
Lectures - Week 9

The Singular Value Decomposition Theorem

We know that eigenvalues are only defined for a square matrix. However, in this section
we want to define an analogue of eigenvalues for a rectangular matrix. This will lead us
to our final decomposition, the Singular Vale Decomposition (SVD), of a matrix; recall
that we have seen two other decompositions: LU (and its variants) and QR. The SVD
yields a diagonal (but not square if A is rectangular) matrix. Recall that if an n × n
square matrix has n linearly independent eigenvectors then there is a matrix P whose
columns are these eigenvectors such that P−1AP = Λ where Λ is a diagonal matrix. If the
eigenvectors of A are orthogonal (i.e., meet at right angles) then we can normalize these
eigenvectors and choose orthonormal eigenvectors to obtain QT AQ = Λ. For example, if
A is symmetric then it is orthogonally similar to a diagonal matrix. If a square matrix
does NOT have orthogonal eigenvectors then we need two different orthogonal matrices
to diagonalize A. The SVD provides this decomposition for a matrix which does not have
orthogonal eigenvectors and it holds for rectangular matrices as well. You will discover in
ACS I that the SVD is extremely useful in many applications.

Definition The singular values of an m × n matrix A are the square roots of the eigen-
values of the n × n matrix AT A.

We first note that AT A is symmetric and at least positive semi-definite so its eigenvalues
are real and non-negative so it makes sense to talk about their square root. If A is square
and symmetric then the singular values are related to the eigenvalues of A. When A is
symmetric the eigenvalues of AT A are the eigenvalues of A2 which are the squares of the
eigenvalues of A so when we take the square root we get the magnitude of the eigenvalues
of A.

Our third decomposition, the singular value decomposition (SVD) is given in the next
theorem. We will see that it gives us information about the four fundamental spaces
associated with a matrix plus additional information on the relative importance of the
columns of A.

Theorem The Singular Value Decomposition Theorem (SVD). Let A be an m×n matrix.
Then A can be factored as

A = UΣV T

where

U is an m × m orthogonal matrix
Σ is an m × n diagonal matrix (Σij = 0 for i 6= j) with entries σi ≥ 0 and σ1 ≥ σ2 ≥
· · · ≥ σk ≥ 0, k = min{m, n}.
V is an n × n orthogonal matrix

We first remark that Σ is square if A is, but rectangular in general. The following matrices
illustrate some possible forms for Σ; the first is when A is 3 x 3 with rank 3, the second is
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when A is 3 x 3 with rank 2, the third is when A is 3 x 2 with rank 2, the next is when A
is 3 x 2 with rank 1 and the last when A is 2 x 3 with rank 2.





10 0 0
0 4 0
0 0 2



 ,





10 0 0
0 4 0
0 0 0



 ,





10 0
0 4
0 0



 ,





10 0
0 0
0 0



 ,

(

10 0 0
0 4 0

)

We note that the SVD implies

A = UΣV T ⇒ UT A = ΣV T ⇒ UT AV = Σ

so we have diagonalized A using two different orthogonal matrices. However, this is not a
similarity transformation so the eigenvalues are not preserved. The diagonal entries of Σ
are the singular values of A rather than its eigenvalues.

We will not prove this result but rather investigate what U, Σ and V tell us about A. To
determine the importance of U, V and Σ we first consider an expression for each of the two
matrices AT A and AAT using the SVD of A.

AT A = (UΣV T )T UΣV T = V ΣT UT UΣV T .

Now U is orthogonal and thus UT U = Im×m implies

AT A = V ΣT UT UΣV T = V (ΣT Σ)V T .

This says that AT A is orthogonally similar to ΣT Σ; here ΣT Σ is an n×n diagonal matrix
with entries σ2

i , 0.

Now consider the matrix AAT

AAT = UΣV T (UΣV T )T = UΣV T V ΣT UT = U(ΣΣT )UT

which says that AAT is orthogonally similar to ΣΣT ; here ΣΣT is an m × m diagonal
matrix with entries σ2

i , 0.

We now want to use these results to interpret the meaning of each matrix in the SVD.

(1.) The diagonal entries of Σ, denoted σi, are the singular values of A.

From our expression for the n × n matrix AT A (or equivalently for AAT ) we have seen
that AT A = V (ΣT Σ)V T so that the eigenvalues of AT A and ΣT Σ are the same because
they are similar.. The eigenvalues of ΣT Σ are σ2

i and so the eigenvalues of AT A are too.

Thus the singular values of A are
√

σ2
i = σi

(2.) The columns of V are the orthonormal eigenvectors of AT A.

