
A FEniCS Tutorial

Hans Petter Langtangen1,2

1Center for Biomedical Computing, Simula Research Laboratory

2Department of Informatics, University of Oslo

Nov 12, 2011

Contents

1 Fundamentals 4

1.1 The Poisson equation . 5
1.2 Variational Formulation . 6
1.3 Implementation . 8
1.4 Controlling the Solution Process 15
1.5 Linear Variational Problem and Solver Objects 17
1.6 Examining the Discrete Solution 17
1.7 Solving a Real Physical Problem 20
1.8 Quick Visualization with VTK 24
1.9 Computing Derivatives . 26
1.10 A Variable-Coefficient Poisson Problem 28
1.11 Computing Functionals . 31
1.12 Visualization of Structured Mesh Data 35
1.13 Combining Dirichlet and Neumann Conditions 38
1.14 Multiple Dirichlet Conditions . 42
1.15 A Linear Algebra Formulation . 43
1.16 Parameterizing the Number of Space Dimensions 46

2 Nonlinear Problems 48

2.1 Picard Iteration . 49
2.2 A Newton Method at the Algebraic Level 51
2.3 A Newton Method at the PDE Level 54
2.4 Solving the Nonlinear Variational Problem Directly 55

3 Time-Dependent Problems 58

3.1 A Diffusion Problem and Its Discretization 59
3.2 Implementation . 60
3.3 Avoiding Assembly . 63
3.4 A Physical Example . 66

4 Creating More Complex Domains 71

4.1 Built-In Mesh Generation Tools 71
4.2 Transforming Mesh Coordinates 72

5 Handling Domains with Different Materials 73

5.1 Working with Two Subdomains 74
5.2 Implementation . 75
5.3 Multiple Neumann, Robin, and Dirichlet Condition 77

6 More Examples 81

2

7 Miscellaneous Topics 82

7.1 Glossary . 82
7.2 Overview of Objects and Functions 83
7.3 User-Defined Functions . 84
7.4 Linear Solvers and Preconditioners 85
7.5 Using a Backend-Specific Solver 86
7.6 Installing FEniCS . 87
7.7 Troubleshooting: Compilation Problems 88
7.8 Books on the Finite Element Method 89
7.9 Books on Python . 90
7.10 Acknowledgments . 90

8 Bibliography 90

3

This document presents a FEniCS tutorial to get new users quickly up and
running with solving differential equations. FEniCS can be programmed both
in C++ and Python, but this tutorial focuses exclusively on Python program-
ming, since this is the simplest approach to exploring FEniCS for beginners and
since it actually gives high performance. After having digested the examples in
this tutorial, the reader should be able to learn more from the FEniCS docu-
mentation, the numerous demos, and the FEniCS book Automated Solution of
Differential Equations by the Finite element Method: The FEniCS book, edited
by Logg, Mardal, and Wells, to be published by Springer early 2012.

The tutorial is still in an initial state so the reader is encouraged to send
email to the author on hpl@simula.no about typos, errors, and suggestions for
improvements.

1 Fundamentals

FEniCS is a user-friendly tool for solving partial differential equations (PDEs).
The goal of this tutorial is to get you started with FEniCS through a series of
simple examples that demonstrate

• how to define the PDE problem in terms of a variational problem,

• how to define simple domains,

• how to deal with Dirichlet, Neumann, and Robin conditions,

• how to deal with variable coefficients,

• how to deal with domains built of several materials (subdomains),

• how to compute derived quantities like the flux vector field or a functional
of the solution,

• how to quickly visualize the mesh, the solution, the flux, etc.,

• how to solve nonlinear PDEs in various ways,

• how to deal with time-dependent PDEs,

• how to set parameters governing solution methods for linear systems,

• how to create domains of more complex shape.

The mathematics of the illustrations is kept simple to better focus on FEniCS
functionality and syntax. This means that we mostly use the Poisson equation
and the time-dependent diffusion equation as model problems, often with input
data adjusted such that we get a very simple solution that can be exactly repro-
duced by any standard finite element method over a uniform, structured mesh.
This latter property greatly simplifies the verification of the implementations.
Occasionally we insert a physically more relevant example to remind the reader

4

that changing the PDE and boundary conditions to something more real might
often be a trivial task.

FEniCS may seem to require a thorough understanding of the abstract math-
ematical version of the finite element method as well as familiarity with the
Python programming language. Nevertheless, it turns out that many are able
to pick up the fundamentals of finite elements and Python programming as they
go along with this tutorial. Simply keep on reading and try out the examples.
You will be amazed of how easy it is to solve PDEs with FEniCS!

Reading this tutorial obviously requires access to a machine where the FEn-
iCS software is installed. Section 7.6 explains briefly how to install the necessary
tools.

All the examples discussed in the following are available as executable Python
source code files in a directory tree.

1.1 The Poisson equation

Our first example regards the Poisson problem,

−∇2u(xxx) = f(xxx), xxx in Ω, (1)

u(xxx) = u0(xxx), xxx on ∂Ω . (2)

Here, u(xxx) is the unknown function, f(xxx) is a prescribed function, ∇2 is the
Laplace operator (also often written as ∆), Ω is the spatial domain, and ∂Ω
is the boundary of Ω. A stationary PDE like this, together with a complete
set of boundary conditions, constitute a boundary-value problem, which must be
precisely stated before it makes sense to start solving it with FEniCS.

In two space dimensions with coordinates x and y, we can write out the
Poisson equation as

−
∂2u

∂x2
−

∂2u

∂y2
= f(x, y) . (3)

The unknown u is now a function of two variables, u(x, y), defined over a two-
dimensional domain Ω.

The Poisson equation arises in numerous physical contexts, including heat
conduction, electrostatics, diffusion of substances, twisting of elastic rods, in-
viscid fluid flow, and water waves. Moreover, the equation appears in numeri-
cal splitting strategies of more complicated systems of PDEs, in particular the
Navier-Stokes equations.

Solving a physical problem with FEniCS consists of the following steps:

1. Identify the PDE and its boundary conditions.

2. Reformulate the PDE problem as a variational problem.

3. Make a Python program where the formulas in the variational problem
are coded, along with definitions of input data such as f , u0, and a mesh
for the spatial domain Ω.

