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State College who edits The Fibonacci 
Quarterly, a fascinating journal that has 
published many articles about Pascal's 
triangle. If the zero diagonal on the left 
side is sliced off, the Fibonacci diagonals 
have sums that are the partial sums of 
the Fibonacci series (1 = 1; 1 + 1 = 2; 
1 + 1 + 2 = 4; 1 + 1 + 2 + 3 = 7 and 
so on). If diagonals 0 and 1 are eliminat­
ed from the left side, the Fibonacci diag­
onals give the partial sums of the partial 
sums (1 = 1; 1 + 2 = 3; 1 + 2 + 4 = 7 
and so forth). In general, if k diagonals 
are trimmed, the Fibonacci diagonals 
give the k-fold partial sums of the Fibo­
nacci series. 

Each horizontal row of Pascal's tri­
angle gives the coefficients in the ex­
pansion of the binomial (x + y)n. For ex­
ample, (x + y)3 = x3 + 3x2y + 3xy2 + 
y3. The coefficients of this expansion are 
1, 3, 3, 1 (a coefficient of 1 is customarily 
omitted from a term), which is the third 
row of the triangle. To find the coeffi­
cients of (x + y)n, in proper order, mere­
ly look at the triangle's nth row. This 
basic property of the triangle ties it in 
with elementary combinatorial and prob­
ability theory in ways that make the tri­
angle a useful calculating device. Sup­
pose an Arab chief offers to give you any 
three of his seven wives. How many dif­
ferent selections can you make? You 
have only to find the intersection of diag­
onal 3 and row 7 to get the answer: 35. 
If (in your eager confusion) you commit 

the blunder of looking for the intersec­
tion of diagonal 7 and row 3, you will 
find that they do not intersect, so that 
the method can never go wrong. In gen­
eral the number of ways to select a set 
of n elements from a set of r distinct ele­
ments is given by the intersection of 
diagonal n and row r. 

The connection between this and 
probability is easily seen by considering 
the eight equally possible outcomes of 
getting heads or tails when flipping three 
pennies: HHH, HHT, HTH, HTT, 
THH, THT, TTH, TTT. There is one 
way to get three heads, three ways to get 
two heads, three ways to get one head 
and one way to get no heads. These 
numbers (1, 3, 3, 1) are, of course, the 
triangle's third row. Suppose you want 
to know the probability of -exactly five 
heads showing if you toss 10 pennies in 
the air. First determine how many dif­
ferent ways five pennies can be selected 
from 10. The intersection of diagonal 5 
and row 10 provides the answer: 252. 
Now you must add the numbers in the 
10th row to obtain the number of equal­
ly possible cases. You can short-cut this 
addition by remembering that the sum 
of the nth row of Pascal's triangle is al­
ways 2n. (The sum of each row is obvi­
ously twice the sum of the preceding 
row, since every number is carried down 
twice to enter into the numbers of the 
row below; therefore the sums of the 
rows form the doubling series 1, 2, 4, 

Pascal's triangle with numbers represented by dots, the odd numbers by black dots 
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8 .... ) The 10th power of 2 is 1,024. The 
probability of getting five heads is 252/ 
1,024, or 63/256. (There is a mechanical 
device for demonstrating probability, 
often exhibited at science fairs and mu­
seums, in which hundreds of small balls 
roll down an incline through a hexagonal 
array of obstacles to enter slots and form 
an approximation of the bell-shaped nor­
mal-distribution curve. For a picture of 
such a device, and a discussion of how 
Pascal's triangle underlies it, see "Prob­
ability," by Mark Kac; SCIENTIFIC 
AMERICAN, September, 1964.) 

If we represent each number of the 
triangle by a small dot and then blacken 
every dot whose number is not exact­
ly divisible by a certain positive in­
teger, the result is always a striking pat­
tern of triangles. Patterns obtained in 
this way conceal many surprises. Con­
sider the binary pattern that results when 
the divisor is 2 [see illustration on this 
page]. Running down the center there 
are colored triangles of increasing size, 
each made up entirely of even-numbered 
dots. At the top is a "triangle" of one 
dot, then the series continues with tri­
angles of 6, 28, 120, 496 ... dots. Three 
of those numbers-6, 28 and 496-are 
known as perfect numbers because each 
is the sum of all its divisors, excluding 
itself (for example, 6 = 1 + 2 + 3). It is 
not known if there is an infinity of perfect 
numbers, or if there is one that is odd. 
Euclid managed to prove, however, that 
every number of the form 2n-1(2n - 1), 
where (2n - 1) is a prime (primes of this 
form are called Mersenne primes), is 
an even perfect number. Leonhard Euler 
much later showed that all even perfect 
numbers conform to Euclid's formula. 
The formula is equivalent to 

