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MATHEMATICAL GAMES 
The multiple fascinations 
of the Fibonacci sequence 

by :\ial'tin Gardner 

T
he greatest European mathemati
cian of the Middle Ages was Le
onardo of Pisa, better known as 

Fibonacci, meaning "son of Bonaccio." 
Although Leonardo was born in Pisa, his 
father was an official of an Italian mer
cantile factory in Bougie in Algeria; and 
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it was there that young Leonardo re
ceived his early mathematical training 
from Moslem tutors. He quickly recog
nized the enormous superiority of the 
Hindu-Arabic decimal system, with its 
positional notation and zero symbol, over 
the clumsy Roman system still used in 
his own country. His best-known work, 
Liber abaci (literally "Book of the Aba
cus " but actually a comprehenSive mer
chant's handbook on arithmetic and 
algebra), defended the merits of the 

Tree graph lor Fibonacci's rabbits 

Hindu-Arabic notation. The arguments 
made little impression on the Italian 
merchants of the time but the book 
eventually became the most influential 
single work in introducing the Hindu
Arabic system to the West. Although 
Libel' abaci was completed in Pisa in 
1202, it survives only in a revised 1228 
edition dedicated to a famous astrologer 
of the period. There has never been an 
English translation. 

It is ironic that Leonardo, who made 
valuable contributions to mathemlltics, 
is remembered today mainly because a 
19th-century French number theorist, 
Edouard Lucas (who edited a classic 
four-volume work on recreational math
ematics), attached the name Fibonacci 
to a number sequence that appears in a 

trivial problem in Libel' abaci. Suppose, 
Leonardo wrote, a male-female pair of 
adult rabbits is placed inside an en
closure to breed. Assume that rabbits 
start to bear young two months after 

TOTAL 
OF PAIRS 

2 

3 

5 

8 

13 

© 1969 SCIENTIFIC AMERICAN, INC
This content downloaded from 198.82.230.35 on Wed, 20 Sep 2017 17:27:21 UTC

All use subject to http://about.jstor.org/terms



their own birth, producing only a single 
male-female pair, and that they have 
one such pair at the end of each subse
quent month. If none of the rabbits die, 
how many pairs of rabbits will there be 
inside the enclosure at the end of one 
year? 

The tree graph [see illustration on op
posite page] shows what happens during 
the first five months. It is easy to see that 
the numbers of pairs at the close of each 
month form the sequence 1, 2, 3, 5, 
8, . . .  , in which each number (as Fibo
nacci pointed out) is the sum of the two 
numbers preceding it. At the end of 12 
months there will be 377 pairs of rab
bits. 

Fibonacci did not investigate the se
ries and no serious study of it was un
dertaken until the beginning of the 19th 
century, when, as a mathematician once 
put it, papers on the sequence began to 
multiply almost as fast as Fibonacci's 
rabbits. Lucas made a deep study of 
sequences (now called "generalized Fi
bonacci sequences ") that begin with 
any two positive integers, each number 
thereafter being the sum of the preced
ing two. He called the simplest such se
ries, 1, 1, 2, 3, 5, 8, 13, 21, . . .  , the Fibo
nacci sequence. The position of each 
number in this sequence is traditionally 
indicated by a subscript, so that F 1 = 1, 
F 2 = 1, F 3 = 2, and so on. (The first 50 
Fibonacci numbers are listed in the illus
tration on this page). Fn refers to any 
Fibonacci number. Fn+1 is the number 
following F,,; Fn-l is the number pre
ceding FI1; F2n is the F-number with a 
subscript twice that of F", and so on. 

The Fibonacci sequence has intrigued 
mathematicians for centuries, partly be
cause it has a way of turning up in un
expected places but mainly because the 
veriest amateur in number theory, with 
no knowledge beyond simple arithmetic, 
can explore the sequence and discover 
a seemingly endless variety of curious 
theorems. Recent developments in com
puter programming have reawakened in
terest in the series because it turns out to 
have useful applications in the sorting of 
data, information retrieval, the genera
tion of random numbers and even in 
rapid methods of approximating max
ima and minima values of complicated 
functions for which derivatives are not 
known. 

