
Lectures - Week 6

Linear Least Squares, Orthonormal vectors and the QR Decomposition

Linear Least Squares Method

As an example of an application where these interconnections between the spaces is useful,
we consider the linear least squares problem. Suppose we are given a set of data points
{(xi, fi)}, i = 1, . . . , n. These could be measurements from an experiment or obtained
simply by evaluating a function at some points. Suppose further that we want to fit a
polynomial to these data points in some way. As a concrete example suppose we have the
three points specifically given by

(1, 2.2) (.8, 2.4) (0, 4.25)

and we expect them to lie in a line but due to experimental error, they don’t. We would
like to draw a line and have the line be the best representation of the points. If we only
have two points then the line will pass through both points and so the error is zero at
each point. However, if we have more than two data points, then we can’t find a line that
passes through the three points (unless they happen to be collinear) so we have to find
a line which is a good approximation in some sense. Of course we need to define what
we mean by a good representation. We could create an error vector of length n and each
component measures the difference |fi − y(xi)| where y = a1x + a0 is the line we fit the
data with. Then we can take a norm of this error vector and our goal is to find the line
which minimizes this error vector. Of course we have to specify what norm we want to
use. The linear least squares problem finds the line which minimizes this difference in the
ℓ2 (Euclidean) norm.

Example Consider the data points given above. Our ultimate goal is to find a line
which fits the data in a linear least squares sense. For now, write the overdetermined
system assuming our polynomial is p1(x) = a0 + a1x and state when it has a solution.

Our equations are
a0 + a1(1) = 2.1

a0 + a1(.8) = 2.5

a0 + a1(0) = 4.1

Writing this as a matrix problem A~x = ~b we have





1 1
1 0.8
1 0





(

a0

a1

)

=





2.2
2.4
4.25





Now we know that this over-determined problem has a solution if the right hand side is in
R(A) (i.e., is a linear combination of the columns of the coefficient matrix A). Here the
rank of A is clearly 2 and thus not all of IR3. Moreover, (2.2, 2.4, 4.25)T is not in the R(A),

1



i.e., not in the span{(1, 1, 1)T , (1, 0.8, 0)T} and so the system doesn’t have a solution. This
just means that we can’t find a line that passes through all three points.

Because we can’t solve this over-determined problem A~x = ~b in general we find a ~z which
is a good approximation. To this end, we look at the residual ~b − A~z and make this as
small as possible; of course we must choose a norm. The linear least squares problem uses
the Euclidean length, i.e., ℓ2 norm. Looking at the ith component of the residual ~b − A~z
we see that bi is just the y coordinate of the data we are given and (A~z)i is our equation
evaluated at xi so each component of the residual is the vertical difference at xi, fi−y(xi).

Example If our data had been

(1, 2.1) (0.8, 2.5) (0, 4.1)

then would we have had a solution to the over-determined system?

Our matrix problem A~x = ~b is





1 1
1 0.8
1 0





(

a0

a1

)

=





2.1
2.5
4.1





and we notice that in this case, the right hand side is in R(A) because





2.1
2.5
4.1



 = 4.1





1
1
1



 − 2





1
0.8
0





and thus the system is solvable and we have the line 4.1 − 2x which passes through all
three points.

Consider the over-determined system A~x = ~b where A is m × n with m > n. The linear
least squares problem is to

find a vector ~x which minimizes the ℓ2 norm of the residual ‖~b − A~z‖2 for all ~z ∈ IRn

We note that minimizing the ℓ2 norm of the residual is equivalent to minimizing its square.
This often easier to work with because we avoid dealing with square roots. So we rewrite
the problem as

find a vector ~x which minimizes the square of the ℓ2 norm ‖~b − A~z‖2

2
for all ~z ∈ IRn

Theorem The linear least squares problem always has a solution. It is unique if A has
linearly independent columns. The solution of the problem can be found by solving the
normal equations

AT A~y = ~b .
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Before we prove this, lets look at the matrix AT A. Clearly it is symmetric because

(AT A)T = AT (AT )T = AT A

but is it positive definite? Recall that a matrix B is positive definite if ~xT B~x > 0 for all
~x 6= 0. We have

~xT (AT A)~x = (~xT AT )(A~x) = (A~x)T (A~x) = ~yT ~y where ~y = A~x

Now yT y is just the scalar (or inner or dot) product of a vector with itself and also it is
the square of the Euclidean length of ~y which is always non-negative. It is only zero if
~y = ~0. Can ~y ever be zero? Remember that y = A~x so if ~x ∈ N (A) then ~y = ~0. When can
the rectangular matrix A have something in the null space other than the zero vector? If
we can take a linear combination of the columns of A (with coefficients nonzero) and get
zero, i.e., if the columns of A are linearly dependent. Another way to say this is that if
the columns of A are linearly independent, then AT A is positive definite; otherwise it is
positive semi-definite (meaning that xT AT Ax ≥ 0). Notice in our theorem we have that
the solution is unique if A has linearly independent columns.