5

4. Add statements in the program for solving the variational problem, com-
puting derived quantities such as ∇u, and visualizing the results.

We shall now go through steps 2–4 in detail. The key feature of FEniCS is that
steps 3 and 4 result in fairly short code, while most other software frameworks
for PDEs require much more code and more technically difficult programming.

1.2 Variational Formulation

FEniCS makes it easy to solve PDEs if finite elements are used for discretization
in space and the problem is expressed as a variational problem. Readers who are
not familiar with variational problems will get a brief introduction to the topic
in this tutorial, but getting and reading a proper book on the finite element
method in addition is encouraged. Section 7.8 contains a list of some suitable
books.

The core of the recipe for turning a PDE into a variational problem is to
multiply the PDE by a function v, integrate the resulting equation over Ω, and
perform integration by parts of terms with second-order derivatives. The func-
tion v which multiplies the PDE is in the mathematical finite element literature
called a test function. The unknown function u to be approximated is referred
to as a trial function. The terms test and trial function are used in FEniCS
programs too. Suitable function spaces must be specified for the test and trial
functions. For standard PDEs arising in physics and mechanics such spaces are
well known.

In the present case, we first multiply the Poisson equation by the test func-
tion v and integrate,

−

∫

Ω

(∇2u)v dx =

∫

Ω

fv dx . (4)

Then we apply integration by parts to the integrand with second-order deriva-
tives,

−

∫

Ω

(∇2u)v dx =

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds, (5)

where ∂u
∂n is the derivative of u in the outward normal direction at the boundary.

The test function v is required to vanish on the parts of the boundary where u is
known, which in the present problem implies that v = 0 on the whole boundary
∂Ω. The second term on the right-hand side of (5) therefore vanishes. From (4)
and (5) it follows that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx . (6)

This equation is supposed to hold for all v in some function space V̂ . The trial
function u lies in some (possibly different) function space V . We refer to (6) as
the weak form of the original boundary-value problem (1)–(2).

6

The proper statement of our variational problem now goes as follows: Find
u ∈ V such that

∫

Ω

∇u · ∇v dx =

∫

Ω

fv dx ∀v ∈ V̂ . (7)

The test and trial spaces V̂ and V are in the present problem defined as

V̂ = {v ∈ H1(Ω) : v = 0 on ∂Ω},

V = {v ∈ H1(Ω) : v = u0 on ∂Ω} .

In short, H1(Ω) is the mathematically well-known Sobolev space containing
functions v such that v2 and ||∇v||2 have finite integrals over Ω. The solution of
the underlying PDE must lie in a function space where also the derivatives are
continuous, but the Sobolev space H1(Ω) allows functions with discontinuous
derivatives. This weaker continuity requirement of u in the variational statement
(7), caused by the integration by parts, has great practical consequences when
it comes to constructing finite elements.

To solve the Poisson equation numerically, we need to transform the contin-
uous variational problem (7) to a discrete variational problem. This is done by
introducing finite-dimensional test and trial spaces, often denoted as V̂h ⊂ V̂
and Vh ⊂ V . The discrete variational problem reads: Find uh ∈ Vh ⊂ V such
that

∫

Ω

∇uh · ∇v dx =

∫

Ω

fv dx ∀v ∈ V̂h ⊂ V̂ . (8)

The choice of V̂h and Vh follows directly from the kind of finite elements we
want to apply in our problem. For example, choosing the well-known linear
triangular element with three nodes implies that V̂h and Vh are the spaces of
all piecewise linear functions over a mesh of triangles, where the functions in V̂h

are zero on the boundary and those in Vh equal u0 on the boundary.
The mathematics literature on variational problems writes uh for the solution

of the discrete problem and u for the solution of the continuous problem. To
obtain (almost) a one-to-one relationship between the mathematical formulation
of a problem and the corresponding FEniCS program, we shall use u for the
solution of the discrete problem and ue for the exact solution of the continuous
problem, if we need to explicitly distinguish between the two. In most cases,
we will introduce the PDE problem with u as unknown, derive a variational
equation a(u, v) = L(v) with u ∈ V and v ∈ V̂ , and then simply discretize the
problem by saying that we choose finite-dimensional spaces for V and V̂ . This
restriction of V implies that u becomes a discrete finite element function. In
practice, this means that we turn our PDE problem into a continuous variational
problem, create a mesh and specify an element type, and then let V correspond
to this mesh and element choice. Depending upon whether V is infinite- or
finite-dimensional, u will be the exact or approximate solution.

It turns out to be convenient to introduce the following unified notation for
linear weak forms:

a(u, v) = L(v) . (9)

7

In the present problem we have that

a(u, v) =

∫

Ω

∇u · ∇v dx, (10)

L(v) =

∫

Ω

fv dx . (11)

From the mathematics literature, a(u, v) is known as a bilinear form and L(v)
as a linear form. We shall in every linear problem we solve identify the terms
with the unknown u and collect them in a(u, v), and similarly collect all terms
with only known functions in L(v). The formulas for a and L are then coded
directly in the program.

To summarize, before making a FEniCS program for solving a PDE, we must
first perform two steps:

• Turn the PDE problem into a discrete variational problem: find u ∈ V
such that a(u, v) = L(v) ∀v ∈ V̂ .

• Specify the choice of spaces (V and V̂), which means specifying the mesh
and type of finite elements.

1.3 Implementation

The test problem so far has a general domain Ω and general functions u0 and
f . For our first implementation we must decide on specific choices of Ω, u0, and
f . It will be wise to construct a specific problem where we can easily check that
the computed solution is correct. Let us start with specifying an exact solution

ue(x, y) = 1 + x2 + 2y2 (12)

on some 2D domain. By inserting (12) in our Poisson problem, we find that
ue(x, y) is a solution if

f(x, y) = −6, u0(x, y) = ue(x, y) = 1 + x2 + 2y2,

regardless of the shape of the domain. We choose here, for simplicity, the domain
to be the unit square,

Ω = [0, 1]× [0, 1].

