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MATHEMATICAL GAMES

The multiple charms

of Pascal’s triangle

by Martin Gardner

arry Lorayne, a professional ma-
H gician and memory expert who
lives in New York, has recently

been puzzling his friends with an un-
usual mathematical card trick of his own

invention. A spectator is given a deck
from which the face cards and tens have

been removed. He is asked to place any
five cards face up in a row. Lorayne im-
mediately finds a card in the deck that
he puts face down at a spot above the
row, as shown in the illustration below.
The spectator now builds a pyramid of
cards as follows:

Each pair of cards in the row is added
by the process of “casting out nines.” If
the sum is above 9, 9 is subtracted. This
can be done rapidly by adding the two
digits in the sum. For example, the first
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The apex card trick

two cards in the bottom row of the illus-
tration add to 16. Instead of subtracting
9 from 16, the same result is obtained by
adding 1 and 6. The sum is 7; therefore
the spectator puts a seven above the first
pair of cards. The second and third cards
add to 8, so an eight goes above them.
This is continued until a new row of four
cards is obtained, and the procedure is
repeated until the pyramid reaches the
face-down apex card. When this card is
turned over, it proves to be the correct
value for the final sum.

The trick can be done with any num-
ber of cards in the initial row, although
if there are too many there may not be
enough cards to supply all the needed
values for the pyramid. The computa-
tions can, of course, always be done on
paper. A good version of the trick is to
ask someone to jot down a row of 10
random digits. You can calculate the pyr-
amid’s apex digit quickly in your head if
you know the secret, and it will always
turn out to be correct. How is the apex
digit determined? One’s first thought is
that perhaps it is the “digital root” of the
first row—the sum of the digits reduced
to a single digit by casting out nines—but
this is not the case.

The truth is that Lorayne’s trick oper-
ates with simple formulas derived from
one of the most famous number patterns
in the history of mathematics. The pat-
tern is known as Pascal’s triangle because
Blaise Pascal, the 17th-century French
mathematician and philosopher, was the
first to write a treatise about it: Traité du
triangle arithmétique (Treatise on the
Arithmetic Triangle). The pattern was
well known, however, long before 1653,
when Pascal first wrote his treatise. It
had appeared on the title page of an
early 16th-century arithmetic by Petrus
Apianus, an astronomer at the university
in Ingolstadt. An illustration in a 1303
book by a Chinese mathematician also
depicts the triangular pattern, and recent
scholarship has traced it back still earlier.
Omar Khayyam, who was a mathemati-
cian as well as a poet and philosopher,
knew of it about 1100, having in turn
probably got it from still earlier Chinese
or Indian sources.

The pattern is so simple that a 10-
year-old can write it down, yet it con-
tains such inexhaustible riches, and links
with so many seemingly unrelated as-
pects of mathematics, that it is surely one
of the most elegant of all number arrays.
The triangle begins with 1 at the apex
[see illustration on opposite page]. All
other numbers are the sums of the two
numbers directly above them. (Think of
each 1, along the two borders, as the
sum of the 1 above it on one side and 0,
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or no number, on the other.) The array is
infinite and bilaterally symmetric. In the
illustration the rows and diagonals are
numbered in the customary way, begin-
ning with 0 instead of 1, to simplify ex-
plaining some of the triangle’s basic
properties.

Diagonal rows, parallel to the trian-
gle’s sides, give the triangular numbers
and their analogues in spaces of all di-
mensions. A triangular number is the
cardinal number of a set of points that
will form a triangular array:

This sequence of triangular numbers
(1, 3, 6, 10, 15...) is found in the trian-
gle’s second diagonal. (Note that every
adjacent pair of numbers adds to a
square number.) The first diagonal, con-
sisting of natural numbers, gives the
analogues of triangular numbers in one-
dimensional space. The zero diagonal
gives the analogue in zero-space, where
the point itself is obviously the only pos-
sible pattern. The third diagonal contains

Pascal’s triangle

tetrahedral numbers: cardinal numbers
of sets of points that form tetrahedral ar-
rays in three-space. The fourth diagonal
gives the number of points that form hy-
pertetrahedral arrays in four-space, and
so on for the infinity of other diagonals.
The nth diagonal gives the n-space an-
alogues of triangular numbers. We can
see at a glance such curious facts as that
10 cannonballs will pack into a tetrahe-
dral pyramid and also a flat triangle, and
that the 56 hypercannonballs in a five-
space tetrahedron can be rearranged on
a hyperplane to form a tetrahedron (but
if we try to pack them on a plane in tri-
angular formation, there will be one left
over).

