
Lectures - Week 13

Two Point Boundary Value Problems and

Functions of Several Variables

We now want to briefly look at a linear second order BVP which is sometimes called a
two-point BVP because we are specifying conditions at the two endpoints of our domain.
Specifically we seek u(x) satisfying

−u′′(x) + p(x)u′(x) + q(x)u(x) = g(x) a < x < b

u(a) = α u(b) = β

This problem is a BVP because we are given the value of the unknown u(x) (or its deriva-
tive) at the endpoints of the interval [a, b] and are asked to find u(x) in the interior of
the interval which satisfies the given differential equation. To approximate the solution of
this equation we can no longer expect to start at a point and “march in time” because the
solution is affected by its boundary values at both x = a and x = b.

To come up with an approach to approximate this problem we return to Taylor series
which we used to originally derive Euler’s Method. Recall that

u(x + ∆x) = u(x) + ∆xu′(x) +
∆x2

2
u′′(x) +

∆x3

3!
u′′′(x) + · · ·

In our differential equation we need to replace u′′(x) as well as u′(x) with a difference
quotient. If we solve the above equation for u′′(x) it would be in terms of u′(x) too, which
we don’t want. However, if we write the Taylor series for u(x −∆x) and combine the two
then we can get the u′(x) terms to cancel. We have

u(x − ∆x) = u(x) − ∆xu′(x) +
∆x2

2
u′′(x) − ∆x3

3!
u′′′(x) + · · ·

Adding these two series gives

u(x + ∆x) + u(x − ∆x) =
[

u(x) + ∆xu′(x) +
∆x2

2
u′′(x) +

∆x3

3!
u′′′(x) + · · ·

]

+
[

u(x) − ∆xu′(x) +
∆x2

2
u′′(x) − ∆x3

3!
u′′′(x) + · · ·

]

= 2u(x) + (∆x)2u′′(x) + O(∆x4)

Solving for u′′(x) gives

u′′(x) =
u(x + ∆x) − 2u(x) + u(x − ∆x)

(∆x)2
+ O(∆x2)

This is called a second centered difference approximation to u′′(x) because it can also be
found by differencing the forward and backward first order approximations to u′(x). Note
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that the error term is O(∆x2). We can now use this approximation in our differential
equation to approximate u′′(x). However, we must still implement an approximation to
u′(x). If we use a forward or backward difference, i.e.,

u(x + ∆x) − u(x)

∆x
or

u(x) − u(x − ∆x)

∆x

then we know that the error term is O(∆x) whereas our approximation for u′′(x) is O(∆x2).
It would be advantageous if we could approximate u′(x) by a difference quotient that was
O(∆x2). We can easily do this by using a centered (first) difference. This is found by
subtracting our Taylor series expansions for u(x + ∆x) and u(x − ∆x) to get

u(x + ∆x) − u(x − ∆x) = 2∆xu′(x) + O(∆x3)

and thus

u′(x) =
u(x + ∆x) − u(x − ∆x)

2x
+ O(∆x2)

Our strategy in approximating our two point BVP is to discretize our domain [a, b] by
setting

x0 = a, x1 = a + ∆x, x2 = x1 + ∆x, · · ·xi = a + i∆x, xn+1 = b

with ∆x = (b−a)/(n+1) and obtain an approximation Ui to u(xi). We know that U0 = α
and Un+1 = α and we have n unknowns U1, · · ·Un. To this end, we write a difference
equation at each point xi, i = 1, . . . , n. Using our difference quotients to approximate
u′′(x) and u′(x) at x1 gives

−U2 − 2U1 + U0

∆x2
+ p(x1)

U2 − U0

2∆x
+ q(x1)U1 = g(x1)

Now U0 = α is known so terms involving it can be moved to the right hand side but this
equation couples two unknowns U1 and U2; consequently we can’t solve for either one.
Writing the equation at x2 gives

−U3 − 2U2 + U1

∆x2
+ p(x2)

U3 − U1

2∆x
+ q(x2)U2 = g(x2)

This equation couples three unknowns U1, U2 and U3 so we can’t solve for any of them
from the first two equations. In general, at the node xi we have

−Ui+1 − 2Ui + Ui−1

∆x2
+ p(xi)

Ui+1 − Ui−1

2∆x
+ q(xi)Ui = g(xi)

which again couples three unknowns. So we write our difference equation at each node
x1, x2, . . . , xn so that we have n equations for the n unknowns U1, U2, . . . , Un but they are
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all coupled linear equations. This just means that we can’t solve for them one at a time
but must solve for them simultaneously, i.e., solve a linear system A~u = ~b.