The reason for specifying the solution (12) is that the finite element method,
with a rectangular domain uniformly partitioned into linear triangular elements,
will exactly reproduce a second-order polynomial at the vertices of the cells,
regardless of the size of the elements. This property allows us to verify the
implementation by comparing the computed solution, called u in this document
(except when setting up the PDE problem), with the exact solution, denoted
by ue: u should equal u to machine precision at the nodes. Test problems with
this property will be frequently constructed throughout this tutorial.

A FEniCS program for solving the Poisson equation in 2D with the given
choices of u0, f , and Ω may look as follows:

8

"""
FEniCS tutorial demo program: Poisson equation with Dirichlet conditions.
Simplest example of computation and visualization with FEniCS.

-Laplace(u) = f on the unit square.
u = u0 on the boundary.
u0 = u = 1 + x^2 + 2y^2, f = -6.
"""

from dolfin import *

Create mesh and define function space
mesh = UnitSquare(6, 4)
#mesh = UnitCube(6, 4, 5)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary conditions
u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

def u0_boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, u0, u0_boundary)

Define variational problem
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

Compute solution
u = Function(V)
solve(a == L, u, bc)

Plot solution and mesh
plot(u)
plot(mesh)

Dump solution to file in VTK format
file = File(’poisson.pvd’)
file << u

Hold plot
interactive()

The complete code can be found in the file d1_p2D.py in the directory
stationary/poisson.

We shall now dissect this FEniCS program in detail. The program is writ-
ten in the Python programming language. You may either take a quick look
at the official Python tutorial to pick up the basics of Python if you are un-
familiar with the language, or you may learn enough Python as you go along
with the examples in the present tutorial. The latter strategy has proven to
work for many newcomers to FEniCS. (The requirement of using Python and
an abstract mathematical formulation of the finite element problem may seem
difficult for those who are unfamiliar with these topics. However, the amount
of mathematics and Python that is really demanded to get you productive with

9

http://docs.python.org/tutorial/

FEniCS is quite limited. And Python is an easy-to-learn language that you
certainly will love and use far beyond FEniCS programming.) Section 7.9 lists
some relevant Python books.

The listed FEniCS program defines a finite element mesh, the discrete func-
tion spaces V and V̂ corresponding to this mesh and the element type, boundary
conditions for u (the function u0), a(u, v), and L(v). Thereafter, the unknown
trial function u is computed. Then we can investigate u visually or analyze the
computed values.

The first line in the program,

from dolfin import *

imports the key classes UnitSquare, FunctionSpace, Function, and so forth,
from the DOLFIN library. All FEniCS programs for solving PDEs by the finite
element method normally start with this line. DOLFIN is a software library
with efficient and convenient C++ classes for finite element computing, and
dolfin is a Python package providing access to this C++ library from Python
programs. You can think of FEniCS as an umbrella, or project name, for a
set of computational components, where DOLFIN is one important component
for writing finite element programs. The from dolfin import * statement
imports other components too, but newcomers to FEniCS programming do not
need to care about this.

The statement

mesh = UnitSquare(6, 4)

defines a uniform finite element mesh over the unit square [0, 1] × [0, 1]. The
mesh consists of cells, which are triangles with straight sides. The parameters
6 and 4 tell that the square is first divided into 6 × 4 rectangles, and then
each rectangle is divided into two triangles. The total number of triangles then
becomes 48. The total number of vertices in this mesh is 7 · 5 = 35. DOLFIN
offers some classes for creating meshes over very simple geometries. For domains
of more complicated shape one needs to use a separate preprocessor program to
create the mesh. The FEniCS program will then read the mesh from file.

Having a mesh, we can define a discrete function space V over this mesh:

V = FunctionSpace(mesh, ’Lagrange’, 1)

The second argument reflects the type of element, while the third argument is
the degree of the basis functions on the element. The type of element is here
”Lagrange”, implying the standard Lagrange family of elements. (Some FEniCS
programs use ’CG’, for Continuous Galerkin, as a synonym for ’Lagrange’.)
With degree 1, we simply get the standard linear Lagrange element, which is a
triangle with nodes at the three vertices. Some finite element practitioners refer
to this element as the ”linear triangle”. The computed u will be continuous
and linearly varying in x and y over each cell in the mesh. Higher-degree

10

polynomial approximations over each cell are trivially obtained by increasing
the third parameter in FunctionSpace. Changing the second parameter to
’DG’ creates a function space for discontinuous Galerkin methods.

In mathematics, we distinguish between the trial and test spaces V and
V̂ . The only difference in the present problem is the boundary conditions. In
FEniCS we do not specify the boundary conditions as part of the function space,
so it is sufficient to work with one common space V for the and trial and test
functions in the program:

u = TrialFunction(V)
v = TestFunction(V)

The next step is to specify the boundary condition: u = u0 on ∂Ω. This is
done by

bc = DirichletBC(V, u0, u0_boundary)

where u0 is an instance holding the u0 values, and u0_boundary is a function
(or object) describing whether a point lies on the boundary where u is specified.

Boundary conditions of the type u = u0 are known as Dirichlet conditions,
and also as essential boundary conditions in a finite element context. Naturally,
the name of the DOLFIN class holding the information about Dirichlet boundary
conditions is DirichletBC.

The u0 variable refers to an Expression object, which is used to represent
a mathematical function. The typical construction is

u0 = Expression(formula)

where formula is a string containing the mathematical expression. This formula
is written with C++ syntax (the expression is automatically turned into an ef-
ficient, compiled C++ function, see Section 7.3 for details on the syntax). The
independent variables in the function expression are supposed to be available as
a point vector x, where the first element x[0] corresponds to the x coordinate,
the second element x[1] to the y coordinate, and (in a three-dimensional prob-
lem) x[2] to the z coordinate. With our choice of u0(x, y) = 1 + x2 + 2y2, the
formula string must be written as 1 + x[0]*x[0] + 2*x[1]*x[1]:

u0 = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)

The information about where to apply the u0 function as boundary condition
is coded in a function u0_boundary:

def u0_boundary(x, on_boundary):
return on_boundary

A function like u0_boundary for marking the boundary must return a boolean
value: True if the given point x lies on the Dirichlet boundary and False

11

otherwise. The argument on_boundary is True if x is on the physical boundary
of the mesh, so in the present case, where we are supposed to return True for all
points on the boundary, we can just return the supplied value of on_boundary.
The u0_boundary function will be called for every discrete point in the mesh,
which allows us to have boundaries where u are known also inside the domain,
if desired.

