Lectures - Week 14

Vector Form of Taylor's Series, Integration in Higher Dimensions, and Green's Theorems

Vector form of Taylor Series

We have seen how to write Taylor series for a function of two independent variables, i.e., to expand $f(x, y)$ in the neighborhood of a point, say (a, b). We can write out the terms through the second derivative explicitly, but it's difficult to write a general form. Recall that we have

$$
\begin{aligned}
f(a+\Delta x, b+\Delta y)= & f(a, b)+\Delta x f_{x}(a, b)+\Delta y f_{y}(a, b) \\
& +\frac{\Delta x^{2}}{2} f_{x x}(a, b)+\frac{\Delta y^{2}}{2} f_{y y}(a, b)+\Delta x \Delta y f_{x y}(a, b)+\cdots
\end{aligned}
$$

or equivalently as

$$
\begin{aligned}
f(x, y)= & f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b) \\
& +\frac{(x-a)^{2}}{2} f_{x x}(a, b)+\frac{(y-b)^{2}}{2} f_{y y}(a, b)+(x-a)(y-b) f_{x y}(a, b)+\cdots
\end{aligned}
$$

where $x=a+\Delta x$ so $\Delta x=x-a$ and $y=b+\Delta y$.
We now want to see if there is a simple way to write these terms for expanding $f(\vec{x})$ where $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ in terms of the operator ∇. Before we do this, lets first rewrite the above Taylor series expansion for $f(x, y)$ in vector form and then it should be straightforward to see the result if f is a function of more than two variables. We let $\vec{x}=(x, y)$ and $\vec{a}=(a, b)$ be the point we are expanding $f(\vec{x})$ about. Now the term representing the change becomes the vector $\vec{x}-\vec{a}=(x-a, y-b)^{T}$. The gradient of f, ∇f, is just $\left(f_{x}, f_{y}\right)^{T}$ so the terms involving the first derivatives are just the dot product of $(\vec{x}-\vec{a})$ and ∇f. We claim that the terms involving the second derivatives are found by taking the product

$$
\frac{1}{2}\left[(\vec{x}-\vec{a})^{T}\left(\begin{array}{ll}
f_{x x}(\vec{a}) & f_{x y}(\vec{a}) \\
f_{y x}(\vec{a}) & f_{y y}(\vec{a})
\end{array}\right)(\vec{x}-\vec{a})\right]
$$

because

$$
\left(\begin{array}{ll}
f_{x x}(\vec{a}) & f_{x y}(\vec{a}) \\
f_{y x}(\vec{a}) & f_{y y}(\vec{a})
\end{array}\right)\binom{x-a}{y-b}=\binom{(x-a) f_{x x}(a, b)+(y-b) f_{x y}(a, b)}{(x-a) f_{y x}(a, b)+(y-b) f_{y y}(a, b)}
$$

and

$$
\begin{gathered}
\frac{1}{2}(x-a \quad y-b)\binom{(x-a) f_{x x}(a, b)+(y-b) f_{x y}(a, b)}{(x-a) f_{y x}(a, b)+(y-b) f_{y y}(a, b)} \\
=\frac{1}{2}\left[(x-a)^{2} f_{x x}(a, b)+(x-a)(y-b) f_{x y}(a, b)+(y-b)(x-a) f_{y x}(a, b)+(y-b)^{2} f_{y y}(a, b)\right]
\end{gathered}
$$

which is just our terms in the Taylor series above assuming that $f_{x y}=f_{y x}$. If we note that the matrix above is just the Hessian of $f(x, y)$ then we can generalize our result for a
function of more than two independent variables. We can write the Taylor series expansion for a function $f\left(\vec{x}\right.$ where $\vec{x} \in \mathbf{R}^{n}$ in the neighborhood of the point \vec{a} as

$$
f(\vec{x})=f(\vec{a})+(\vec{x}-\vec{a})^{T} \nabla f(\vec{a})+\frac{1}{2!}(\vec{x}-\vec{a})^{T} H_{f}(\vec{a})(\vec{x}-\vec{a})+\cdots
$$

where $H_{f}(\vec{a})$ denotes the Hessian of f evaluated at \vec{a}. Higher order terms can be written in terms of tensors but we will not go in to that here.

Multiple Integration

Recall from calculus of a single variable that if $f(x) \geq 0$ on $[a, b]$ then the integral $\int_{a}^{b} f(x) d x$ graphically represents the area under the curve $y=f(x)$, above the x axis and between the lines $x=a$ and $x=b$. An analogous result holds for the volume of a region in R^{3} below the curve $z=f(x, y)$ and between the lines $x=a, x=b, y=c$ and $y=d$. In this case we have a double integral. If R represents the rectangle $a \leq x \leq b, c \leq y \leq d$ then we can write

$$
\int_{R} f(x, y) d A \quad \text { or } \quad \int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

How do we evaluate such integrals? We can write this integral as an iterated integral of the form

$$
\int_{c}^{d}\left[\int_{a}^{b} f(x, y) d x\right] d y
$$

that is, we evaluate the inner integral treating y as a constant and then the outer integral.
Example Evaluate $\int_{0}^{2} \int_{0}^{3}(2-y) d x d y$. We have

$$
\int_{0}^{2}\left[\int_{0}^{3}(2-y) d x\right] d y=\int_{0}^{2}\left[\left.(2 x-x y)\right|_{0} ^{3}\right] d y=\int_{0}^{2}[6-3 y-0] d y=6 y-\left.\frac{3}{2} y^{2}\right|_{0} ^{2}=6
$$