Early results are summarized in Chap
ter 17 of the first volume of Leonard Eu
gene Dickson's History of the Theory of 
Numbers. For the most recent discov
eries interested readers can consult The 
Fibonacci Quarterly, published since 
1963 by the Fibonacci Association. (The 

annual price is now $6 and subscriptions 
are handled by the managing editor, 
Brother Alfred Brousseau, at St. Mary's 
College in St. Mary's College, Calif.) 
Edited by Verner E. Hoggatt, Jr., of San 
Jose State College in San Jose, Calif., the 
quarterly is concerned primarily with 
generalized Fibonacci numbers and sim
ilar numbers (such as "Tribonacci num
bers," which are sums of the preceding 
three numbers), but the journal is also 
devoted "to the study of integers with 
special properties. " 

Surely the most remarkable property 
of the Fibonacci series (which holds for 
the generalized series too) is that the 
ratio between two consecutive numbers 
is alternately greater or smaller than the 
golden ratio and that, as the series con
tinues, the differences become less and 
less; the ratios approach the golden 
ratio as a limit. The golden ratio is a 
famous irrational number, 1.61803 . . .  , 
that is obtained by halving the sum of 1 
and the square root of 5. There is a con
siderable literature, some of it dubious, 
about the appearance of the golden ratio 
and the closely related Fibonacci se
quence in organic growth and about 
their applications to art, architecture and 
even poetry. George Eckel Duckworth, 
professor of classics at Princeton Univer
sity, maintains in his book Stmctural 
Patte1'l1s and Proportions in Vergil's 
Aeneid (UniverSity of Michigan Press, 
1962) that the Fibonacci series was con
Sciously used by Vergil and other Roman 
poets of the time. I dealt with such mat
ters in an earlier column on the golden 
ratio, which is reprinted in The 2nd Sci
entific American Book of Mathematical 
Puzzles & Diversions. 

The most striking appearance of Fibo
nacci numbers in plants is in the spiral 
arrangement of seeds on the face of cer
tain varieties of sunflower. There are two 
sets of logarithmic spirals, one set turn
ing clockwise, the other counterclock
wise, as indicated by the two colored 
spirals in the illustration on the next 
page. The numbers of spirals in the two 
sets are different and tend to be con
secutive Fibonacci numbers. Sunflowers 
of average size usually have 34 and 55 
spirals, but giant sunflowers have been 
developed that go as high as 89 and 144. 
In the letters department of The Scien
tific Monthly (November, 1951) Daniel 
T. O'Connell, a geologist at City College 
of the City of New York, and his wife 
reported having found on their Vermont 
farm one mammoth sunflower with 144 
and 233 spirals! 

The intimate connection between the 
Fibonacci series and the golden ratio 

n Fn 

1 1 
2 1 
3 2 
4 3 
5 5 
6 8 
7 13 
8 21 
9 34 
10 55 
11 89 
12 144 
13 233 
14 377 
15 610 
16 987 
17 1,597 
18 2,584 
19 4,181 
20 6,765 
21 10,946 
22 17,711 
23 28,657 
24 46,368 
25 75,025 
26 121,393 
27 196,418 
28 317,811 
29 514,229 
30 832,040 
�1 1,346,269 
32 2,178,309 
33 3,524,578 
34 5,702,887 
35 9,227,465 
36 14,930,352 
37 24,157,817 
38 39,088,169 
39 63,245,986 
40 102,334,155 
41 165,580,141 
42 267,914,296 
43 433,494,437 
44 701 ,408,733 
45 1,134,903,170 
46 1,836,311,903 
47 2,971,215,073 
48 4,807,526,976 
49 7,778,742,049 
50 12,586,269,025 

The first 50 Fibonacci numbers 
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can be seen in the following formula for 
the nth Fibonacci number: 

This equation gives the nth Fibonac
ci number exactly but it is cumbersome 
to use for high F-numbers, although 
good approximations can be obtained 
with logarithms. A much simpler formu
la for the nth F-number is the golden 
ratio raised to the power of n and then 
divided by the square root of 5. When 
this result is rounded off to the nearest 
integer, it too provides the exact num
ber sought. Both formulas are nonrecur
sive because they compute the nth F
number directly from n. A "recursive 
procedure" is a series of steps each of 
which is dependent on previous steps. 
If you compute the nth F-number by 
summing consecutive F-numbers until 
you reach the nth, you are computing it 
recursively; a definition of the nth F
number as the sum of the preceding two 
numbers is a simple example of a re
cursive formula. (Two highly efficient 
computer algorithms for computing 
large F-numbers exactly are given as the 
answer to exercise No. 26 on page 552 

of Seminumerical Algorithms, the sec
ond volume of The Art of Computer Pro
gramming by Donald E. Knuth.) 