One can also omit the on_boundary argument, but in that case we need to
test on the value of the coordinates in x:

def u0_boundary(x):
return x[0] == 0 or x[1] == 0 or x[0] == 1 or x[1] == 1

As for the formula in Expression objects, x in the u0_boundary function rep-
resents a point in space with coordinates x[0], x[1], etc. Comparing floating-
point values using an exact match test with == is not good programming prac-
tice, because small round-off errors in the computations of the x values could
make a test x[0] == 1 become false even though x lies on the boundary. A
better test is to check for equality with a tolerance:

def u0_boundary(x):
tol = 1E-15
return abs(x[0]) < tol or \

abs(x[1]) < tol or \
abs(x[0] - 1) < tol or \
abs(x[1] - 1) < tol

Before defining a(u, v) and L(v) we have to specify the f function:

f = Expression(’-6’)

When f is constant over the domain, f can be more efficiently represented as a
Constant object:

f = Constant(-6.0)

Now we have all the objects we need in order to specify this problem’s a(u, v)
and L(v):

a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

In essence, these two lines specify the PDE to be solved. Note the very close
correspondence between the Python syntax and the mathematical formulas
∇u · ∇v dx and fv dx. This is a key strength of FEniCS: the formulas in the
variational formulation translate directly to very similar Python code, a feature
that makes it easy to specify PDE problems with lots of PDEs and complicated
terms in the equations. The language used to express weak forms is called UFL
(Unified Form Language) and is an integral part of FEniCS.

12

Instead of nabla_grad we could also just have written grad in the examples
in this tutorial. However, when taking gradients of vector fields, grad and
nabla_grad differ. The latter is consistent with the tensor algebra commonly
used to derive vector and tensor PDEs, where the ”nabla” acts as a vector
operator, and therefore this author prefers to always use nabla_grad.

Having a and L defined, and information about essential (Dirichlet) boundary
conditions in bc, we can compute the solution, a finite element function u, by

u = Function(V)
solve(a == L, u, bc)

Some prefer to replace a and L by an equation variable, which is accomplished
by this equivalent code:

equation = inner(nabla_grad(u), nabla_grad(v))*dx == f*v*dx
u = Function(V)
solve(equation, u, bc)

Note that we first defined the variable u as a TrialFunction and used it
to represent the unknown in the form a. Thereafter, we redefined u to be a
Function object representing the solution, i.e., the computed finite element
function u. This redefinition of the variable u is possible in Python and often
done in FEniCS applications. The two types of objects that u refers to are
equal from a mathematical point of view, and hence it is natural to use the
same variable name for both objects. In a program, however, TrialFunction
objects must always be used for the unknowns in the problem specification (the
form a), while Function objects must be used for quantities that are computed
(known).

The simplest way of quickly looking at u and the mesh is to say

plot(u)
plot(mesh)
interactive()

The interactive() call is necessary for the plot to remain on the screen. With
the left, middle, and right mouse buttons you can rotate, translate, and zoom
(respectively) the plotted surface to better examine what the solution looks like.
Figures 1 and 2 display the resulting u function and the finite element mesh,
respectively.

It is also possible to dump the computed solution to file, e.g., in the VTK
format:

file = File(’poisson.pvd’)
file << u

The poisson.pvd file can now be loaded into any front-end to VTK, say Par-
aView or VisIt. The plot function is intended for quick examination of the

13

Figure 1: Plot of the solution in the first FEniCS example.

Figure 2: Plot of the mesh in the first FEniCS example.

14

solution during program development. More in-depth visual investigations of fi-
nite element solutions will normally benefit from using highly professional tools
such as ParaView and VisIt.

The next three sections deal with some technicalities about specifying the
solution method for linear systems (so that you can solve large problems) and
examining array data from the computed solution (so that you can check that
the program is correct). These technicalities are scattered around in forthcoming
programs. However, the impatient reader who is more interested in seeing the
previous program being adapted to a real physical problem, and play around
with some interesting visualizations, can safely jump to Section 1.7. Information
in the intermediate sections can be studied on demand.

1.4 Controlling the Solution Process

Sparse LU decomposition (Gaussian elimination) is used by default to solve
linear systems of equations in FEniCS programs. This is a very robust and
recommended method for a few thousand unknowns in the equation system,
and may hence be the method of choice in many 2D and smaller 3D problems.
However, sparse LU decomposition becomes slow and memory demanding in
large problems. This fact forces the use of iterative methods, which are faster
and require much less memory.

Preconditioned Krylov solvers is a type of popular iterative methods that
are easily accessible in FEniCS programs. The Poisson equation results in a
symmetric, positive definite coefficient matrix, for which the optimal Krylov
solver is the Conjugate Gradient (CG) method. Incomplete LU factorization
(ILU) is a popular and robust all-round preconditioner, so let us try the CG–
ILU pair:

solve(a == L, u, bc)
solver_parameters={’linear_solver’: ’cg’,

’preconditioner’: ’ilu’})
Alternative syntax
solve(a == L, u, bc,

solver_parameters=dict(linear_solver=’cg’,
preconditioner=’ilu’))

Section 7.4 lists the most popular choices of Krylov solvers and preconditioners
available in FEniCS

The actual CG and ILU implementations that are brought into action de-
pends on the choice of linear algebra package. FEniCS interfaces several linear
algebra packages, called linear algebra backends in FEniCS terminology. PETSc
is the default choice if DOLFIN is compiled with PETSc, otherwise uBLAS.
Epetra (Trilinos) and MTL4 are two other supported backends. Which backend
to apply can be controlled by setting

parameters[’linear_algebra_backend’] = backendname

15

where backendname is a string, either ’PETSc’, ’uBLAS’, ’Epetra’, or ’MTL4’.
All these backends offer high-quality implementations of both iterative and di-
rect solvers for linear systems of equations.

A common platform for FEniCS users is Ubuntu Linux. The FEniCS dis-
tribution for Ubuntu contains PETSc, making this package the default linear
algebra backend. The default solver is sparse LU decomposition (’lu’), and
the actual software that is called is then the sparse LU solver from UMFPACK
(which PETSc has an interface to).

