Lectures - Week 14 Vector Form of Taylor's Series, Integration in Higher Dimensions, and Green's Theorems

Vector form of Taylor Series

We have seen how to write Taylor series for a function of two independent variables, i.e., to expand f(x, y) in the neighborhood of a point, say (a, b). We can write out the terms through the second derivative explicitly, but it's difficult to write a general form. Recall that we have

$$f(a + \Delta x, b + \Delta y) = f(a, b) + \Delta x f_x(a, b) + \Delta y f_y(a, b)$$
$$+ \frac{\Delta x^2}{2} f_{xx}(a, b) + \frac{\Delta y^2}{2} f_{yy}(a, b) + \Delta x \Delta y f_{xy}(a, b) + \cdots$$

or equivalently as

$$f(x,y) = f(a,b) + (x-a)f_x(a,b) + (y-b)f_y(a,b) + \frac{(x-a)^2}{2}f_{xx}(a,b) + \frac{(y-b)^2}{2}f_{yy}(a,b) + (x-a)(y-b)f_{xy}(a,b) + \cdots$$

where $x = a + \Delta x$ so $\Delta x = x - a$ and $y = b + \Delta y$.

We now want to see if there is a simple way to write these terms for expanding $f(\vec{x})$ where $\vec{x} = (x_1, x_2, \ldots, x_n)^T$ in terms of the operator ∇ . Before we do this, lets first rewrite the above Taylor series expansion for f(x, y) in vector form and then it should be straightforward to see the result if f is a function of more than two variables. We let $\vec{x} = (x, y)$ and $\vec{a} = (a, b)$ be the point we are expanding $f(\vec{x})$ about. Now the term representing the change becomes the vector $\vec{x} - \vec{a} = (x - a, y - b)^T$. The gradient of f, ∇f , is just $(f_x, f_y)^T$ so the terms involving the first derivatives are just the dot product of $(\vec{x} - \vec{a})$ and ∇f . We claim that the terms involving the second derivatives are found by taking the product

$$\frac{1}{2} \Big[(\vec{x} - \vec{a})^T \begin{pmatrix} f_{xx}(\vec{a}) & f_{xy}(\vec{a}) \\ f_{yx}(\vec{a}) & f_{yy}(\vec{a}) \end{pmatrix} (\vec{x} - \vec{a}) \Big]$$

because

$$\begin{pmatrix} f_{xx}(\vec{a}) & f_{xy}(\vec{a}) \\ f_{yx}(\vec{a}) & f_{yy}(\vec{a}) \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix} = \begin{pmatrix} (x-a)f_{xx}(a,b) + (y-b)f_{xy}(a,b) \\ (x-a)f_{yx}(a,b) + (y-b)f_{yy}(a,b) \end{pmatrix}$$

and

$$\frac{1}{2} (x - a \quad y - b) \begin{pmatrix} (x - a)f_{xx}(a, b) + (y - b)f_{xy}(a, b) \\ (x - a)f_{yx}(a, b) + (y - b)f_{yy}(a, b) \end{pmatrix}$$
$$\frac{1}{2} \Big[(x - a)^2 f_{xx}(a, b) + (x - a)(y - b)f_{xy}(a, b) + (y - b)(x - a)f_{yx}(a, b) + (y - b)^2 f_{yy}(a, b) \Big]$$

which is just our terms in the Taylor series above assuming that $f_{xy} = f_{yx}$. If we note that the matrix above is just the Hessian of f(x, y) then we can generalize our result for a

function of more than two independent variables. We can write the Taylor series expansion for a function $f(\vec{x} \text{ where } \vec{x} \in \mathbb{R}^n$ in the neighborhood of the point \vec{a} as

$$f(\vec{x}) = f(\vec{a}) + (\vec{x} - \vec{a})^T \nabla f(\vec{a}) + \frac{1}{2!} (\vec{x} - \vec{a})^T H_f(\vec{a}) (\vec{x} - \vec{a}) + \cdots$$

where $H_f(\vec{a})$ denotes the Hessian of f evaluated at \vec{a} . Higher order terms can be written in terms of tensors but we will not go in to that here.

Multiple Integration

Recall from calculus of a single variable that if $f(x) \ge 0$ on [a, b] then the integral $\int_a^b f(x) dx$ graphically represents the area under the curve y = f(x), above the x axis and between the lines x = a and x = b. An analogous result holds for the volume of a region in \mathbb{R}^3 below the curve z = f(x, y) and between the lines x = a, x = b, y = c and y = d. In this case we have a double integral. If R represents the rectangle $a \le x \le b$, $c \le y \le d$ then we can write

$$\int_{R} f(x,y) \, dA \qquad \text{or} \qquad \int_{c}^{d} \int_{a}^{b} f(x,y) \, dx dy$$

How do we evaluate such integrals? We can write this integral as an *iterated integral* of the form

$$\int_{c}^{d} \Big[\int_{a}^{b} f(x, y) \, dx \Big] dy$$

that is, we evaluate the inner integral treating y as a constant and then the outer integral.