Of course our domain is not always a rectangle and so we may need to map it into a simpler region and evaluate the integral there. For example, if we wanted to evaluate an integral over a domain where polar coordinates make the integrand much simpler, we might want to change to polar coordinates and map our domain there. We have done this for a function of a single variable. For example, to integrate $\int_{0}^{2} x e^{x^{2}} d x$ we use the substitution $u=x^{2}$ and $d u=2 x d x$ to write

$$
\int_{0}^{2} x e^{x^{2}} d x=\int_{0}^{4} \frac{1}{2} e^{u} d x=\left.\frac{1}{2} e^{u}\right|_{0} ^{4}=\frac{1}{2}\left(e^{4}-1\right)
$$

What we are really doing here is using the relationship

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\int_{c}^{d} f(g(u)) g^{\prime}(u) d u \tag{*}
\end{equation*}
$$

Here we have the generic substitution $x=g(u)$ and $d x=g^{\prime}(u) d u$. In our example $u=x^{2}$ so $x=\sqrt{u}$ and thus $g(u)=\sqrt{u}$. Also $d x=g^{\prime}(u) d u$ is just $d x=\frac{1}{2}(u)^{-1 / 2} d u=d u / 2 x$ or $d u=2 x d x$.

We would like an analogue of $\left(^{*}\right)$ in higher dimensions. Note that if we are in two dimensions, then we need to transform both x and y variables by say

$$
x=g(u, v) \quad y=h(u, v)
$$

We assume that we have in hand a change of variables and now want to write the integral $\iint_{D} f(x, y) d x d y$ in terms of u, v. We have the following relationship analogous to $\left(^{*}\right)$.

Theorem Let $f(x, y) \in C\left(\mathbf{R}^{2}\right)$ and let T be a one to one mapping $T: D \rightarrow D^{*}$ in the u, v - plane using $x=g(u, v), y=h(u, v)$. Then

$$
\begin{equation*}
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f[g(u, v), h(u, v)]|\operatorname{det} J(u, v)| d u d v \tag{**}
\end{equation*}
$$

Here $J(u, v)$ is the Jacobian

$$
J(u, v)=\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)
$$

and we take the magnitude of its determinant in $\left({ }^{* *}\right)$.
Example Let D be the ellipse $\frac{x^{2}}{z^{2}}+\frac{y^{2}}{b^{2}}=1$. Calculate the area of the ellipse by mapping it to the unit circle $D^{*}, u^{2}+v^{2}=1$.
We want to calculate the area by evaluating $\iint_{D} d x d y$ by using the mapping $u=x / a$, $v=y / b$. So in our relationship in $\left({ }^{* *}\right)$ we have $x=g(u, v)=a u$ and $y=h(u, v)=b v$. The Jacobian is given by

$$
J(u, v)=\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)=\left(\begin{array}{cc}
a & 0 \\
0 & b
\end{array}\right) \Rightarrow \operatorname{det} J=a b
$$

Our integral becomes

$$
\iint_{D^{*}}|a b| d u d v=|a b| \iint_{D^{*}} d u d v=\left(\text { area of } D^{*}\right)|a b|=\pi|a b|
$$

which is the area of our ellipse. Here we don't actually need the absolute values around $a b$ because them are positive because they represent the length of the major and minor axes.

Example Transform the integral $\iint_{D} f(x, y) d x d y$ into polar coordinates (r, θ) by using the mapping

$$
x=r \cos \theta \quad y=r \sin \theta .
$$

Here $x=g(r, \theta)=r \cos \theta$ and $y=h(r, \theta)=r \sin \theta$. We compute the Jacobian and its determinant as
$J(r, \theta)=\left(\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}\end{array}\right)=\left(\begin{array}{cc}\cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta\end{array}\right) \Rightarrow \operatorname{det} J=r \cos ^{2} \theta+r \sin ^{2} \theta=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r$
Thus the change of variables gives

$$
\iint_{D} f(x, y) d x d y=\iint_{D^{*}} f(r \cos \theta, r \sin \theta) r d r d \theta
$$

Example Write the integral

$$
\iint_{D} e^{-x^{2} / 4-y^{2} / 9} d y d x
$$

in terms of polar coordinates.
Here we need to include a constant so the transformed integrand is $e^{-r^{2}}$; we take $x=$ $2 r \cos \theta$ and $y=3 r \sin \theta$ and thus the Jacobian is

$$
J=\left(\begin{array}{cc}
2 \cos \theta & -2 r \sin \theta \\
3 \sin \theta & 3 r \cos \theta
\end{array}\right) \Rightarrow \operatorname{det} J=6 r
$$

so we have

$$
\iint_{D} e^{-x^{2} / 4-y^{2} / 9} d y d x=6 \iint_{D^{*}} e^{-r^{2}} r d r d \theta
$$

where D^{*} is found through our mapping.
Multiple integrals in higher dimensions have an analogous definition.