We will normally like to control the tolerance in the stopping criterion and
the maximum number of iterations when running an iterative method. Such
parameters can be set by accessing the global parameter database, which is called
parameters and which behaves as a nested dictionary. Write

info(parameters, True)

to list all parameters and their default values in the database. The nesting of
parameter sets is indicated through indentation in the output from info. Ac-
cording to this output, the relevant parameter set is named ’krylov_solver’,
and the parameters are set like this:

prm = parameters[’krylov_solver’] # short form
prm[’absolute_tolerance’] = 1E-10
prm[’relative_tolerance’] = 1E-6
prm[’maximum_iterations’] = 1000

Stopping criteria for Krylov solvers usually involve the norm of the residual,
which must be smaller than the absolute tolerance parameter or smaller than
the relative tolerance parameter times the initial residual.

To see the number of actual iterations to reach the stopping criterion, we
can insert

set_log_level(PROGRESS)
or
set_log_level(DEBUG)

A message with the equation system size, solver type, and number of iterations
arises from specifying the argument PROGRESS, while DEBUG results in more in-
formation, including CPU time spent in the various parts of the matrix assembly
and solve process.

The complete solution process with control of the solver parameters now
contains the statements

prm = parameters[’krylov_solver’] # short form
prm[’absolute_tolerance’] = 1E-10
prm[’relative_tolerance’] = 1E-6
prm[’maximum_iterations’] = 1000
set_log_level(PROGRESS)

solve(a == L, u, bc,
solver_parameters={’linear_solver’: ’cg’,

’preconditioner’: ’ilu’})

16

The demo program d2_p2D.py in the stationary/poisson directory incorpo-
rates the above shown control of the linear solver and precnditioner, but is
otherwise similar to the previous d1_p2D.py program.

We remark that default values for the global parameter database can be
defined in an XML file, see the example file dolfin_parameters.xml in the
directory stationary/poisson. If such a file is found in the directory where a
FEniCS program is run, this file is read and used to initialize the parameters

object. Otherwise, the file .config/fenics/dolfin_parameters.xml in the
user’s home directory is read, if it exists. The XML file can also be in gzip’ed
form with the extension .xml.gz.

1.5 Linear Variational Problem and Solver Objects

The solve(a == L, u, bc) call is just a compact syntax alternative to a
slightly more comprehensive specification of the variational equation and the
solution of the associated linear system. This alternative syntax is used in a lot
of FEniCS applications and will also be used later in this tutorial, so we show
it already now:

u = Function(V)
problem = LinearVariationalProblem(a, L, u, bc)
solver = LinearVariationalSolver(problem)
solver.solve()

Many objects have an attribute parameters corresponding to a parame-
ter set in the global parameters database, but local to the object. Here,
solver.parameters play that role. Setting the CG method with ILU pre-
conditiong as solution method and specifying solver-specific parameters can be
done like this:

solver.parameters[’linear_solver’] = ’cg’
solver.parameters[’preconditioner’] = ’ilu’
cg_prm = solver.parameters[’krylov_solver’] # short form
cg_prm[’absolute_tolerance’] = 1E-7
cg_prm[’relative_tolerance’] = 1E-4
cg_prm[’maximum_iterations’] = 1000

Calling info(solver.parameters, True) lists all the available parameter sets
with default values for each parameter. Settings in the global parameters
database are propagated to parameter sets in individual objects, with the pos-
sibility of being overwritten as done above.

The d3_p2D.py program modifies the d2_p2D.py file to incorporate objects
for the variational problem and solver.

1.6 Examining the Discrete Solution

We know that, in the particular boundary-value problem of Section 1.3, the com-
puted solution u should equal the exact solution at the vertices of the cells. An

17

important extension of our first program is therefore to examine the computed
values of the solution, which is the focus of the present section.

A finite element function like u is expressed as a linear combination of basis
functions φj , spanning the space V :

N
∑

j=1

Ujφj . (13)

By writing solve(a == L, u, bc) in the program, a linear system will be
formed from a and L, and this system is solved for the U1, . . . , UN values. The
U1, . . . , UN values are known as degrees of freedom of u. For Lagrange elements
(and many other element types) Uk is simply the value of u at the node with
global number k. (The nodes and cell vertices coincide for linear Lagrange
elements, while for higher-order elements there may be additional nodes at the
facets and in the interior of cells.)

Having u represented as a Function object, we can either evaluate u(x) at
any vertex x in the mesh, or we can grab all the values Uj directly by

u_nodal_values = u.vector()

The result is a DOLFIN Vector object, which is basically an encapsulation
of the vector object used in the linear algebra package that is used to solve
the linear system arising from the variational problem. Since we program in
Python it is convenient to convert the Vector object to a standard numpy array
for further processing:

u_array = u_nodal_values.array()

With numpy arrays we can write ”MATLAB-like” code to analyze the data.
Indexing is done with square brackets: u_array[i], where the index i always
starts at 0.

Mesh information can be gathered from the mesh object, e.g.,

• mesh.coordinates() returns the coordinates of the vertices as an M × d
numpy array, M being the number of vertices in the mesh and d being the
number of space dimensions,

• mesh.num_cells() returns the number of cells (triangles) in the mesh,

• mesh.num_vertices() returns the number of vertices in the mesh (with
our choice of linear Lagrange elements this equals the number of nodes),

Writing print mesh dumps a short, ”pretty print” description of the mesh
(print mesh actually displays the result of str(mesh)‘, which defines the pretty
print):

<Mesh of topological dimension 2 (triangles) with
16 vertices and 18 cells, ordered>

18

All mesh objects are of type Mesh so typing the command pydoc dolfin.Mesh

in a terminal window will give a list of methods (that is, functions in a class)
that can be called through any Mesh object. In fact, pydoc dolfin.X shows
the documentation of any DOLFIN name X.