To find the sum of all the numbers in
any diagonal, down to any place in the
series, simply look at the number direct-
ly below and left of the last number in
the series to be summed. For example,
what is the sum of the natural numbers
from 1 through 9? Move down the first
diagonal to 9, then down and left to 45,
the answer. What is the sum of the first
eight triangular numbers? Find the
eighth number in the second diagonal,
move down and left to 120, the answer.

495

FIBONACCI NUMBERS
2 (SUMS OF NUMBERS ON

3 THE LINES)
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If we put together all the balls needed
to make the first eight triangles, they will
make exactly one tetrahedral pyramid of
120 balls.

The sums of the more gently sloping
diagonals, indicated by colored lines,
form the familiar sequence of Fibonacci
numbers, 1, 1, 2, 3, 5, 8, 13..., in which
each number is the sum of the two num-
bers preceding it. (Can you see why?)
The Fibonacci sequence often turns up
in combinatorial problems. To cite one
instance, consider a row of n chairs. In
how many different ways can you seat
men and women in the chairs provided
that no two women are allowed to sit
next to each other? When n is 1, 2, 3,
4..., the answers are 2, 3, 5, 8... and so
on in the Fibonacci order. Pascal appar-
ently did not know that the Fibonacci
series was embedded in the triangle; it
seems not to have been noticed until late
in the 19th century.

And not until late this year was it
noticed that by removing diagonals from
the left side of the triangle one obtains
partial sums for the Fibonacci series. The
discovery was made by Verner E. Hog-
gatt, Jr., a mathematician at San Jose
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State College who edits The Fibonacci
Quarterly, a fascinating journal that has
published many articles about Pascal’s
triangle. If the zero diagonal on the left
side is sliced off, the Fibonacci diagonals
have sums that are the partial sums of
the Fibonacci series (1 =1; 1 + 1 =2;
1+414+2=4;,14+14+2+4+3=7 and
so on). If diagonals 0 and 1 are eliminat-
ed from the left side, the Fibonacci diag-
onals give the partial sums of the partial
sums (1=1;14+2=3;14+2+4=7
and so forth). In general, if k diagonals
are trimmed, the Fibonacci diagonals
give the k-fold partial sums of the Fibo-
nacci series.

Each horizontal row of Pascal’s tri-
angle gives the coefficients in the ex-
pansion of the binomial (x + y)". For ex-
ample, (x + y)* = x% 4 3x%y + 3xy? +
y3. The coefficients of this expansion are
1, 3, 3, 1 (a coefficient of 1 is customarily
omitted from a term), which is the third
row of the triangle. To find the coeffi-
cients of (x + y)", in proper order, mere-
ly look at the triangle’s nth row. This
basic property of the triangle ties it in
with elementary combinatorial and prob-
ability theory in ways that make the tri-
angle a useful calculating device. Sup-
pose an Arab chief offers to give you any
three of his seven wives. How many dif-
ferent selections can you make? You
have only to find the intersection of diag-
onal 3 and row 7 to get the answer: 35.
If (in your eager confusion) you commit

the blunder of looking for the intersec-
tion of diagonal 7 and row 3, you will
find that they do not intersect, so that
the method can never go wrong. In gen-
eral the number of ways to select a set
of n elements from a set of r distinct ele-
ments is given by the intersection of
diagonal n and row r.

The connection between this and
probability is easily seen by considering
the eight equally possible outcomes of
getting heads or tails when flipping three
pennies: HHH, HHT, HTH, HTT,
THH, THT, TTH, TTT. There is one
way to get three heads, three ways to get
two heads, three ways to get one head
and one way to get no heads. These
numbers (1, 3, 3, 1) are, of course, the
triangle’s third row. Suppose you want
to know the probability of exactly five
heads showing if you toss 10 pennies in
the air. First determine how many dif-
ferent ways five pennies can be selected
from 10. The intersection of diagonal 5
and row 10 provides the answer: 252.
Now you must add the numbers in the
10th row to obtain the number of equal-
ly possible cases. You can short-cut this
addition by remembering that the sum
of the nth row of Pascal’s triangle is al-
ways 2. (The sum of each row is obvi-
ously twice the sum of the preceding
row, since every number is carried down
twice to enter into the numbers of the
row below; therefore the sums of the
rows form the doubling series 1, 2, 4,