To see this, let’s simplify the equation to −u′′(x) = g(x), i.e., p(x) = q(x) = 0. We then
have the ith equation as

−Ui+1 + 2Ui − Ui−1

∆x2
= g(xi)

Our unknown vector is (U1, U2, · · · , Un)T , and our system becomes

















2 −1 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 0 0

. . .
. . .

. . .

0 · · · 0 −1 2 −1
0 0 · · · 0 −1 2



































U1

U2

U3

...

...
Un



















=



















∆x2g(x1) + α
∆x2g(x2)
∆x2g(x3)

...

...
∆x2g(xn) + β



















Note that the first and last terms in the right hand side vector have been modified due to
the U0 = α term in the first equation and Un+1 = β term in the last equation. Also the
coefficient matrix is symmetric and it can be shown that it is also positive definite. So the
discrete solution to our BVP is found by solving a tridiagonal linear system with a method
such as Cholesky decomposition which we know requires O(n) operations. You should
contrast this with the case of approximating the solution of an IVP where we “march in
time”; for BVPs the solution is coupled and we solve for all unknowns at once. When we
briefly look at partial differential equations (PDEs) we will see that these basic ideas carry
over to that setting.
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Multivariable Calculus

We now want to consider functions of more than one independent variable. We have already
briefly looked at such functions when we considered the general IVP y′(t) = f(t, y). Here
f is a function of two variables and we saw how to take partial derivatives and perform a
Taylor series expansion. We want to look at functions of more than one variable in more
detail.

Graphically we know that if we plot y = f(x) then we get a curve in IR2. If we have
a function z = f(x, y) then for each point (x, y) we have a corresponding z value so we
are graphing a surface in IR3. Sometimes one plots level curves of the surface, i.e., curves
such that f(x, y) is a constant. For example, if we have the surface z = x2 + y2 then
the level curves are x2 + y2 = α which are just circles with radius

√
α. If you watch the

weather during the winter they will sometimes show plots of the isotherms, i.e., the curves
of constant temperatures. These are just level curves.

We have seen that taking the partial derivative of a function of several variables is straight-
forward, we just hold all variables fixed except the one we are differentiating with respect
to. This means we are determining the instantaneous rate of change of the function in
that direction only, i.e., along one of the coordinate axis. For example, if f(x, y) then fx

is defined as

fx(x, y) = lim
∆x→0

f(x + ∆x, y) − f(x, y)

∆x

so y is held as a constant. What if we want to find how f changes in a direction other
than the coordinate axes? To determine this we first need the gradient.

Gradient

Let f(x1, x2, . . . , xn). Then the gradient of f , denoted ~∇f (sometimes the arrow is omitted
and we just write ∇f) is a vector containing the partial derivatives of f given by

~∇f =











∂f
∂x1

∂f
∂x2

...
∂f

∂xn











Example Determine the gradient of f(x, y, z) = z3x sinπy at (1, 1

2
, 2).

Calculating our partial derivatives gives

fx = z3 sin πy, fy = πz3x cos πy, fz = 3z2x sin πy

Evaluating at the point we have

∇f =





23 sin(π/2)
π23(1) cos(π/2)
3(22)(1) sin(π/2)



 =





8
0
12
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Now suppose that we want to know how a function f(x, y) changes in a direction other than
parallel to the x or y axis; for example in the direction of ~u = u1 î + u2ĵ where ‖~u‖2 = 1
and î denotes a unit vector in the direction of the x-axis and ĵ denotes a unit vector in
the direction of the y-axis. For example ~u could be the unit vector in the first quadrant
pointing away from the origin at a 45◦ angle, i.e., ~u = 1√

2
î + 1√

2
ĵ. We will let D~uf denote

the derivative of f in the direction of the vector ~u. If f(x, y) then the definition of D~uf is
given by

D~uf(x, y) = lim
h→0

f(x + hu1, y + hu2) − f(x, y)

h

Note that if ~u = î then this reduces to fx and if ~u = ĵ this reduces to fy with ∆x = h
and ∆y = h. This is the definition of D~uf but we don’t want to use it every time we
need to calculate a directional derivative so we need a simple means to calculate it. If
f(x, y) then D~uf = fx u1 + fyu2 = (∇f)T~u. In general, if f is a function of n variables
f(x1, x2, . . . , xn) then the derivative of f in the direction of the unit vector ~u is just the
dot or scalar product of the gradient of f with the directional vector ~u.

