, 3

#10: 2, 3, 4, 1          #22: 4, 2, 3, 1

#11: 2, 4, 1, 3          #23: 4, 3, 1, 2

#12: 2, 4, 3, 1          #24: 4, 3, 2, 1

For permutations, lexicographic order looks somewhat like numerical 
order, if we ignored the commas, so "1234" is first, than "1243", 
and so on, up to "4321".



  

Generating Permutations

To make our list of possible trips, we need to generate all 
the permutations of N integers, one at a time, in order, 
without missing any.

It's obvious that there is a mathematical pattern going on 
here, but it's not obvious, right away, how to follow it.

Permutations are an object of study in the mathematical 
fields of combinatorics and of abstract algebra.

There are many algorithms for the generation problem.



  

Algorithm: nextperm

Start with 1, 2, 3, ..., n

1) Starting with last entry, p(n), select the longest 
string of decreasing digits, indices i through n.  (If 
i = 1, we are done.)

2) Find the smallest value p(j) (i <= j <= n) that is 
bigger than p(i-1).

3) Swap p(j) and p(i-1).

4) Sort entries p(i) through p(n) in increasing order.



  

Demonstrate nextperm

0) Our current permutation is:

          p = 7     9    10     5     8     3     4     6     2     1

    We need to compute the “next” permutation.

1) Longest string of decreasing digits, starting at the end, is "6, 2, 1" in 
positions 8, 9, 10.  

2) p(7)=4, and in the string "6, 2, 1", smallest value that is bigger than 4 is 
p(8)=6.

3) Swap p(7) and p(8):

          p = 7     9    10     5     8     3     6    4     2     1

4) Sort p(8) through p(10):

          p = 7     9    10     5     8     3     6    1     2     4



  

nextperm.m
function p = extperm ( p )

% Find non-increasing suffix

  n = length ( p )

  i = n;

  while ( i > 1 && p(i - 1) >= p(i) )

    i = i - 1;

  end

  if ( i <= 1 )

    p = [];

    return;

  end

% Find successor to pivot

  

  j = n;

  while ( p(j) <= p(i – 1) )

    j = j - 1;

  end

  temp = p(i - 1);

  p(i - 1) = p(j);

  p(j) = temp;

% Reverse suffix

  p(i : end) = p(end : -1 : i);

  return

end



  

Our Brute Force Algorithm

while ( true )

  initialize P=1:n, or get next P from nextperm

  compute length of this trip

  if this trip is shorter than best_length so far,

    save best_P, best_length

  end

end



  

tsp_brute.m
function [ tsp_distance, tsp_trip ] = tsp_brute ( distance )

  [ n, ~ ] = size ( distance );

  i = 0;

  while ( true )

    i = i + 1;

    if ( i == 1 )

      this_trip = 1 : n;

    else

      this_trip = nextperm ( this_trip );

      if ( isempty ( this_trip ) )

        break;

      end

    end

    this_distance = trip_distance ( distance, this_trip );

    if ( i == 1 || this_distance < tsp_distance )

      tsp_distance = this_distance;

      tsp_trip = this_trip;

    end

  end

  return

end



  

Demo

dist = v_dist ( );

[ tsp_distance, tsp_trip ] = tsp_brute ( dist )

tsp_distance =

   270

tsp_trip =

     1     3     5     2     4

 



  

MATLAB’s travel.m Demo



  

MATLAB’s travel.m Demo

MATLAB includes a build-in example program 
called travel.m which sets up a random 
arrangment of cities on an US map, and then 
seeks an optimal TSP solution.

To view the source code, inside of MATLAB:

    type travel.m

The program uses two methods to improve the 
initial random path: 

    * swap-two-edges (we will see this later)

    * point-insertion (randomly move one itinerary 
item). 



  

TSP by Simulated Annealing

Here is another TSP demo, using a method called 
simulated annealing.

This method uses an artificial temperature.  While the 
temperature is large, the solution is violently modified.

As the temperature is reduced, only milder and milder 
modifications are allowed.

This approach samples a very wide range of possibilities, 
and gradually approaches one of the best ones.

See the file “tsp_simulated_annealing.gif”.



  

48 US Capital Example



  

48 State Capital Example

To make a more realistic example, let’s consider the 
problem of a lobbyist who has to visit all 48 state 
capitals (excluding Hawaii and Alaska to keep the map 
simple.)

We will assume the lobbyist has a private jet, so that the 
distance between any two capitals is simply the flying 
distance.  This way, we don’t have to deal with the 
highway map.

But how do we compute the flying distance between two 
cities?  



  

Longitude and Latitude Location

City locations are registered using longitude and 
latitude.

Latitude is an angle measured north or south of the 
equator.  The North Pole is at Latitude 90 degrees 
North, and Blacksburg is at 37.22 degrees North.

Longitude is an angle measured east or west of a 
line that runs from pole to pole through Greenwich 
in the United Kingdom.  Blacksburg is at 80.41 
degrees east.