Proof First we show that the problem always has a solution. Recall that R(A) and
N (AT ) are orthogonal complements in IRm. This tells us that we can write any vector in

IRm as the sum of a vector in R(A) and one in N (AT ). To this end we write ~b = ~b1 +~b2

where ~b1 ∈ R(A) and ~b2 ∈ R(A)⊥ = N (AT ). Now we have

~b − A~x = ~b1 +~b2 − A~x = ~b2

because ~b1 ∈ R(A) and so the equation A~x = ~b1 is always solvable. When we take the

ℓ2 norm we see that the residual is ‖~b2‖2; we can never get rid of this unless ~b ∈ R(A)

entirely. So the problem is always solvable. When does A~x = ~b1 have a unique solution?
It is unique when the columns of A are linearly independent. Lastly we must show that
the way to find the solution ~x is by solving the normal equations. If we knew what ~b1

was, then we could simply solve A~x = ~bf1 but we don’t know what the decomposition of
~b = ~b1 + ~b2 is, simply that it is guaranteed to exist. To demonstrate that the ~x which
minimizes ‖~b − A~x‖2 is found by solving AT A~x = AT~b we first note that these normal

equations can be written as AT (~b − A~x) = ~0 which is just AT times the residual vector.
From what we have already done we know that

AT (~b − A~x) = AT (~b1 +~b2 − A~x) = AT (~b2)

Recall that ~b2 ∈ R(A)⊥ = N (AT ) which means that AT~b2 = ~0 and we have that

AT (~b − A~x) = ~0 ⇒ AT A~x = AT~b

So the proof relied upon the fact that R(A) and N (AT ) are orthogonal complements and
that this implies we can write any vector as the sum of a vector in R(A) and its orthogonal
complement.
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Example We return to our previous example and now determine the line which fits the
data in the linear least squares sense; after we obtain the line we will compute the ℓ2 norm
of the residual.

We now know that to solve the linear least squares problem has a solution and in our case
it is unique because A has linearly independent columns. All we have to do is form the
normal equations and solve as usual. The normal equations

(

1 1 1
1 0.8 0

)





1 1
1 0.8
1 0





(

a0

a1

)

=

(

1 1 1
1 0.8 0

)





2.2
2.4
4.25





are simplified as
(

3.0 1.8
1.8 1.64

) (

a0

a1

)

=

(

8.85
4.12

)

which has the solution () giving the line y(x) = 4.225−2.125x. If we calculate the residual
vector we have





2.2 − y(1)
2.4 − y(0.8)
4.25 − y(0)



 =





0.1
−0.125
0.025





which has an ℓ2 norm of 0.162019.

We said that we only talked about the inverse of a square matrix. However, one can define
a pseudo-inverse of a rectangular matrix. If A is an m×n matrix with linearly independent
columns then a pseudo-inverse (or sometimes called left inverse of A ) is (AT A)−1AT . Note
that

[

(AT A)−1AT
]

A = (AT A)−1(AT A) = I

Example Find the quadratic polynomial which fits the following data in a linear least
squares sense and calculate the ℓ2 norm of the residual vector.

(0, 0) (1, 1) (3, 2) (4, 5)

In this case we seek a polynomial of the form p(x) = a0 +a1x+a2x
2. Our over determined

system is






1 0 0
1 1 1
1 3 9
1 4 16











a0

a1

a2



 =







0
1
2
5







so that the normal equations are





1 1 1 1
0 1 3 4
0 1 9 16











1 0 0
1 1 1
1 3 9
1 4 16











a0

a1

a2



 =





1 1 1 1
0 1 3 4
0 1 9 16











0
1
2
5
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leading to the square system





4 8 26
8 26 92
26 92 338









a0

a1

a2



 =





8
27
99





Solving this we get a0 = 3/10, a1 = 7/30, a2 = 1/3. Our residual vector is

~r =







0 − p(0)
1 − p(1)
2 − p(3)
5 − p(4)






=







0.3
0.6
0.6
0.3







Orthonormal vectors

We know that two vectors, ~x, ~y, are orthogonal provided ~xT ~y = 0. We give a special name
to vectors which are orthogonal and have Euclidean length one.

Definition A set of vectors {~vj}n
j=1

are called orthonormal provided

~vT
i ~vj =

{

0 if i 6= j
1 if i = j

Example Is there a connection between linear independence and orthogonal or orthonor-
mal vectors?