Writing out the solution on the screen can now be done by a simple loop:

coor = mesh.coordinates()
if mesh.num_vertices() == len(u_array):

for i in range(mesh.num_vertices()):
print ’u(%8g,%8g) = %g’ % (coor[i][0], coor[i][1], u_array[i])

The beginning of the output looks like this:

u(0, 0) = 1
u(0.166667, 0) = 1.02778
u(0.333333, 0) = 1.11111
u(0.5, 0) = 1.25
u(0.666667, 0) = 1.44444
u(0.833333, 0) = 1.69444
u(1, 0) = 2

For Lagrange elements of degree higher than one, the vertices do not correspond
to all the nodal points and the ‘if‘-test fails.

For verification purposes we want to compare the values of the computed u

at the nodes (given by u_array) with the exact solution u0 evaluated at the
nodes. The difference between the computed and exact solution should be less
than a small tolerance at all the nodes. The Expression object u0 can be
evaluated at any point x by calling u0(x). Specifically, u0(coor[i]) returns
the value of u0 at the vertex or node with global number i.

Alternatively, we can make a finite element field u_e, representing the ex-
act solution, whose values at the nodes are given by the u0 function. With
mathematics, ue =

∑N
j=1 Ejφj , where Ej = u0(xj , yj), (xj , yj) being the coor-

dinates of node number j. This process is known as interpolation. FEniCS has
a function for performing the operation:

u_e = interpolate(u0, V)

The maximum error can now be computed as

u_e_array = u_e.vector().array()
print ’Max error:’, numpy.abs(u_e_array - u_array).max()

The value of the error should be at the level of the machine precision (10−16).
To demonstrate the use of point evaluations of Function objects, we write

out the computed u at the center point of the domain and compare it with the
exact solution:

center = (0.5, 0.5)
print ’numerical u at the center point:’, u(center)
print ’exact u at the center point:’, u0(center)

Trying a 3× 3 mesh, the output from the previous snippet becomes

19

numerical u at the center point: [1.83333333]
exact u at the center point: [1.75]

The discrepancy is due to the fact that the center point is not a node in this
particular mesh, but a point in the interior of a cell, and u varies linearly over
the cell while u0 is a quadratic function.

We have seen how to extract the nodal values in a numpy array. If desired,
we can adjust the nodal values too. Say we want to normalize the solution such
that maxj Uj = 1. Then we must divide all Uj values by maxj Uj . The following
snippet performs the task:

max_u = u_array.max()
u_array /= max_u
u.vector()[:] = u_array
u.vector().set_local(u_array) # alternative
print u.vector().array()

That is, we manipulate u_array as desired, and then we insert this array into
‘u‘’s Vector object. The /= operator implies an in-place modification of the
object on the left-hand side: all elements of the u_array are divided by the
value max_u. Alternatively, one could write u_array = u_array/max_u, which
implies creating a new array on the right-hand side and assigning this array to
the name u_array.

A call like u.vector().array() returns a copy of the data in u.vector().
One must therefore never perform assignments like u.vector.array()[:] = ...,
but instead extract the numpy array (i.e., a copy), manipulate it, and insert it
back with u.vector()[:] = or u.set_local(...).

All the code in this subsection can be found in the file d4_p2D.py in the
stationary/poisson directory. We have commented out the plotting state-
ments in this version of the program, but if you want plotting to happen, make
sure that interactive is called at the very end of the program.

1.7 Solving a Real Physical Problem

Perhaps you are not particularly amazed by viewing the simple surface of u in
the test problem from Section 1.3. However, solving a real physical problem
with a more interesting and amazing solution on the screen is only a matter of
specifying a more exciting domain, boundary condition, and/or right-hand side
f .

One possible physical problem regards the deflection D(x, y) of an elastic
circular membrane with radius R, subject to a localized perpendicular pressure
force, modeled as a Gaussian function. The appropriate PDE model is

− T∇2D = p(x, y) in Ω = {(x, y) |x2 + y2 ≤ R}, (14)

with

p(x, y) =
A

2πσ
exp

(

−
1

2

(

x− x0

σ

)2

−
1

2

(

y − y0
σ

)2
)

. (15)

20

Here, T is the tension in the membrane (constant), p is the external pressure
load, A the amplitude of the pressure, (x0, y0) the localization of the Gaussian
pressure function, and σ the ”width” of this function. The boundary of the
membrane has no deflection, implying D = 0 as boundary condition.

For scaling and verification it is convenient to simplify the problem to find
an analytical solution. In the limit σ → ∞, p → A/(2πσ), which allows us
to integrate an axi–symmetric version of the equation in the radial coordinate
r ∈ [0, R] and obtain D(r) = (r2 − R2)A/(8πσT). This result gives a rough
estimate of the characteristic size of the deflection: |D(0)| = AR2/(8πσT),
which can be used to scale the deflecton. With R as characteristic length scale,
we can derive the equivalent dimensionless problem on the unit circle,

−∇2w = f, (16)

with w = 0 on the boundary and with

f(x, y) = 4 exp

(

−
1

2

(

Rx− x0

σ

)2

−
1

2

(

Ry − y0
σ

)2
)

. (17)

For notational convenience we have dropped introducing new symbols for the
scaled coordinates in (17). Now D is related to w through D = AR2w/(8πσT).

Let us list the modifications of the d1_p2D.py program that are needed to
solve this membrane problem:

• Initialize T , A, R, x0, y0, and σ,

• create a mesh over the unit circle,

• make an expression object for the scaled pressure function f ,

• define the a and L formulas in the variational problem for w and compute
the solution,

• plot the mesh, w, and f ,

• write out the maximum real deflection D.

Some suitable values of T , A, R, x0, y0, and σ are

T = 10.0 # tension
A = 1.0 # pressure amplitude
R = 0.3 # radius of domain
theta = 0.2
x0 = 0.6*R*cos(theta)
y0 = 0.6*R*sin(theta)
sigma = 0.025

A mesh over the unit circle can be created by

21

mesh = UnitCircle(n)

where n is the typical number of elements in the radial direction.
The function f is represented by an Expression object. There are many

physical parameters in the formula for f that enter the expression string and
these parameters must have their values set by keyword arguments:

f = Expression(’4*exp(-0.5*(pow((R*x[0] - x0)/sigma, 2)) ’
’ - 0.5*(pow((R*x[1] - y0)/sigma, 2)))’,
R=R, x0=x0, y0=y0, sigma=sigma)

The coordinates in Expression objectsmust be a vector with indices 0, 1, and 2,
and with the name x. Otherwise we are free to introduce names of parameters as
long as these are given default values by keyword arguments. All the parameters
initialized by keyword arguments can at any time have their values modified.
For example, we may set

f.sigma = 50
f.x0 = 0.3

It would be of interest to visualize f along with w so that we can exam-
ine the pressure force and its response. We must then transform the formula
(Expression) to a finite element function (Function). The most natural ap-
proach is to construct a finite element function whose degrees of freedom (values
at the nodes in this case) are calculated from f . That is, we interpolate f (see
Section 1.6):

f = interpolate(f, V)

Calling plot(f) will produce a plot of f . Note that the assignment to f destroys
the previous Expression object f, so if it is of interest to still have access to
this object, another name must be used for the Function object returned by
interpolate.