P(P + 1) 
2 

where P is a Mersenne prime. The above 
expression happens also to be the for­
mula for a triangular number. In other 
words, if the "side" of a triangular num­
ber is a Mersenne prime, the triangular 
number is also perfect. Going back to 
the even-odd coloring of Pascal's trian­
gle, it can be shown that the formula for 
the number of dots in the nth central 
triangle, moving down from the apex, is 
2n-1(2n - 1), the formula for perfect 
numbers. All even perfect numbers ap­
pear in the pattern, therefore, as the 
number of dots in the nth central trian­
gle whenever. 2n - 1 is prime. Because 
24 - 1 = 15, which is not a prime, the 
fourth colored triangle is not perfect. 
The fifth triangle of 496 dots is perfect 
because 25 - 1 = 31, a prime. (The sixth 
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colored triangle is not perfect, but the 
seventh, with 8,128 dots, is.) 

One final curiosity. If rows 0 through 
4 are read as single numbers (1, 11, 121, 
1,331 and 14,641), they are the first five 
powers of 11, starting with 110 = 1. The 
fifth row should be 115 = 161,051, but 
it is not. Observe, however, that this is 
the first row with two-digit numbers. If 
we interpret each number as indicating 
a multiple of the place value of that spot 
in decimal notation, the fifth row can 
be interpreted (reading right to left) 
as (1 X 1) + (5 X 10) + (10 X 100) + 
(10 X 1,000) + (5 X 10,000) + (1 X 
100,000), which gives the correct val­
ue of 115. Interpreted this way, each 
nth row is lIn. 

Almost anyone can study the triangle 
and discover more properties, but it is 
unlikely they will be new, for what is 
said here only scratches the surface of a 
vast literature. Pascal himself, in his 
treatise on the triangle, said that he was 
leaving out more than he was putting in. 
"It is a strange thing," he exclaimed, 
"how fertile it is in properties!" There 
are also endless variants on the triangle, 
and many ways to generalize it, such as 
building it in tetrahedral form to give the 
coefficients of trinomial expansions. 

If the reader can solve the following 
five elementary problems, all to be an­
swered in this department next month, 
he will find his understanding of the tri­
angle's structure pleasantly enriched: 

1. What formula gives the sum of all 
numbers above row n? 

2. How many odd numbers are there 
in row 256? 

3. How many numbers in row 67 (in 
honor of the coming year) are evenly 
divisible by 67? 

4. If a checker is placed on one of the 
four black squares in the first row of an 
otherwise empty checkerboard, it can 
move (by standard checker moves) to 
any of the four black squares on the last 
(eighth) row by a variety of different 
paths. One pair of starting and ending 
squares is joined by a maximum number 
of different routes. Identify the two 
squares and give the number of different 
ways the checker can move from one to 
the other. 

5. Given an initial row of n cards, in 
the pyramid trick described at the begin­
ning, how can one obtain from Pascal's 
triangle simple formulas for calculating 
the value of the apex card? 

The answers to last month's problems 
follow: 

A tesseract of side x has a hypervol­
ume of X4. The volume of its hypersur­
face is 8x3• If the two magnitudes are 

QUESTAR TA K E S TELESCOPIC MOVIES 

We've been saying for years that a heavy movie camera attached to the miniatllre Questar would be like rhe tail 

wagging the dog, and to couple and support slIch a combination, most difficult. But 1I0W we are eating our words-tail 

alld dog are ill beautiful balance with our lIew Camera Cradle shown here wilh Questar and Beaulieu 16 mm. A 

Questar C-Mount Adapter makes the COllnection. Cradle is adjustable for all cameras and adapts also to the New 

Field Model Questar. Here it is shown mOllllled all Ollr Lillhof Heavy Dilly Professional Tripod alld Pall Head. 

"Capturing Questar's superb resolution on 
movie film is very exciting work!" This comment 
is from the Davises in Sarasota, Florida, who 
have been doing some experimental work with 
their Questar and the Beaulieu 16 mm. "Using 
Questar with a suitable movie camera can be 
completely successful," they said, "if one remem­
bers that with Questar's enormous magnification 
the problems of vibration and 'seeing' conditions 
must be dealt with, just as in high-resolution still 
photography." 