We claim that a set of nonzero orthogonal vectors (and thus orthonormal vectors) are
always linearly independent. To see this we will use proof by contradiction; that is, we
will assume that the orthogonal vectors are linearly dependent and get a contradiction.
Let {~vj}n

j=1
be a set of orthogonal vectors and suppose they are linearly dependent. Then

there are constants ci where not all ci = 0 such that

c1~v1 + c2~v2 + · · · + cn~vn = ~0

The contradiction we will obtain is that ci = 0 for all i. We now take ~vj for arbitrary j
and dot it into each side of this equation. We obtain

~vT
j (c1~v1 + c2~v2 + · · ·+ cn~vn) = ~vT

j
~0 ⇒ c1~v

T
j ~v1 + c2~v

T
j ~v2 + · · ·+ cn~vT

j ~vn) = 0

But because the vectors are orthogonal all the terms but one disappear to give

cj~v
T
j ~vj = 0 ⇒ cj = 0

Because j was arbitrary it must hold for all j and thus all constants cj = 0. Thus a set of
orthogonal or orthonormal vectors are linearly independent.
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Example Show that the following set of vectors form an orthonormal basis for IR3.

~v1 =





1
0
0



 , ~v2 =
1√
2





0
1
1



 , ~v3 =
1√
2





0
1
−1



 ,

Clearly each vector has Euclidean length one and if we take the dot product of any vector
with another it is zero. We have

~vT
1
~v2 = 1 · 0 + 0(

1√
2

+ 0(
1√
2

= 0 ~vT
1
~v3 = 0

and

~vT
2
~v3 =

1

2
(1) +

1

2
(−1) = 0

These vectors form a basis because there are three of them and they are linearly indepen-
dent because they are orthonormal.

What characteristics does a square matrix have if its columns are orthonormal? Let U be
an m×n matrix whose columns are orthonormal vectors ~uj in IRm. Then UT U = I so that
U−1 = UT and U is an orthogonal matrix. Consequently the columns of an orthogonal
matrix are orthonormal.

An orthogonal matrix is very special. It preserves the Euclidean length of a vector, i.e., if
Q is orthogonal

‖Q~x‖2 = ‖~x‖2

To see this we write the ℓ2 norm as an inner product and use the definition of an orthogonal
matrix

‖Q~x‖2

2
= (Q~x)T (Q~x) = ~xT QT Q~x = ~xT~x = ‖~x‖2

2

We will also see that K2(Q) = 1 which means it is the best conditioned matrix available.

Suppose we have a set of linearly independent vectors in IRn and we want to use them to
generate a set of orthonormal vectors. There is a systematic way to do this called the Gram
Schmidt Orthogonalization Method. Note that if we make the set of vectors orthogonal,
then it is easy to make them orthonormal – we just divide each vector by its Euclidean
length. For example we can make ~v1 = (1, 2)T have length one by dividing each term by√

5. To see how this method works we will first take a basis in IR2 and convert it to an
orthonormal basis. Then we can see how this can be generalized to IRn.

Example The two vectors ~v1 = (1, 2)T and ~v2 = (2, 3)T in IR2 form a basis; use them to
generate an orthonormal basis.

Our strategy will be to construct two orthogonal vectors, say ~u1, ~u2 (i.e., ~uT
1
~u2 = 0)

from ~v1, ~v2 and then normalize them to get ~e1, ~e2. We will take ~u1 = ~v1 to start and then
construct ~u2 using ~u1 and ~v2. Recall that in IR2 the projection of a vector ~v onto ~u denoted
proj~u~v is a vector given by dropping a perpendicular from ~v to ~u and computing the length
of this line segment and then multiplying it by a unit vector in the direction of ~u. (A unit
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vector in the direction of ~u is just ~u/‖~u‖2.) If θ is the angle between the two vectors then
the length of this projection, denoted proj~u~v is found from

cos θ =
proj~u~v

‖~v‖2

⇒ proj~u~v = ‖~v‖2 cos θ

Note that ~v can be written as the sum of the projection vector plus a vector that is
orthogonal to ~u. Using the fact that ~u · ~v = ‖~u‖2‖~v‖2 cos θ we get that the length of the
projection is given by

proj~u~v = ‖~v‖2

~u · ~v
‖~u‖2‖~v‖2

=
~u · ~v
‖~u‖2

.

Then a vector with this magnitude is found by multiplying it by the unit vector ~u/‖~u‖2

so we have

~proj~u~v =
~u · ~v
‖~u‖2

~u

‖~u‖2

=
~u · ~v
~u · ~u ~u

To create our orthonormal basis ~e1, ~e2 we set

~u1 = ~v1 and ~e1 =
~u1

‖~u1‖2

~u2 = ~v2 − ~proj~u1
~v2 and ~e2 =

~u2

‖~u2‖2

Note that ~u1, ~u2 are orthogonal because we have subtracted off the part that is not orthog-
onal; this can be formally shown by

~u1 · ~u2 = ~u1 · ~v2 − ~u1 ·
(~u1 · ~v2

~u1 · ~u1

~u1

)