To find the sum of the first n Fibo
nacci numbers the best procedure is to 
determine F n+ 2 and then subtract l. 
Example: What is the sum of the first 
20 F-numbers? Subtract 1 from 17,711, 
the 22nd F-number, to get the answer: 
17,710. 

Here are some more well-known prop
erties of the Fibonacci sequence, most of 
them not difficult to prove: 

l. The square of any F-number dif
fers by 1 from the product of the two 
F-numbers on each side. The difference 
is alternately plus or minus as the series 
continues. Like so many properties of 
the Fibonacci series, this is a special case 
of a property that applies to the general 
sequence starting with any two integers. 
In the general case too the difference is 
a constant that is alternately plus or 
minus. For example, the next-simplest 
series after the Fibonacci, 1, 3, 4, 7, 11, 
IS, ... (now called the Lucas series af
ter the French mathematician), has a 
constant difference of 5. 

2. The sum of the squares of any two 
consecutive F-numbers, F�n and F�"+1> 
is F22n+1. Since the last number must 

Sunflower with 55 counterclockwise and 89 clockwise spirals 
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have an odd subscript, it follows from 
this theorem that if you write in se
quence the squares of the F-numbers, 
sums of consecutive squares will pro
duce in sequence the F-numbers with 
odd subscripts. 

3. For any four consecutive F -num
bers, A, B, C, D, the following formula 
holds: C� - B2 = A X D. 

4. The sequence of final digits of the 
Fibonacci sequence repeats in cycles of 
60. The last two digits repeat in cycles 
of 300. The repeating cycle is 1,500 for 
three final digits, 15,000 for four digits, 
150,000 for five and so on for all larger 
numbers of digits. 

5. For every integer m there is an 
infinite number of F-numbers that are 
evenly divisible by m, and at least one 
can be found among the first m2 num
bers of the Fibonacci sequence. 

6. Every third F-number is divisible 
by 2, every fourth number by 3, every 
fifth number by 5, every sixth number 
by S and so on, the divisors being F
numbers in sequence. Consecutive Fibo
nacci numbers (as well as consecutive 
Lucas numbers) cannot have a common 
divisor other than l. 

7. With the exception of 3, every F
number that is prime has a prime sub
script (for example, 233 is prime and its 
subscript, 13, is also prime). Put another 
way, if a subscript is composite (not 
prime), so is the number. Unfortunately 
the converse is not always true: a prime 
subscript does not necessarily mean that 
the number is prime. The first counter
example is FlO, 4,lSl. The subscript is 
prime but 4,lSl is 37 times 113. 

If the converse theorem held in all 
cases, it would answer the greatest un
solved question about Fibonacci num
bers: Is there an infinity of Fibonacci 
primes? We know that the number of 
primes is infinite, and therefore if every 
F-number with a prime subscript were 
prime, there would be an infinity of 
prime F-numbers. As it is, no one today 
knows if there is a largest Fibonacci 
prime. 

S. With the trivial exceptions of 0 
and 1 (taking 0 to be F 0) ' the only square 
F-number is F 1�, 144-which, surpris
ingly, is the square of its subscript. 
Whether or not there is a square F-num
ber greater than 144 was an open ques
tion until the matter was finally settled, 
as recently as 1963, by John H. E. Cohn 
of Bedford College in the University of 
London. He also proved that 1 and 4 
are the only squares in the Lucas se
quence. 

9. The reciprocal of S9, the 11th F
number, can be generated by writing 
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There are Fn + 2 paths by which a ray ccm be reflected n times through two pcmes of glass 

the Fibonacci sequence, starting with 0, 
and then adding as follows: 

.0112358 
13 

21 
34 

55 
89 

144 
233 

.011235955040673 . . .  = 1/89 . 