They approve our Camera Cradle solution to 
the heavy camera problem and suggest that tele­
scope and camera be coupled as closely as possible, 
also that pictures be taken in bright sunlight, with 
Plus-X and Ektachrome E.M.S. the most satis­
factory films. at 16 and 24 frames per second for 
general work. Further, they point out that a pre­
cision-made tripod designed for cine photography 
is mandatory for such high powers. 

The Questar C-Mount Adapter is designed to 
provide minimum separation between 'scope and 
camera. This promotes rigidity, makes possible a 
lower F-stop, permits shorter exposures and finer 
grain emulsions, and enhances image brightness, 
thereby making sharp focusing easier. The 
adapter will fit all 16 mm. cameras. 

The Davises found Questar's finder system 
extremely useful in locating and identifying the 
objects to be photographed. With a little practice 
they were able to find their subject and refocus 
quickly in the camera. 

We are proud now to add the Beaulieu 16 mm. 
movie camera to our growing list of superbly 
crafted and suitable accessories that not only 
enhance the enjoyment of the Questar telescope 
but more fully utilize its superb optical system. 

Yellow-shafted flicker 
on its nest in dead 
palm, photographed 
with Questar-Beaulieu 
combination at J 50' 011 

Plus-X 16 mm. nega­
tivefilm (to permit ell­
largement). Cover shot 
made wilh 25 mm.lens. 

WORLD'S FINEST, MOST VERSATILE SMALL TELESCOPE. FROM $795. 
SEND ONE DOLLAR FOR 40'PAGE BOOKLET TO ANYWHERE IN NORTH 
AMERICA. BY AIR TO REST OF WESTERN HEMISPHERE. $2.40, EUROPE 
AND NORTH AFRICA, $2.50, AUSTRALIA AN D ALL OTH ER PLACES, $3.50. 

QULES1rA� 
BOX 20, NEW HOPE, PENN. 18938 
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Packing a square in a cube 

equal, the equation gives x a value of 8. 
In general an n-space "cube" with an 
n-volume equal to the (n - I)-volume of 
its "surface" is an n-cube of side 2n. 

The largest square that can be fitted 
inside a unit cube is the square shown 
in the illustration above. Each corner of 
the square is a distance of 1/4 from a 
corner of the cube. The square has an 
area of exactly 9/8 and a side that is 
three-fourths of the square root of 2. 
Readers familiar with the old problem of 
pushing the largest possib�e cube 
through a square hole in a smaller cube 
will recognize this square as the cross 
section of the limiting size of the square 
hole. In other words, a cube of side not 
quite three-fourths of the square root of 
2 can be pushed through a square hole 
in a unit cube. 

The illustration at the right shows the 
11 different hexominoes that fold into a 
cube. They form a frustrating set of the 
35 distinct hexominoes, because they 
will not fit together to make any of the 
rectangles that contain 66 unit squares, 
but perhaps there are some interesting 
patterns they will form. 

So many letters are still being received 
on the September problem of pack­

ing squares of sides 1, 2, 3 ... 24 into a 
square of side 70 that I shall postpone 
publishing the best solution until next 
month. 

A large number of readers sent com-
ments on the science puzzles of Au­

gust. Several believed the impact of fall­
ing sand in the hourglass paradox might 
play a role in keeping a buoyant hour­
glass at the bottom, but this is not true. 
The force of impact of a falling grain is 
balanced by its loss of weight in free 
fall, with a zero net effect. 

Maya and Nicolas Slater wrote from 
London to say that, in the boat-carriage 
problem, if one abandons Lewis Carroll's 
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proviso that elliptical wheels opposite 
each other must have their major axes at 
right angles, there is a way to make 
the carriage pitch and roll without any 
wheel's leaving the ground. The wheels 
must be geared so that diagonally oppo­
site wheels keep their major axes at right 
angles. Regardless of the angle between 
the two front wheels, all four wheels re­
main on the ground at all times. If the 
front wheels are at a 90-degree angle, 
the carriage rolls without pitching; if the 
angle is zero, it pitches without rolling. 
All intermediate angles combine rolling 
and pitching. "Our preference is for 45 
degrees," the Slaters wrote. "Our only 
problem is keeping our coachman." 

Many alternate solutions for the rope­
stealing problem were received; some 
made use of knots that could be shaken 
loose from the ground, others involved 
cutting a rope partway through so that 
it would just support the thief's weight 
and later could be snapped by a sudden 
pull. Several readers doubted that the 
thief would get any rope because the 
bells would start ringing. 

A number of readers corrected the 
statement that a peeled hard-boiled egg 
is drawn into a milk bottle by a vacuum 
created by the loss of oxygen when 
matches are burned inside. Oxygen is 
indeed used up, but the loss is compen­
sated by the production of carbon di­
oxide and water vapor. The vacuum is 
created solely by the quick cooling and 
contracting of the air after the Bames go 
out. 