We need some evidence that the program works, and to this end we may use
the analytical solution listed above for the case σ → ∞. In scaled coordinates
the solution reads

w(x, y) = 1− x2 − y2.

Practical values for an infinite σ may be 50 or larger, and in such cases the
program will report the maximum deviation between the computed w and the
(approximate) exact we.

Note that the variational formulation remains the same as in the program
from Section 1.3, except that u is replaced by w and u0 = 0. The final program
is found in the file membrane1.py, located in the stationary/poisson direc-
tory, and also listed below. We have inserted capabilities for iterative solution
methods and hence large meshes (Section 1.4), used objects for the variational
problem and solver (Section 1.5), and made numerical comparison of the nu-
merical and (approximate) analytical solution (Section 1.6).

22

"""
FEniCS program for the deflection w(x,y) of a membrane:
-Laplace(w) = p = Gaussian function, in a unit circle,
with w = 0 on the boundary.
"""

from dolfin import *
import numpy

Set pressure function:
T = 10.0 # tension
A = 1.0 # pressure amplitude
R = 0.3 # radius of domain
theta = 0.2
x0 = 0.6*R*cos(theta)
y0 = 0.6*R*sin(theta)
sigma = 0.025
sigma = 50 # large value for verification
n = 40 # approx no of elements in radial direction
mesh = UnitCircle(n)
V = FunctionSpace(mesh, ’Lagrange’, 1)

Define boundary condition w=0
def boundary(x, on_boundary):

return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

Define variational problem
w = TrialFunction(V)
v = TestFunction(V)
a = inner(nabla_grad(w), nabla_grad(v))*dx
f = Expression(’4*exp(-0.5*(pow((R*x[0] - x0)/sigma, 2)) ’

’ -0.5*(pow((R*x[1] - y0)/sigma, 2)))’,
R=R, x0=x0, y0=y0, sigma=sigma)

L = f*v*dx

Compute solution
w = Function(V)
problem = LinearVariationalProblem(a, L, w, bc)
solver = LinearVariationalSolver(problem)
solver.parameters[’linear_solver’] = ’cg’
solver.parameters[’preconditioner’] = ’ilu’
solver.solve()

Plot scaled solution, mesh and pressure
plot(mesh, title=’Mesh over scaled domain’)
plot(w, title=’Scaled deflection’)
f = interpolate(f, V)
plot(f, title=’Scaled pressure’)

Find maximum real deflection
max_w = w.vector().array().max()
max_D = A*max_w/(8*pi*sigma*T)
print ’Maximum real deflection is’, max_D

Verification for "flat" pressure (large sigma)
if sigma >= 50:

w_e = Expression("1 - x[0]*x[0] - x[1]*x[1]")
w_e = interpolate(w_e, V)

23

dev = numpy.abs(w_e.vector().array() - w.vector().array()).max()
print ’sigma=%g: max deviation=%e’ % (sigma, dev)

Should be at the end
interactive()

Choosing a small width σ (say 0.01) and a location (x0, y0) toward the
circular boundary (say (0.6R cos θ, 0.6R sin θ) for any θ ∈ [0, 2π]), may produce
an exciting visual comparison of w and f that demonstrates the very smoothed
elastic response to a peak force (or mathematically, the smoothing properties
of the inverse of the Laplace operator). One needs to experiment with the
mesh resolution to get a smooth visual representation of f . You are strongly
encouraged to play around with the plots and different mesh resolutions.

1.8 Quick Visualization with VTK

As we go along with examples it is fun to play around with plot commands
and visualize what is computed. This section explains some useful visualization
features.

The plot(u) command launches a FEniCS component called Viper, which
applies the VTK package to visualize finite element functions. Viper is not a
full-fledged, easy-to-use front-end to VTK (like Mayavi2, ParaView or, VisIt),
but rather a thin layer on top of VTK’s Python interface, allowing us to quickly
visualize a DOLFIN function or mesh, or data in plain Numerical Python ar-
rays, within a Python program. Viper is ideal for debugging, teaching, and
initial scientific investigations. The visualization can be interactive, or you can
steer and automate it through program statements. More advanced and profes-
sional visualizations are usually better done with advanced tools like Mayavi2,
ParaView, or VisIt.

We have made a program membrane1v.py for the membrane deflection prob-
lem in Section 1.7 and added various demonstrations of Viper capabilities. You
are encouraged to play around with membrane1v.py and modify the code as you
read about various features.

The plot function can take additional arguments, such as a title of the plot,
or a specification of a wireframe plot (elevated mesh) instead of a colored surface
plot:

plot(mesh, title=’Finite element mesh’)
plot(w, wireframe=True, title=’solution’)

The three mouse buttons can be used to rotate, translate, and zoom the
surface. Pressing h in the plot window makes a printout of several key bindings
that are available in such windows. For example, pressing m in the mesh plot
window dumps the plot of the mesh to an Encapsulated PostScript (.eps) file,
while pressing i saves the plot in PNG format. All plotfile names are automat-
ically generated as simulationX.eps, where X is a counter 0000, 0001, 0002,
etc., being increased every time a new plot file in that format is generated (the

24

Figure 3: Plot of the deflection of a membrane.

extension of PNG files is .png instead of .eps). Pressing o adds a red outline
of a bounding box around the domain.