This list of properti�s could be ex
tended to fill a book. One could do the 
same with instances of how the series 
appears in physical and mathematical 
situations. (For its appearance in the 
diagonals of Pascal's triangle see this 
department for December, 1966.) Leo 
Moser in 1963 studied the paths of slant-

ing light rays through two face-to-face 
glass plates. An unreflected ray goes 
through the plates in only one way [see 
illustration above J. If a ray is reflected 
once, there are two paths; if it is re
flected twice, there are three paths, and 
if three times, there are five paths. As 
11, the number of reflections, increas
es, the numbers of possible paths fall 
into the Fibonacci sequence. For n re
flections the number of paths is Fn+2• 

The sequence can be applied similarly 
to the different paths that can be taken 
by a bee crawling over hexagonal cells 
[see top illustration on next page J. The 
cells extend as far as desired to the right. 
Assume that the bee always moves to an 
adjacent cell and always moves toward 
the right. It is not hard to prove there 
is one path to cell 0, two paths to cell 1, 
three to cell 2, five to cell 3 and so on. 
As before, the number of paths is Fn+2, 

where n is the number of cells involved. 
Consider Fibonacci nim, a counter

removal game invented a few years ago 
by Robert E. Gaskell. The game begins 
with a pile of n counters. Players take 
turns removing counters. The first player 
may not take the entire pile, but there
after either player may remove all the 
remaining counters if these rules permit: 
at least one counter must be taken on 
each play, but a player may never take 
more than twice the number of counters 
his opponent took on his last play. Thus 
if one player takes three counters, the 
next player may not take more than six. 
The person who takes the last counter 
wins. 

It turns out that if n is a Fibonacci 
number, the second player can always 
win; otherwise the first player can win. 
If a game begins with 20 counters (not 
an F-number), how many must the first 
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There are Fll + 2 paths by which the bee can crawl to cell n 

player take to be sure of winning? The 
answer will be given next month along 
with a simple strategy employing F
numbers. 

A second problem, also to be an
swered next month, concerns a little
known lightning calculation trick. Turn 
your back and ask someone to write 

1 c 

3 c 

5 c 

down any two positive integers (one be
low the other), add those two numbers 
to get a third, put the third number be
low the second, add the last two num
bers to get a fourth, and continue in this 
way until he has a column of 10 num
bers. In other words, he writes 10 
numbers of a generalized Fibonacci se-

2 c 

4 c 

Venn-diagram solution to last month's martini problem 
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quence, each the sum of the preceding 
two numbers except for the first two, 
which are picked at random. You turn 
around, draw a line below the last num
ber and immediately write the sum of 
all 10 numbers. 

The secret is to multiply the seventh 
number by 11. This can easily be done 
in your head. Suppose the seventh num
ber is 928. Put down the last digit, 8, 
as the last digit of the sum. Add 8 and 
2 to get 10. Put 0 to the left of 8 in the 
sum, carrying the 1. The sum of the next 
pair of digits, 9 and 2, is 11. Add the car
ried 1 to get 12. Put 2 to the left of 0 in 
the sum, again carrying 1. Add the car
ried 1 to 9 and put down 10 to the left of 
2 in the sum. The completed sum is 
10,208. In brief, you sum the digits in 
pairs, moving to the left, carrying 1 
when necessary, and ending with the last 
digit on the left. 

Can you prove, before the simple an
swer is given next month, that the sum 
of the first 10 numbers in a generalized 
Fibonacci sequence is always 11 times 
the seventh number? 

Three Venn circles are shaded as in 
the illustration at the left to solve 

last month's problem about the tlu'ee 
men who lunch together. Each of the 
first four diagrams is shaded to repre
sent one of the four premises of the prob
lem. Superimposing the four to form 
the last diagram shows that if the four 
premises are true, the only possible com
bination of truth values is a, b, �c, or 
true a, true b and false c. Since we are 
identifying truth with ordering a mar
tini, this means that Abner and Bill al
ways order martinis, whereas Charley 
never does. 

The method of generating 2n integers 
to form Boolean algebras, as explained 
last month, was given by Francis D. 
Parker in The Ame1'ican Mathel1wtical 
Monthly for March, 1960, page 268. 
Consider a set of any number of distinct 
primes, say 2, 3, 5. Write down the mul
tiples of all the subsets of these three 
primes, which include 0 (the null set) 
and the original set of three primes. 
Change 0 to 1. This produces the set 1, 
2, 3, 5, 6, 10, 15, 30, the first of the ex
amples given last month. In a similar 
way the four primes 2, 3, 5, 7 will gener
ate the second example, the 24 = 16 fac
tors of 210. A proof that alI such sets 
provide Boolean algebras, when the al
gebra is interpreted as explained last 
month, can be found in Boolean Algebra, 
by R. L. Goodstein (Pergamon Press, 
1963), page 126, as the answer to prob
lem No. 10. 
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