= ~u1 · ~v2 − (~u1 · ~v2)
~u1 · ~u1

~u1 · ~u1

= 0

For our specific vectors we have

~e1 =
1√
5
(1, 2)T = (

1√
5
,
2

5
)T

and

~u2 = (2, 3)T − (1, 2)T (2, 3)

5
(1, 2)T = (2, 3)T − 8

5
(1, 2)T = (

2

5
,−1

5
)T

and thus

‖(2

5
,−1

5
)‖ =

1√
5
⇒ ~e2 =

1√
5
(
2

5
,−1

5
)T

Clearly our vectors are orthogonal since

1√
5
(1, 2)T 1√

5
(
2

5
,−1

5
)T = 0
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This algorithm can be extended to vectors in IR3 easily by calculating ~u1, ~u2 as above and
when calculating ~u3 we just subtract off the component of both ~u1 and ~u2 in the direction
of ~v3, i.e.,

~u3 = ~v3 − ~proj~u1
~v3 − ~proj~u2

~v3

Clearly this can be extended to IRn in an analogous manner.

QR Decompositions

We have already looked at the decomposition of a square matrix A as A = LU where L
was unit lower triangular and U was upper triangular. We now want to consider another
decomposition where an orthogonal matrix is used and A can be rectangular. We first look
at the case where A is square.

Theorem Let A be an n×n matrix with linearly independent columns. Then A can be
uniquely written as

A = QR

where Q is an n×n orthogonal matrix and R is upper triangular n×n matrix with positive
diagonal entries.

To prove this result we consider the n × n matrix AT A which we know is symmetric and
because A has linearly independent columns it is also positive definite. From previous work
we know that a symmetric positive definite matrix has a unique LLT decomposition where
L is lower triangular with positive diagonal entries. We first show that Q = A(LT )−1 is
an orthogonal matrix. To this end, we must show that QT Q = I. Using the fact that
AT A = LLT we have

QT Q = (A(LT )−1)T (A(LT )−1) = L−1AT A(LT )−1 = L−1LLT (LT )−1 = I

So if A is a square matrix, then we take R = LT and because we have shown that Q =
A(LT )−1 = AR−1 is an orthogonal matrix then we have A = QR. R has positive diagonal
entries because L did.

To show that the decomposition is unique, we assume there are two such decompositions
and get a contradiction. Let

A = Q1R1 and A = Q2R2

where QT
1
Q1 = I and QT

2
Q2 = I and R1 6= R2. Now writing AT A with each of these two

decompositions gives

AT A = (Q1R1)
T (Q1R1) = RT

1
QT

1
Q1R1 = RT

1
R1

and
AT A = (Q2R2)

T (Q2R2) = RT
2
QT

2
Q2R2 = RT

2
R2

Thus
AT A = RT

1
R1 = RT

2
R2
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But this says that there are two different LLT decompositions of AT A where each L has
positive diagonal entries. However, we have proved that the LLT decomposition is unique
if we choose the signs of the diagonal entries. Consequently we have a contradiction and
thus the decomposition is unique.

The proof of this theorem actually gives us a way to construct a QR decomposition of
a matrix. We first form AT A, do a Cholesky decomposition and thus have R and form
Q = AR−1. This can be done by hand, but is NOT a good approach computationally.

It turns out that an analogous result holds if A is an m × n matrix.

Theorem Let A be an m × n matrix with linearly independent columns. Then A can
be uniquely written as

A = QR

where Q is an m × m orthogonal matrix and R is upper triangular m × n matrix with
positive diagonal entries.

We note that because A is m × n and has linearly independent columns this says that
n ≤ m.

The QR decomposition can be used to solve a square linear system A~x = ~b. We write

A~x = ~b, A = QR ⇒ QR~x = ~b ⇒ R~x = QT~b

Once we form QT~b we are left with an upper triangular system to solve by a back solve.
Computationally the QR decomposition is still O(n3) for an n×n matrix but the coefficient
of n3 is larger than for LU decomposition so it is more expensive. However, because an
orthogonal matrix is so well-conditioned, it is useful if you know that A is ill-conditioned.

The QR decomposition can be used to easily solve the linear least squares problem. Recall
that the unique solution to the linear least squares problem when A has linearly indepen-
dent columns is found from the normal equations

AT A~x = AT~b ⇒ ~x = (AT A)−1AT~b

Thus if we have that A = QR we have

~x = (AT A)−1AT~b =
[

(QR)T (QR)
]−1

(QR)T~b =
[

RT QT QR
]−1

RT QT~b

⇒ ~x =
[

RT R
]−1

RT QT~b = R−1R−T RT QT~b = R−1QT~b

Thus once we have the decomposition A = QR then we perform the matrix times vector
multiplication QT~b and then solve the upper triangular system

R~x = QT~b
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