Pascal’s triangle with numbers represented by dots, the odd numbers by black dots

130

8....) The 10th power of 2 is 1,024. The
probability of getting five heads is 252/
1,024, or 63/256. (There is a mechanical
device for demonstrating probability,
often exhibited at science fairs and mu-
seums, in which hundreds of small balls
roll down an incline through a hexagonal
array of obstacles to enter slots and form
an approximation of the bell-shaped nor-
mal-distribution curve. For a picture of
such a device, and a discussion of how
Pascal’s triangle underlies it, see “Prob-
ability,” by Mark Kac; ScrentirFic
AMERICAN, September, 1964.)

If we represent each number of the
triangle by a small dot and then blacken
every dot whose number is not exact-
ly divisible by a certain positive in-
teger, the result is always a striking pat-
tern of triangles. Patterns obtained in
this way conceal many surprises. Con-
sider the binary pattern that results when
the divisor is 2 [see illustration on this
page]. Running down the center there
are colored triangles of increasing size,
each made up entirely of even-numbered
dots. At the top is a “triangle” of one
dot, then the series continues with tri-
angles of 6, 28, 120, 496... dots. Three
of those numbers—6, 28 and 496—are
known as perfect numbers because each
is the sum of all its divisors, excluding
itself (for example, 6 =1 4 2 + 3). It is
not known if there is an infinity of perfect
numbers, or if there is one that is odd.
Euclid managed to prove, however, that
every number of the form 27-1(2" — 1),
where (2" — 1) is a prime (primes of this
form are called Mersenne primes), is
an even perfect number. Leonhard Euler
much later showed that all even perfect
numbers conform to Euclid’s formula.
The formula is equivalent to

PP+ 1)
=,

where P is a Mersenne prime. The above
expression happens also to be the for-
mula for a triangular number. In other
words, if the “side” of a triangular num-
ber is a Mersenne prime, the triangular
number is also perfect. Going back to
the even-odd coloring of Pascal’s trian-
gle, it can be shown that the formula for
the number of dots in the nth central
triangle, moving down from the apex, is
2n=1(2n — 1), the formula for perfect
numbers. All even perfect numbers ap-
pear in the pattern, therefore, as the
number of dots in the nth central trian-
gle whenever 2" — 1 is prime. Because
2% — 1 =15, which is not a prime, the
fourth colored triangle is not perfect.
The fifth triangle of 496 dots is perfect
because 25 — 1 = 31, a prime. (The sixth
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colored triangle is not perfect, but the
seventh, with 8,128 dots, is.)

One final curiosity. If rows 0 through
4 are read as single numbers (1, 11, 121,
1,331 and 14,641), they are the first five
powers of 11, starting with 110 = 1. The
fifth row should be 115 = 161,051, but
it is not. Observe, however, that this is
the first row with two-digit numbers. If
we interpret each number as indicating
a multiple of the place value of that spot
in decimal notation, the fifth row can
be interpreted (reading right to left)
as (1 X 1)+ (5% 10) + (10 X 100) +
(10 x 1,000) + (5 x 10,000) + (1 X
100,000), which gives the correct val-
ue of 11°. Interpreted this way, each
nth row is 117,

Almost anyone can study the triangle
and discover more properties, but it is
unlikely they will be new, for what is
said here only scratches the surface of a
vast literature. Pascal himself, in his
treatise on the triangle, said that he was
leaving out more than he was putting in.
“It is a strange thing,” he exclaimed,
“how fertile it is in properties!” There
are also endless variants on the triangle,
and many ways to generalize it, such as
building it in tetrahedral form to give the
coeflicients of trinomial expansions.

If the reader can solve the following
five elementary problems, all to be an-
swered in this department next month,
he will find his understanding of the tri-
angle’s structure pleasantly enriched:

1. What formula gives the sum of all
numbers above row n?

2. How many odd numbers are there |

in row 2567

3. How many numbers in row 67 (in
honor of the coming year) are evenly
divisible by 677

4. If a checker is placed on one of the
four black squares in the first row of an
otherwise empty checkerboard, it can
move (by standard checker moves) to
any of the four black squares on the last
(eighth) row by a variety of different
paths. One pair of starting and ending
squares is joined by a maximum number
of different routes. Identify the two
squares and give the number of different
ways the checker can move from one to
the other.