The coiled-hose paradox is more com­
plicated than was indicated. If the fun­
nel end of the empty hose is high 
enough, water poured into it will be 
forced over more than one winding to 
form a series of "heads" in each coil. 
The maximum height of each head is 
about equal to the coil's diameter. The 
diameter, times the number of coils, 
gives the approximate height the wa­
ter column at the funnel end must be 
to force water out at the other end. 
(This was pointed out by John C. Bryn­
er, Jan Lundberg and J. M. Osborne.) 
W. N. Goodwin, Jr., noted that for 
hoses with an outside diameter of 5/8 
inch or less the funnel end can be as 
low as twice the height of the coils and 
water will Bow all the way- through a 
series of many coils. The reason for this 
is not yet clear. 

Several readers thought of a second 
way, albeit a temporary one, to make a 
cork Boat at the center of the surface 
of a glass of water. Create a vortex with 
a spoon, then drop in the cork. 

John Friedlein, who teaches mathe-

matics at a high school in St. Charles, 
Ill., observed that not only does Christ­
mas equal Halloween, as pointed out 
last month (Dec. 25 = Oct. 31 when 
the abbreviations are taken for the deci­
mal and octal systems), but also Thanks­
giving if it falls, as it sometimes does, 
on Novem. 27. 

T f 

t 

1 I 

, 
The 11 hexominoes that fold into cubes 
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Save The Children Federation 
NORWALK, CONNECTICUT 06852 
I WISH TO SPONSOR AN AMERICAN INDIAN CHILD. 
ENCLOSED IS MY FIRST PAYMENT OF: 

0$12.50 MONTHLY 0 $37.50 QUARTERLY 
0$75 SEMI·ANNUALLY 0 $150 ANNUALLY 

I CAN'T SPONSOR A CHILD, BUT I'D LIKE TO HELP. 
ENCLOSED IS A CONTRIBUTION OF $ _______ _ 

o SEND ME MORE INFORMATION. 

,--______ STATE ZIP ___ _ 

CONTRIBUTIONS ARE U.S. INCOME TAX DEDUCTIBLE 
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New Alcoa research 
paper evaluates 
methods of testing 
weldments for 
susceptibility 
to stress-corrosion 
cracking. 
Practically all commercial aluminum 
alloy weldments are resistant to 
stress-corrosion cracking. However, 
the search for ever-stronger alumi­
num alloys, such as for armor plate, 
leads investigators into complex 
alloy systems for which the resist­
ance to stress-corrosion cracking is 
a necessary consideration. 

What causes stress-corrosion 
cracking? 

Change for the better with 
Alcoa® Aluminum 
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Stress-corrosion cracking is 
cracking that is initiated by localized 
corrosion synergized by sustained

· 

tensile stress at the surface. 
According to the theories devel­

oped by Alcoa in 1940 and 1944, 
stress-corrosion cracking of alumi­
num alloys begins at the grain 
boundaries of the metal. Hence, 
stress-corrosion cracking of alumi­
num alloys is characteristically 
intergranular. Stress-corrosion 
cracking can occur when three 
conditions are present: 

Susceptible composition and 
metallurgical structure· High 
tensile stress at the surface· 
Specific environment 

Alcoa's basic research in stress 
corrosion and tests of new alloys and 
applications have employed various 
methods of testing weldments. Our 
evaluation of these methods, as well 
as test results, is presented in a new 
17-page paper. The investigated 
techniques for applying tension 

include the use of both constant­
load and constant-deformation 
methods. Four types of specimen 
are evaluated: simple beam, U-bend, 
tensile specimen and residual-stress 
specimen. Besides evaluating test 
methods, the paper also includes 
the results of testing seven struc­
tural alloys, including three from 
the 7000 series, as well as five weld­
filler alloys. This paper documents 
another addition to the thousands 
of man-years that Alcoa has spent 
on aluminum research. 

When you want authoritative 
answers about aluminum, come to 
Alcoa. Would you like to learn more 
about testing weldments for stress 
corrosion? Write Aluminum 
Company of America, 904-M Alcoa 
Building, Pittsburgh, Pa. 15219. Ask 
for the paper Evaluation of Various 
Techniques for Stress-Corrosion 
Testing Welded Aluminum Alloys by 
M. B. Shumaker, R. A. Kelsey, 
D. O. Sprowls and J. G. Williamson. 

� 

mALCClA 
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