D~uf = ∇f · ~u

Once again we should make sure that this agrees with our partial derivatives which are
just directional derivatives in the direction of the coordinate axes. For example, if f is a
function of two variables then Dîf should just be fx; we have

Dîf = fx = (fx, fy) · (1, 0) = fx

For completeness we list some properties of the gradient which should be evident from
properties of derivatives.

(1.) ∇c = 0 where c is a constant.
(2.) ∇(αf + βg) = α∇f + β∇g where α, β are scalars
(3.) ∇(fg) = g∇f + f∇g

(4.) ∇
(f

g

)

=
g∇f − f∇g

g2

(5.) ∇(fn) = nfn−1∇f

Example Determine ∇(f3) where f(x, y) = x2y.

Here we need to use property (5) which is simply the Power Rule for derivatives. We have

∇f = ∇[(x2y)3] = 3(x2y)2∇f = 3x4y2(2xyî + x2ĵ) = 6x5y3î + 3x6y2ĵ

Another way to do this is to simply take ∇(x6y3) which is just 6x5y3î + 3y2x6ĵ which
is easier in this case but not always. For example, we might want to take ∇f10 where
f = (x5y + 6x7y5 + xy) which we don’t want to raise to the tenth power before we
differentiate.

What does the gradient tell us about a function?
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Lemma Suppose f ∈ C1 and let ∇f(P ) denote the gradient of f evaluated at the point
P . If ∇f(P ) 6= 0 then the largest value of D~uf is ‖∇f(P )‖2 and occurs when ~u points in
the direction of ∇f(P ).

This lemma tells us that at a point P the function f increases most rapidly in the direction
of ∇f and decreases most rapidly in the direction of −∇f . This fact is the basis for a
minimization algorithm called Steepest Descent which seeks to minimize a function of
several variables.

The proof of this lemma follows from the fact that

D~uf = ∇f · ~u = ‖∇f‖2‖~u‖2 cos θ = ‖∇f‖2 cos θ

where we have used the definition of the scalar product and the fact that ~u is a unit vector.
Clearly D~uf has its maximum value when cos θ = 1, i.e., when θ = 0. Thus the maximum
value of D~uf is ‖∇f‖2 and the direction of ~u and ∇f are the same.

Example Let f(x, y) = xe2y−x. Determine the direction from the point P=(2, 1) that
gives the direction in which f decreases most rapidly.

We just need to calculate ∇f , evaluate it at the given point and take the negative of this
vector. We have

∇f =

(

e2y−x − xe2y−x

2xe2y−x

)

∇f(P ) =

(

e0 − 2e0

4e0

)

=

(

−1
4

)

Therefore the direction of maximum decrease is î − 4ĵ.

Divergence

The divergence of a vector, denoted ∇·~v is a scalar which can be thought of as taking the
scalar product of the vector operator ∇ with a given vector. So if ~v = (v1, v2, · · · , vn) then
the divergence of ~v is

∇ · ~v =
∂v1

∂x1

+
∂v2

∂x2

+ · · ·+ ∂vn

∂xn

So we must take the divergence of a vector and the result is a scalar.

Example Determine the divergence of ~F = (x3y, y2 + yz, xyz).

∇ · ~F =
∂

∂x
(x3y) +

∂

∂y
(y2 + yz) +

∂

∂z
(xyz) = 3x2y + 2y + z + xy

Curl

The curl of a vector results in a vector; it is denoted ∇× ~v. For a vector in IR2 or IR3 we
can find the curl by evaluating the determinant

∇× ~v =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

î ĵ k̂

∂
∂x

∂
∂y

∂
∂z

v1 v2 v3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= î
(

(v3)y − (v2)z

)

+ ĵ
(

(v1)z − (v3)x

)

+ k̂
(

(v2)x − (v1)y

)
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In IR2 the curl of a vector is just k̂
(

(v2)x − (v1)y

)

. In fluid flow the curl of a vector gives
its rotation.

Laplacian

When we take the divergence of the gradient of a function then we give this the special
name Laplacian and denote it by ∆f . We have

∇ · ∇f(x, y, z) = ∇ ·





fx

fy

fz



 = fxx + fyy + fzz = ∆f

When f(x, y) then ∆f = fxx + fyy. The partial differential equation −∆u = g(x, y) is the
two dimensional analogue of the ODE −y′′(x) = g(x).