5. Given an initial row of n cards, in
the pyramid trick described at the begin-
ning, how can one obtain from Pascal’s
triangle simple formulas for calculating
the value of the apex card?

he answers to last month’s problems

follow:

A tesseract of side x has a hypervol-
ume of x*. The volume of its hypersur-
face is 8x3. If the two magnitudes are

'QUESTAR TAKES TELESCOPIC MOVIES

We’ve been saying for years that a heavy movie camera attached to the miniature Questar would be like the tail
wagging the dog, and to couple and support such a combination, most difficult. But now we are eating our words—tail
and dog are in beautiful balance with our new Camera Cradle shown here with Questar and Beaulieu 16 mm. A
Questar C-Mount Adapter makes the connection. Cradle is adjustable for all cameras and adapts also to the New
Field Model Questar. Here it is shown mounted on our Linhof Heavy Duty Professional Tripod and Pan Head.

“‘Capturing Questar’s superb resolution on
| movie filmis very exciting work!”’ This comment
is from the Davises in Sarasota, Florida, who
have been doing some experimental work with
their Questar and the Beaulieu 16 mm. ‘““Using
Questar with a suitable movie camera can be
completely successful,”” they said, ‘‘if one remem-
bers that with Questar’s enormous magnification
the problems of vibration and ‘seeing’ conditions
must be dealt with, just as in high-resolution still
photography.”

They approve our Camera Cradle solution to
the heavy camera problem and suggest that tele-
scope and camera be coupled as closely as possible,
also that pictures be taken in bright sunlight, with
Plus-X and Ektachrome E.M.S. the most satis-
factory films, at 16 and 24 frames per second for
general work. Further, they point cut that a pre-
cision-made tripod designed for cine photography
is mandatory for such high powers.

The Questar C-Mount Adapter is designed to
provide minimum separation between ’scope and
camera. This promotes rigidity, makes possible a
lower F-stop, permits shorter exposures and finer
grain emulsions, and enhances image brightness,
thereby making sharp focusing casier. The
adapter will fit all 16 mm. cameras.

The Davises found Questar’s finder system
extremely useful in locating and identifying the
objects to be photographed. With a little practice
they were able to find their subject and refocus
quickly in the camera.

We are proud now to add the Beaulieu 16 mm,
movie camera to our growing list of superbly
crafted and suitable accessories that not only
enhance the enjoyment of the Questar telescope
but more fully utilize its superb optical system.

Yellow-shafted flicker '\&‘ o %
on its nest in dead
palm, photographed
with Questar-Beaulieu
combination at 150’ on
Plus-X 16 mm. nega-
tive film (to permit en-
largement). Cover shot
made with25 mm. lens.

WORLD’S FINEST, MOST VERSATILE SMALL TELESCOPE. FROM $795.
SEND ONE DOLLAR FOR 40-PAGE BOOKLET TO ANYWHERE IN NORTH
AMERICA. BY AIR TO REST OF WESTERN HEMISPHERE, $2.40, EUROPE

AND NORTH AFRICA, $2.50, AUSTRALIA AND ALL OTHER PLACES, $3.50. BOX 20, NEW HOPE, PENN. 18938

r:Iv 1 AL Y
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Puacking a square in a cube

equal, the equation gives x a value of 8.
In general an n-space “cube” with an
n-volume equal to the (n — 1)-volume of
its “surface” is an n-cube of side 2n.

The largest square that can be fitted
inside a unit cube is the square shown
in the illustration above. Each corner of
the square is a distance of 1/4 from a
corner of the cube. The square has an
area of exactly 9/8 and a side that is
three-fourths of the square root of 2.
Readers familiar with the old problem of
pushing the largest possibie cube
through a square hole in a smaller cube
will recognize this square as the cross
section of the limiting size of the square
hole. In other words, a cube of side not
quite three-fourths of the square root of
2 can be pushed through a square hole
in a unit cube.

The illustration at the right shows the
11 different hexominoes that fold into a
cube. They form a frustrating set of the
35 distinct hexominoes, because they
will not fit together to make any of the
rectangles that contain 66 unit squares,
but perhaps there are some interesting
patterns they will form.

So many letters are still being received

on the September problem of pack-
ing squares of sides 1, 2, 3...24 into a
square of side 70 that I shall postpone
publishing the best solution until next
month.