Clearly AT A is symmetric and thus has a complete set of orthonormal eigenvectors. Also
AT A = V (ΣT Σ)V T which implies V T (AT A)V = ΣT Σ so V is the matrix which diagonal-
izes AT A and thus the columns of V are the orthonormal eigenvectors.

(3.) The columns of U are the orthonormal eigenvectors of AAT .
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Clearly AAT is symmetric and thus has a complete set of orthonormal eigenvectors. From
above AAT = U(ΣΣT )UT which implies UT (AAT )U = ΣΣT so U is the matrix which
diagonalizes AAT and each of the columns of U is an orthonormal eigenvector of AAT .

(4.) The SVD provides an orthonormal basis for the null space of A, N (A), and its or-
thogonal complement, R(AT ) (which is the row space of A).

We know that if ~x ∈ N (A) then A~x = ~0. Now partition the n×n matrix V as V = (V1|V2)
where V1 is n × p and V2 is n × (n − p) where p is the index of the last nonzero singular
value σi; i.e., σp+1 = σp+2 = · · · = σk = 0 where k = min{m, n}. Our claim is that the
columns of V2 form a basis for N (A) and the columns of V1 form a basis for R(AT ). To
see this note that A = UΣV T implies AV = UΣ. Because the last (p + 1) through n
columns of V correspond to the diagonal entries of Σ which are zero, then AV2 = 0 and
the columns of V2 are in N (A) and are orthonormal because V is orthogonal. Now the
first p columns of V denoted by V1 are orthonormal to the columns of V2 and form a basis
for R(AT ) because R(AT ) is the orthogonal complement of N (A).

(5.) The SVD provides an orthonormal basis for the range of A, R(A), and its orthogonal
complement N (AT ).

Now partition the m × m orthogonal matrix U as U = (U1|U2) where U1 is m × p. As
above, the SVD implies

AV = UΣ ⇒ A(V1|V2) = Σ(U1|U2)

The first p columns of U denoted by U1 form a basis for the range of A and the remaining
columns denoted by U2 are orthogonal and form a basis for the orthogonal complement
R(A)⊥ = N (AT ).

(6.) The rank of A is given by the number of nonzero singular values in Σ.

If we multiply a matrix by an orthogonal matrix it does not change its rank.
In the sequel we will assume that the first p diagonal entries of Σ, σi, i = 1, . . . , p are

> 0.

Example Find the SVD for the matrix

A =

(

1 1
7 7

)

Clearly A is a square matrix with rank one. We first form AT A and find its eigenvectors
to get V .

AT A =

(

50 50
50 50

)

which has a characteristic equation (50 − λ)2 − 502 = 0 which implies λ = 0 and λ = 100.
The orthonormal eigenvectors corresponding to these can be determined as

[

100,
1√
2

(

1
1

)

]

,
[

0,
1√
2

(

−1
1

)

]
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so we take

V =
1√
2

(

1 −1
1 1

)

.

The matrix Σ is a 2 × 2 diagonal matrix with entries given as the singular values of A
which are the square root of the eigenvalues of AT A. Thus

Σ =

(

10 0
0 0

)

.

Now we form AAT and find its eigenvectors to get U .

AAT =

(

2 14
14 98

)

whose eigenpairs are given by

[

100,
1√
50

(

1
7

)

]

,
[

0,
1√
50

(

−7
1

)

]

Thus

U =
1√
50

(

1 −7
7 1

)

As a check we form UΣV T and see if we get A

1√
50

(

1 −7
7 1

) (

10 0
0 0

)

1√
2

(

1 −1
1 1

)T

=
1√
100

(

1 −7
7 1

) (

10 10
0 0

)

=
1

10

(

10 10
70 70

)

= A

Example For the matrix in the previous example, find a basis for the four fundamental
spaces in the usual way and then compare with those found by using the SVD.

Clearly A has rank one and the dimension of the null space is one. Clearly (1,−1)T ∈
N (A). The dimension of the R(A) is one and a basis can be taken as the first column
of A (1, 7)T . The dimension of R(AT ) which is the row space of A is one and a basis
is just (1, 1)T . Lastly the left null space of A, N (AT ) has dimension one and a basis is
just (−7, 1)T . Comparing with the SVD we see that there is one nonzero singular value
so the rank of A is one. The last column of V (1/

√
2)(−1, 1)T is a basis for the null

space of A and is just −1/
√

2 times our basis vector. The first column of V will give the
orthogonal complement of N (A) which is R(AT ) and is just 1/

√
2 times our vector. The

first column of U is (1/
√

50(1, 7) which is just 1/
√

50 times our basis above. The basis
for the orthogonal complement of the range of A, N (AT ) is just the second column of U
which is a constant times our vector.