  

Longitude and Latitude



  

Longitude and Latitude Distance
To compute the distance between two cities whose coordinates are (Lat1,Lon1) and 

(Lat2,Lon2), we also need to know the radius of the earth, R = 3,959 miles

We convert degrees to radians:

     theta1 = Lat1 * pi / 180; phi1 = Lon1 * pi / 180

     theta2 = Lat2 * pi / 180; phi2 = Lon2 * pi / 180

and then:

     X = cos(theta1)*cos(phi1) – cos(theta2)*cos(phi2)

     Y = cos(theta1)*sin(phi1) – cos(theta2)*sin(phi2)

     Z = sin(theta1) – sin(theta2)

     XYZ = sqrt ( X^2 + Y^2 + Z^2 ) 

to compute the distance in miles:

     D(City1,City2) = 2 * R * asin ( XYZ / 2  )



  

Compute Distance Table, Let’s Go!
The function “capitals.m” stores the name, latitude and longitude of each of 

the 48 capitals.

The function “city_dist_table.m” takes the information from capitals() and 
creates a 48x48 city-to-city distance table “Dist”.

We seem to have everything we need in order to schedule an efficient round 
trip for the traveling lobbyist!

When we start the program, we get no result, but no error.  What could be 
going on?  Why is the 5 city problem solved quickly, but the 48 city 
problem is choking?

We can experiment by using small versions of the distance matrix.  In other 
words, we can pass in the submatrix Dist(1:5,1:5) to solve a problem with 
just 5 state capitols, and see if the program works, and then move on from 
there.  



  

Experiments: 48 versus 5

city = capitals () ;

distance = city_dist_table ( city );

[ tsp_distance, tsp_trip ] = tsp_brute ( distance );

...Long long wait (seconds, minutes, hours) with no result...

d5 = distance(1:5,1:5);

[ tsp_distance, tsp_trip ] = tsp_brute ( d5 );

...Answer comes back almost immediately!



  

Solve a sequence of problems
function capital_timing()

  city = capitals ( );

  distance = city_dist_table ( city );

  for s = 5 : 12

    tic

    [ tsp_d, tsp_t ] = tsp_brute ( distance(1:s,1:s) );

    toc

  end

return

end

>> capital_timing

5: Elapsed time is 0.000596 seconds.

6: Elapsed time is 0.002287 seconds.

7: Elapsed time is 0.013985 seconds.

8: Elapsed time is 0.067820 seconds.

9: Elapsed time is 0.483606 seconds.

10: Elapsed time is 4.799959 seconds.

11: Elapsed time is 53.652944 seconds.

12: Elapsed time is 708.086179 seconds.

  



  

Problem N is N times as hard as 
Problem N-1

>> capital_timing

5: Elapsed time is 0.000596 seconds.

6: Elapsed time is 0.002287 seconds.        6 *   0.000596 =      0.0036

7: Elapsed time is 0.013985 seconds.        7 *   0.002287 =      0.0160

8: Elapsed time is 0.067820 seconds.        8 *   0.013985 =      0.1119

9: Elapsed time is 0.483606 seconds.        9 *   0.067820 =      0.6104

10: Elapsed time is 4.799959 seconds.     10 *  0.483606 =      4.8361

11: Elapsed time is 53.652944 seconds.    11 *  4.799959 =    52.7995

12: Elapsed time is 708.086179 seconds.  12 * 53.652944 = 643.8348

  



  

Brute Force Impossible for 48 Cities

If a 12 city calculation takes about 10 minutes, then a 13 
city calculation takes about 13 * 10 minutes, and a 48 
city calculation would take about 48*47*46*...*13*10 
minutes or more than 2*10^53 (2 followed by 53 
zeros) minutes. 

The universe is about 13.7 billion years old, which works 
out to about 7*10^15 (7 followed by 15 zeros) minutes.

Our algorithm is correct, but our problem becomes 
unbelievably difficult as the size N increases. 



  

What Is To Be Done?

Every day, businesses and researchers need to 
solve large versions of the TSP.  

The Brute Force method cannot be used to 
provide an exact answer except for very small 
problems.

If we can't guarantee the best solution, perhaps 
we can try for reasonable approximations.



  

Random Sampling



  

TSP Random Sampling

Our brute force search checked every possible 
permutation, but we see there are too many to do a 
complete check.

MATLAB provides a function to compute a random 
permutation of integers 1 to N:

     p = randperm ( n );

Perhaps we could use this function to sample a large 
number of possible trips and take the best one we 
encounter as an approximation to the solution.



  

tsp_random.m
function [ tsp_distance, tsp_trip ] = tsp_random ( distance, trip_num )

  [ n, ~ ] = size ( distance );

  for i = 1 : trip_num

    this_trip = randperm ( n );

    this_distance = trip_distance ( distance, this_trip );

    if ( i == 1 || this_distance < tsp_distance )

      tsp_distance = this_distance;

      tsp_trip = this_trip;

    end

  end

  return

end



  

48 Capital Test

    Samples    Shortest Length

        100    37,275 miles

      1,000    37,939

     10,000    36,973

    100,000    33,978

  1,000,000    30,976

 10,000,000    31,834

100,000,000    29,316    (338 seconds)



  

Limits to Sampling

Our random sampling method seems to produce better 
answers as we increase the sample size.