A large number of readers sent com-
+* ments on the science puzzles of Au-
gust. Several believed the impact of fall-
ing sand in the hourglass paradox might
play a role in keeping a buoyant hour-
glass at the bottom, but this is not true.
The force of impact of a falling grain is
balanced by its loss of weight in free
fall, with a zero net effect.

Maya and Nicolas Slater wrote from
London to say that, in the boat-carriage
problem, if one abandons Lewis Carroll’s

132

proviso that elliptical wheels opposite
each other must have their major axes at
right angles, there is a way to make
the carriage pitch and roll without any
wheel’s leaving the ground. The wheels
must be geared so that diagonally oppo-
site wheels keep their major axes at right
angles. Regardless of the angle between
the two front wheels, all four wheels re-
main on the ground at all times. If the
front wheels are at a 90-degree angle,
the carriage rolls without pitching; if the
angle is zero, it pitches without rolling.
All intermediate angles combine rolling
and pitching. “Our preference is for 45
degrees,” the Slaters wrote. “Our only
problem is keeping our coachman.”

Many alternate solutions for the rope-
stealing problem were received; some
made use of knots that could be shaken
loose from the ground, others involved
cutting a rope partway through so that
it would just support the thief’s weight
and later could be snapped by a sudden
pull. Several readers doubted that the
thief would get any rope because the
bells would start ringing.

A number of readers corrected the
statement that a peeled hard-boiled egg
is drawn into a milk bottle by a vacuum
created by the loss of oxygen when
matches are burned inside. Oxygen is
indeed used up, but the loss is compen-
sated by the production of carbon di-
oxide and water vapor. The vacuum is
created solely by the quick cooling and
contracting of the air after the flames go
out.

The coiled-hose paradox is more com-
plicated than was indicated. If the fun-
nel end of the empty hose is high
enough, water poured into it will be
forced over more than one winding to
form a series of “heads” in each coil.
The maximum height of each head is
about equal to the coil’s diameter. The
diameter, times the number of coils,
gives the approximate height the wa-
ter column at the funnel end must be
to force water out at the other end.
(This was pointed out by John C. Bryn-
er, Jan Lundberg and J. M. Osborne.)
W. N. Goodwin, Jr., noted that for
hoses with an outside diameter of 5/8
inch or less the funnel end can be as
low as twice the height of the coils and
water will flow all the way through a
series of many coils. The reason for this
is not yet clear.

Several readers thought of a second
way, albeit a temporary one, to make a
cork float at the center of the surface
of a glass of water. Create a vortex with
a spoon, then drop in the cork.

John Friedlein, who teaches mathe-

matics at a high school in St. Charles,
I1I., observed that not only does Christ-
mas equal Halloween, as pointed out
last month (Dec. 25 = Oct. 31 when
the abbreviations are taken for the deci-
mal and octal systems), but also Thanks-
giving if it falls, as it sometimes does,
on Novem. 27.

N N
L

The 11 hexominoes that fold into cubes
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A handful of people like Mary Carnwath
are trying to keep our promise to the Indians.

But they won’t make it without you. .

The Hopi Indians' village of
Shipaulovi in Arizona sits on land
so poor, infertile and inhospitable
that so far nobody has tried to take
it away from them.

Electricity has not yet reached
the Hopis. Water must be hauled
from three miles away. Jobs are few
and far away. Only poverty and des-
pair are close-by and in abundance.

Yet for the first time in genera-
tions, Mary Carnwath and people
like her are stirring hope among the
Hopis.

Mary Carnwath works and
lives two thousand miles away, in
Manhattan. Her own daughter is
now grown-up, and through Save
the Children Federation she is spon-
soring one of the village girls, 8-year-
old Grace Mahtewa.

The Mahtewas (two parents,
three children, one grandmother
and a sister-in-law) live tightly
packed in a tiny rock and mud
house. The father who knows ranch
work but can’t find any most of the
year, isn't able to provide the family
with even the bare necessities.

Grace, bright,
ambitious and in-
dustrious, would
possibly have had
to quit school as
soon as she was
old enough to do
a day’s work. But,

: because of Mary
Carnwath, that won’t be necessary.