Example Let

A =

(

3 1 1
−1 3 1

)

=
1√
2

(

1 1
1 −1

) (√
12 0 0
0

√
10 0

)







1√
6

2√
6

1√
6

2√
5

−1√
5

0
1√
30

2√
30

−5√
30






= UΣV T
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Find its rank, a basis for the range and the null space in the usual manner as well as form
AT A and find its eigenvalues and eigenvectors. Then use the SVD of A to calculate each
of these and compare.

Clearly A has rank two because it has two linearly independent columns. The range
is all of IR2. Its null space has dimension 3-2=1 and a basis for the null space is given by
(−3,−6, 15)T because

(

3 1 1
−1 3 1

)

→
(

3 1 1
0 10/3 4/3

)

⇒ z3 = 3, z2 = −6/5, z1 = −3/5

Note if we multiply the last column of V , i.e., the last row of V T by −3
√

30 then we get
this vector so the last column of V T is in the null space of A. Because the range is all
of IR2 we can use the standard basis. Also note that the first two columns of U form an
orthonormal basis for IR2 and thus for the range of A.

Forming AT A gives




3 −1
1 3
1 1





(

3 1 1
−1 3 1

)

=





10 0 2
0 10 4
2 4 2





By looking at the characteristic equation for AT A we find that its eigenpairs are

[

12,
1√
6





1
2
1





]

,
[

10,
1√
5





−2
1
0





]

,
[

0,
1√
30





−1
−2
5





]

Clearly these orthonormal eigenvectors are the columns of V and the singular values of A
are the square roots of the eigenvalues 12, 10, i.e., the diagonal entries of Σ.

Recall that our decomposition UΣV T gives us AV = UΣ so if ~vi are the columns of
V and ~ui the columns of U , then A~vi = σi~ui. The columns ~vi are eigenvectors of AT A
and we call them the right singular vectors of A. Also if we take the transpose of the SVD
of A we have AT = V ΣT UT which implies AT U = V ΣT and therefore AT~ui = σi~vi. The
columns of U are eigenvectors of AAT and we call them the left singular vectors of A.

The 2-condition number can be extended to rectangular matrices. Recall that for a
square matrix

‖A‖2 =
√

ρ(AT A)

which is just the largest singular value of A. Let A be an m×n matrix and let the singular
values of A be denoted σ1 ≥ σ2 ≥ σk > 0 for k = min{m, n}. Call σmax = σ1 and
σmin = σk > 0. Then

K2(A) =
σmax

σmin

≥ 1

i.e., the ratio of the largest singular value to the smallest. If σmin = 0 then clearly this
is not defined; in this case A is not full rank and we say the condition number is infinite
(just as in the case of a singular matrix we have a zero eigenvalue).
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Lastly, the SVD provides us with information about the relative importance of the
columns of A. Suppose that we have n vectors in IRm and we form an m × n matrix A
whose rank is m. Suppose further that this vectors contain redundant information and we
want to represent the information contained in the matrix by a matrix of lower rank. The
SVD allows us to do this. We first note that from the SVD for A we have

A = σ1~u1~v
T
1 + σ2~u2~v

T
2 + · · · + σk~uk~v

T
k

where ~ui represents the ith column of U and ~vT
i the ith column of V T and k is the last

nonzero singular value of A. Now suppose we want to approximate our matrix A by a
matrix of rank ℓ < m; call it Aℓ. Then we take

Aℓ =

ℓ
∑

i=1

σi~ui~v
T
i .

Example Consider the following rank 3 matrix and its SVD.

A =











2. 1. 1.
10. 3. 4.
8. 1. 4.
6. 0. 8.
4. 6. 8.











where the UΣV T is










−0.122 0.045 0.141 0.268 −0.944
−0.552 0.468 0.415 0.469 0.289
−0.448 0.400 −0.057 −0.783 −0.154
−0.486 −0.125 −0.821 0.272 0.012
−0.493 −0.777 0.361 −0.149 0.038





















19.303 0.000 0.000
0.000 6.204 0.000
0.000 0.000 4.111
0.000 0.000 0.000
0.000 0.000 0.000















−0.738 0.664 0.121
−0.269 −0.453 0.850
−0.619 −0.595 −0.512

Determine a rank one approximation to A

From above we have

A1 = 19.3











−.122
−.552
−.448
−.486
−.493











(−.7238 −.269 −.619 ) =











1.743 0.635 1.464
7.864 2.864 6.603
6.379 2.323 5.356
6.920 2.520 5.811
7.021 2.557 5.895











A rank two approximation can be found to be











1.930 0.508 1.297
9.794 1.548 4.875
8.028 1.199 3.880
6.407 2.870 6.270
3.821 4.738 8.760











The rank 3 approximation is A itself because A is rank three.

6