However, because the results drop substantially as we 
increase the sample size, we are probably still far from a 
good route.

In fact, the shortest route has length of about 10,618 miles, 
so we really are far off.

Randomness may not be enough to solve this problem.  
Perhaps we need to try to add some simple rules of 
thumb  to guide our code to a better solution faster.



  

Nearest Neighbor Method



  

The Nearest Neighbor Idea

Suppose we start our round trip without a plan, but we know 
we want to minimize the total travel distance.

Instead of worrying about our entire itinerary, let’s just pick 
our next city.  If we’re going to minimize distance, it makes 
sense to travel to the closest city.

Our next choice is similar: travel to the nearest city (as long 
as you haven’t already been there.)

This simple rule will produce a complete itinerary very 
quickly.  It may not be the best solution, but let’s see how it 
compares to our tsp_random results!



  

Nearest Neighbor Program

1) We need to specify a starting city.

2) If we are at city I, we look in row I of the 
distance matrix for the smallest value.

3) Actually, the smallest value associated with a 
city we haven’t yet visited.

4) As we visit each city, we can reset its distances 
to Infinity, so we automatically won’t visit it 
again.



  

tsp_nearest.m
function t  = tsp_nearest ( dist, nearest )

  [ n, n ] = size ( dist );

  t = zeros ( 1, n );

  

  for i = 1 : n

   here = nearest

    dist(1:n,here) = Inf;

    t(i) = here;

    dmin = Inf;

    nearest = 0;

    for j = 1 : n

       if ( dist(here,j) < dmin )

          dmin = dist(here,j);

          nearest = j;

      end

    end

  end

  return

end



  

Demo on Five City Example

Start  Trip             Length

-----  -------------    ------

   1:  1, 3, 5, 2, 4    270 miles

   2:  2, 3, 1, 5, 4    310

   3:  3, 1, 5, 2, 4    290

   4:  4, 2, 3, 1, 5    270

   5:  5, 3, 1, 2, 4    280

Actually, 270 miles is the shortest route, but for this small problem, our success 
is not a surprise.  What happens if we look at the bigger problem?  

Will it take a long time?
Will it get a good result?



  

Demo on the 48 US Capital Data

dist = capital_distance ( );

t = tsp_nearest ( dist, 1 );

tsp_dist = trip_distance ( dist, t );

tsp_dist => 11,378  (less than 1 second)

t = tsp_nearest ( dist, 2 );

tsp_dist => 11,738

t = tsp_nearest ( dist, 3 );

tsp_dist => 11,657

and so on.  

Remember that the exact solution is 10,618 miles.  Our brute force method never 
finished, and our random sampling gave trips of lengths 30,000 or more, so this 
nearest neighbor idea is a huge improvement.



  

Swap Two Method



  

The Swap-Two Method

Suppose we have a proposed itinerary T.  Unless 
we have done a brute force method, we 
probably can’t be sure that T is the shortest 
possible route.  

This is true whether we picked T using random 
samping, or the nearest neighbor method, or 
any other procedure for the TSP.

The Swap-Two method is one way to look at T 
and see whether small modifications might 
reduce the total distance.



  

Consider Swapping Two Edges

Especially if we chose our T at random, it’s 
possible that a simple change would make a 
big improvement. 

For instance, if two edges of the itinerary cross 
each other, then a shorter itinerary is always 
possible by removing those two edges and 
connecting the four affected cities in a simpler 
way.



  

Removing a Crossing



  

The Two-Swap Method

Even if a crossing does not occur, it’s possible that a trip 
can be shortened by picking two edges at random and 
considering the same kind of reconnection.

So the algorithm goes as follows: 

  given a trip T,

  pick random edges I -> J, and K -> L.

  consider I -> K and J -> L

  if this makes a shorter trip, modify T accordingly.



  

tsp_2opt in words

function [ tsp_dist, tsp_trip ] = tsp_2opt ( distance, tsp_trip, tries )

% Set TSP_DIST to current length of TSP_TRIP.

% Repeat TRIES times:

%     Randomly choose I, J=I+1, K, L=K+1.

%     Set TRIP2 equal to TRIP, except I->K and J->L

%     D2 = length of TRIP2

%     if D2 < TSP_DIST, then 

%         TSP_TRIP <= TRIP

 %         TSP_DIST <= D2



  

tsp_2opt demo

distance = capitals_distance ( );

tsp_trip = randperm ( 48 )

[ tsp_distance, tsp_trip ] = tsp_2opt ( distance, tsp_trip, 20 );

1: Decrease trip length to 53778

3: Decrease trip length to 51860.5

9: Decrease trip length to 51192.6

12: Decrease trip length to 50006.5

13: Decrease trip length to 48658.3

15: Decrease trip length to 48076.2

16: Decrease trip length to 47458.2

19: Decrease trip length to 46999.5

20: Decrease trip length to 46074.7

Repeated calls can reduce the trip length significantly.



  

Homework

Homework #12 is due by midnight tomorrow.

Your final project is due by midnight Tuesday, 
December 12.
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