Vector Identities

There are a myriad of useful vector identities related to the gradient, divergence and curl.
One in particular is the divergence of the curl of a vector which the components of the
vector are in C2

∇ · (∇× ~F ) = 0

This can be shown by explicitly calculating the terms

∇ · (∇× ~F ) = (F3)yx − (F2)zx + (F1)zy − (F3)xy + (F2)xz − (F1)yz

and because F has components in C2, the order of differentiation here does not matter so
we get zero.

You may explore other identities in the homework.

Newton’s Method and the Jacobian matrices

If we have a single nonlinear equation such as f(x) = sin πx − x2 = 0 then we can
approximate the solution using Newton’s method which if you recall from calculus is an
iterative method where the initial guess is given, say x0 and we determine the remaining
iterates from the equation

xk+1 = xk − f(xk)

f ′(xk)

For example with f(x) = sin πx−x2 = 0, if x0 = 1 then x1 = 1−(sin π−1)/(π cos π−2) =
1 − 1/π = because f ′(x) = π cos πx − 2x.

If we have n nonlinear equations in n independent variables, i.e., n equations of the form

fi(x1, x2, . . . , xn) = 0

then we can use Newton’s Method in higher dimensions. Our iterations are now vectors in
IRn and we have a vector ~F (xk) = (f1(~x

k), f2(~x
k), . . . , fn(~xk))T instead of f(x). But what

plays the role of f ′(xk) when we have n functions and n unknowns. Because each fi is a
function of n independent variables, we have n partial derivatives for each fi and because
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we have n functions we have a total of n2 first partial derivatives. We represent these as
a matrix which we call the Jacobian matrix

J(x) =





















∂f1

∂x1

∂f1

∂x2

· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2

· · · ∂f2

∂xn

...
...

...
...

∂fn

∂x1

∂fn

∂x2

· · · ∂fn

∂xn





















Newton’s method for the nonlinear system then becomes: given ~x0 then for k = 0, 1, 2, . . .

~xk+1 = ~xk − J−1(~xk) ~F (xk)

Of course we know that we never actually form the inverse of a matrix so we find the new

iterate by solving the linear system for the difference ~∆x
k+1

= ~xk+1 − ~xk

J(~xk) ~∆x
k+1

= −~F (xk)

and setting

~xk+1 = ~xk + ~∆x
k+1

Example Find the Jacobian matrix for the nonlinear system

f1(x, y) = x2 sin πy + 2

f2(x, y) = exy

and evaluate it at the point (2,1).

The Jacobian is the matrix of partial derivatives so in the first row we put the first partials
of f1 and in the second row we put the first partials of f2. We have

J =

(

2x sinπy πx2 cos πy
yexy xexy

)

and J evaluated at (2,1) is
(

0 4π
e2 2e2

)

The Hessian matrix

Now suppose that we have a single function of n variables and our goal is the minimize
(or maximize) this function, say f(x1, x2, . . . , xn). Recall from calculus that if we have a
function f(x) and we want to maximize it, then we find the critical points, i.e., the points
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where f ′(x) = 0 or where the f ′(x) fails to exist. Then the maximum occurs at a critical
point or the boundary of the domain so you simply evaluate f at each critical point and
the boundaries and see where it takes on its maximum value.

If we extend this idea to a function f(x1, x2, . . . , xn) then we would take all n partial
derivatives and set the equations to zero and solve. However, the equations would typically
be nonlinear equations which we would have to solve by a technique such as Newton’s
method which means that we would have to form the Jacobian of the equations ∂f

∂x1

= 0,
∂f
∂x2

= 0, etc. which means that we would be calculating a matrix of second derivatives of
the matrix f . This matrix of second derivatives is called the Hessian matrix.

Definition Let f = f(x1, x2, . . . , xn), then the Hessian H of f is the matrix of second
partial derivatives of f where

Hij =
∂2f

∂xi∂xj

Example Let f(x, y, z) = x3z + yz2. Calculate ∇f and the Hessian of f .

∇f =





3x2z
z2

x3 + 2yz





The Hessian matrix is given by





fxx fxy fxz

fyx fyy fyz

fzx fzy fzz



 =





6x 0 3x2

0 0 2z
3x2 2z 2y
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