The $12.50 a month contrib-
uted by Mary Carnwath is provid-
ing a remarkable number of things
for Grace and her family,

Grace will have a chance to con-
tinue schooling. The family has
been able to make its home a little
more livable. And with the money
left over, together with funds from
other sponsors, the village has been
able to renovate a dilapidated build-
ing for use as a village center. The
center now has two manual sewing
machines that are the beginnings of
a small income-producing business.
It's only a small beginning. More
money and more people like Mary
Carnwath are needed. With your
help, perhaps this village program

will produce enough money to end
the Hopi’s need for help. That is
what Save the Children is all about.

Although contributions are de-
ductible, it's not a charity. The aim
is not merely to buy one child a few
hot meals, a warm coat and a new
pair of shoes. Instead, your contribu-
tion is used to give the child, the fam-
ily and the village a little boost that
may be all they need to start helping
themselves.

Sponsors are desperately needed
for other American Indian children
—who suffer the highest dis-
ease rate and who look for-
ward to the shortest life span
of any American group.

As a sponsor you will re-
ceive a photo of the child, regu-
lar reports on his progress and,
if you wish, a chance to corre-
spond with him and his family.

Mary Carnwath knows

world. If there are enough Mary
Carnwaths. How about you?

Save the Children Federation is
registered with the U.S. State Depart-
ment Advisory Committee on Vol-
untary Foreign Aid, and a member
of the International Union of Child
Welfare. Financial statements and
annual reports are available on
request.

National Sponsors (partial list)

Faith Baldwin,Mrs. James Bryant Conant,
Joan Crawford, Hon. James A. Farley,
Jerry Lewis, Henry R. Luce,

Frank Sinatra, Mrs. Earl Warren

- Save The Children Federation
NORWALK, CONNECTICUT 06852
| WISH TO SPONSOR AN AMERICAN INDIAN CHILD.
ENCLOSED IS MY FIRST PAYMENT OF:

{ [0$12.50 MONTHLY
0 $75 SEMI-ANNUALLY

| CAN'T SPONSOR A CHILD, BUT I'D LIKE TO HELP.

0 $37.50 QUARTERLY
J$150 ANNUALLY

ENCLOSED IS A CONTRIBUTION OF $
{J SEND ME MORE INFORMATION.

NAME

that she can’t save the world ADDRESS

for $12.50 a month. Only a
small corner of it. But, maybe
that is the way to save the
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NewAlcoaresearch
paper evaluates
methods of testing
weldments for
susceptibility

to stress-corrosion
cracking.

Practically all commercial aluminum
alloy weldments are resistant to
stress-corrosion cracking. However,
the search for ever-stronger alumi-
num alloys, such as for armor plate,
leads investigators into complex
alloy systems for which the resist-
ance to stress-corrosion cracking is
a necessary consideration.

What causes stress-corrosion
cracking?

Change for the better with
Alcoa® Aluminum

Stress-corrosion cracking is
crackingthat is initiated by localized
corrosion synergized by sustained
tensile stress at the surface.

According to the theories devel-
oped by Alcoa in 1940 and 1944,
stress-corrosion cracking of alumi-
num alloys begins at the grain
boundaries of the metal. Hence,
stress-corrosion cracking of alumi-
num alloys is characteristically
intergranular. Stress-corrosion
cracking can occur when three
conditions are present:

Susceptible composition and
metallurgical structure « High
tensile stress at the surface *
Specific environment

Alcoa’s basic research in stress
corrosion and tests of new alloys and
applications have employed various
methods of testing weldments. Our
evaluation of these methods, as well
as test results, is presented in a new
17-page paper. The investigated
techniques for applying tension

include the use of both constant-
load and constant-deformation
methods. Four types of specimen
are evaluated: simple beam, U-bend,
tensile specimen and residual-stress
specimen. Besides evaluating test
methods, the paper also includes
the results of testing seven struc-
tural alloys, including three from

the 7000 series, as well as five weld-
filler alloys. This paper documents
another addition to the thousands

of man-years that Alcoa has spent
on aluminum research.

When you want authoritative
answers about aluminum, come to
Alcoa. Would you like to learn more
about testing weldments for stress
corrosion? Write Aluminum
Company of America, 904-M Alcoa
Building, Pittsburgh, Pa. 15219. Ask
for the paper Evaluation of Various
Techniques for Stress-Corrosion
Testing Welded Aluminum Alloys by
M. B. Shumaker, R. A. Kelsey,

D. O. Sprowls and J. G. Williamson.
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