Example Evaluate $\int_0^2 \int_0^3 (2-y) \, dx \, dy$. We have

$$\int_{0}^{2} \left[\int_{0}^{3} (2-y) \, dx \right] \, dy = \int_{0}^{2} \left[(2x-xy) \Big|_{0}^{3} \right] \, dy = \int_{0}^{2} \left[6-3y-0 \right] \, dy = 6y - \frac{3}{2}y^{2} \Big|_{0}^{2} = 6$$

Of course our domain is not always a rectangle and so we may need to map it into a simpler region and evaluate the integral there. For example, if we wanted to evaluate an integral over a domain where polar coordinates make the integrand much simpler, we might want to change to polar coordinates and map our domain there. We have done this for a function of a single variable. For example, to integrate $\int_0^2 x e^{x^2} dx$ we use the substitution $u = x^2$ and du = 2xdx to write

$$\int_0^2 x e^{x^2} dx = \int_0^4 \frac{1}{2} e^u dx = \frac{1}{2} e^u \Big|_0^4 = \frac{1}{2} \left(e^4 - 1 \right)$$

What we are really doing here is using the relationship

(*)
$$\int_{a}^{b} f(x) \, dx = \int_{c}^{d} f\left(g(u)\right)g'(u) \, du$$

Here we have the generic substitution x = g(u) and dx = g'(u)du. In our example $u = x^2$ so $x = \sqrt{u}$ and thus $g(u) = \sqrt{u}$. Also dx = g'(u)du is just $dx = \frac{1}{2}(u)^{-1/2}du = \frac{du}{2x}$ or du = 2xdx.

We would like an analogue of (*) in higher dimensions. Note that if we are in two dimensions, then we need to transform both x and y variables by say

$$x = g(u, v)$$
 $y = h(u, v)$

We assume that we have in hand a change of variables and now want to write the integral $\int \int_D f(x,y) dxdy$ in terms of u, v. We have the following relationship analogous to (*).

Theorem Let $f(x, y) \in C(\mathbb{R}^2)$ and let T be a one to one mapping $T : D \to D^*$ in the u, v- plane using x = g(u, v), y = h(u, v). Then

(**)
$$\int \int_D f(x,y) \, dx \, dy = \int \int_{D^*} f[g(u,v), h(u,v)] \left| \det J(u,v) \right| \, du \, dv$$

Here J(u, v) is the Jacobian

$$J(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix}$$

and we take the magnitude of its determinant in (**).

Example Let *D* be the ellipse $\frac{x^2}{z^2} + \frac{y^2}{b^2} = 1$. Calculate the area of the ellipse by mapping it to the unit circle D^* , $u^2 + v^2 = 1$.

We want to calculate the area by evaluating $\int \int_D dx dy$ by using the mapping u = x/a, v = y/b. So in our relationship in (**) we have x = g(u, v) = au and y = h(u, v) = bv. The Jacobian is given by

$$J(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \Rightarrow \det J = ab$$

Our integral becomes

$$\int \int_{D^*} |ab| \, dudv = |ab| \int \int_{D^*} \, dudv = (\text{area of } D^*)|ab| = \pi |ab|$$

which is the area of our ellipse. Here we don't actually need the absolute values around *ab* because them are positive because they represent the length of the major and minor axes.

Example Transform the integral $\int \int_D f(x, y) dx dy$ into polar coordinates (r, θ) by using the mapping

$$x = r\cos\theta$$
 $y = r\sin\theta$.

Here $x = g(r, \theta) = r \cos \theta$ and $y = h(r, \theta) = r \sin \theta$. We compute the Jacobian and its determinant as

$$J(r,\theta) = \begin{pmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{pmatrix} \Rightarrow \det J = r\cos^2\theta + r\sin^2\theta = r(\cos^2\theta + \sin^2\theta) = r(\cos^2\theta + \sin^2\theta) = r(\cos^2\theta + \sin^2\theta)$$

Thus the change of variables gives

$$\int \int_D f(x,y) \, dx dy = \int \int_{D^*} f(r\cos\theta, r\sin\theta) r dr d\theta$$

Example Write the integral

$$\int \int_D e^{-x^2/4 - y^2/9} \, dy dx$$

in terms of polar coordinates.

Here we need to include a constant so the transformed integrand is e^{-r^2} ; we take $x = 2r \cos \theta$ and $y = 3r \sin \theta$ and thus the Jacobian is

$$J = \begin{pmatrix} 2\cos\theta & -2r\sin\theta\\ 3\sin\theta & 3r\cos\theta \end{pmatrix} \Rightarrow \det J = 6r$$

so we have

$$\int \int_D e^{-x^2/4 - y^2/9} \, dy dx = 6 \int \int_{D^*} e^{-r^2} r \, dr d\theta$$

where D^* is found through our mapping.

Multiple integrals in higher dimensions have an analogous definition.