One can alternatively control the visualization from the program code di-
rectly. This is done through a Viper object returned from the plot command.
Let us grab this object and use it to 1) tilt the camera −65 degrees in the lati-
tude direction, 2) add x and y axes, 3) change the default name of the plot files,
4) change the color scale, and 5) write the plot to a PNG and an EPS file. Here
is the code:

viz_w = plot(w,
wireframe=False,
title=’Scaled membrane deflection’,
rescale=False,
axes=True, # include axes
basename=’deflection’, # default plotfile name
)

viz_w.elevate(-65) # tilt camera -65 degrees (latitude dir)
viz_w.set_min_max(0, 0.5*max_w) # color scale
viz_w.update(w) # bring settings above into action
viz_w.write_png(’deflection.png’)
viz_w.write_ps(’deflection’, format=’eps’)

The format argument in the latter line can also take the values ’ps’ for a
standard PostScript file and ’pdf’ for a PDF file. Note the necessity of the
viz_w.update(w) call – without it we will not see the effects of tilting the
camera and changing the color scale. Figure 3 shows the resulting scalar surface.

25

1.9 Computing Derivatives

In Poisson and many other problems the gradient of the solution is of interest.
The computation is in principle simple: since u =

∑N
j=1 Ujφj , we have that

∇u =

N
∑

j=1

Uj∇φj .

Given the solution variable u in the program, its gradient is obtained by grad(u)
or nabla_grad(u). However, the gradient of a piecewise continuous finite ele-
ment scalar field is a discontinuous vector field since the φj has discontinuous
derivatives at the boundaries of the cells. For example, using Lagrange elements
of degree 1, u is linear over each cell, and the numerical ∇u becomes a piecewise
constant vector field. On the contrary, the exact gradient is continuous. For
visualization and data analysis purposes we often want the computed gradient
to be a continuous vector field. Typically, we want each component of ∇u to
be represented in the same way as u itself. To this end, we can project the
components of ∇u onto the same function space as we used for u. This means
that we solve w = ∇u approximately by a finite element method, using the
same elements for the components of w as we used for u. This process is known
as projection. Looking at the component ∂u/∂x of the gradient, we project the
(discrete) derivative

∑

j Uj∂φj/∂x onto a function space with basis φ1, φ2, . . .

such that the derivative in this space is expressed by the standard sum
∑

j Ūjφj ,

for suitable (new) coefficients Ūj .
The variational problem for w reads: find w ∈ V (g) such that

a(w, v) = L(v) ∀v ∈ ˆV (g), (18)

where

a(w, v) =

∫

Ω

w · v dx, (19)

L(v) =

∫

Ω

∇u · v dx . (20)

The function spaces V (g) and ˆV (g) (with the superscript g denoting ”gradient”)
are vector versions of the function space for u, with boundary conditions re-
moved (if V is the space we used for u, with no restrictions on boundary values,

V (g) = ˆV (g) = [V]d, where d is the number of space dimensions). For example,
if we used piecewise linear functions on the mesh to approximate u, the varia-
tional problem for w corresponds to approximating each component field of w
by piecewise linear functions.

The variational problem for the vector field w, called grad_u in the code, is
easy to solve in FEniCS:

26

Figure 4: Example of visualizing the vector field ∇u by arrows at the nodes.

V_g = VectorFunctionSpace(mesh, ’Lagrange’, 1)
w = TrialFunction(V_g)
v = TestFunction(V_g)

a = inner(w, v)*dx
L = inner(grad(u), v)*dx
grad_u = Function(V_g)
solve(a == L, grad_u)

plot(grad_u, title=’grad(u)’)

The boundary condition argument to solve is dropped since there are no es-
sential boundary conditions in this problem. The new thing is basically that we
work with a VectorFunctionSpace, since the unknown is now a vector field,
instead of the FunctionSpace object for scalar fields. Figure 4 shows example
of how Viper can visualize such a vector field.

The scalar component fields of the gradient can be extracted as separate
fields and, e.g., visualized:

grad_u_x, grad_u_y = grad_u.split(deepcopy=True) # extract components
plot(grad_u_x, title=’x-component of grad(u)’)
plot(grad_u_y, title=’y-component of grad(u)’)

The deepcopy=True argument signifies a deep copy, which is a general term in
computer science implying that a copy of the data is returned. (The opposite,
deepcopy=False, means a shallow copy, where the returned objects are just
pointers to the original data.)

27

The grad_u_x and grad_u_y variables behave as Function objects. In par-
ticular, we can extract the underlying arrays of nodal values by

grad_u_x_array = grad_u_x.vector().array()
grad_u_y_array = grad_u_y.vector().array()

The degrees of freedom of the grad_u vector field can also be reached by

grad_u_array = grad_u.vector().array()

but this is a flat numpy array where the degrees of freedom for the x component
of the gradient is stored in the first part, then the degrees of freedom of the y
component, and so on.

The program d5_p2D.py extends the code d5_p2D.py from Section 1.6 with
computations and visualizations of the gradient. Examining the arrays grad_u_x_array
and grad_u_y_array, or looking at the plots of grad_u_x and grad_u_y, quickly
reveals that the computed grad_u field does not equal the exact gradient (2x, 4y)
in this particular test problem where u = 1+x2+2y2. There are inaccuracies at
the boundaries, arising from the approximation problem for w. Increasing the
mesh resolution shows, however, that the components of the gradient vary lin-
early as 2x and 4y in the interior of the mesh (i.e., as soon as we are one element
away from the boundary). See Section 1.8 for illustrations of this phenomenon.

Projecting some function onto some space is a very common operation in
finite element programs. The manual steps in this process have therefore been
collected in a utility function project(q, W), which returns the projection of
some Function or Expression object named q onto the FunctionSpace or
VectorFunctionSpace named W. Specifically, the previous code for projecting
each component of grad(u) onto the same space that we use for u, can now be
done by a one-line call

grad_u = project(grad(u), VectorFunctionSpace(mesh, ’Lagrange’, 1))

The applications of projection are many, including turning discontinuous gra-
dient fields into continuous ones, comparing higher- and lower-order function
approximations, and transforming a higher-order finite element solution down
to a piecewise linear field, which is required by many visualization packages.

1.10 A Variable-Coefficient Poisson Problem

Suppose we have a variable coefficient p(x, y) in the Laplace operator, as in the
boundary-value problem

−∇ · [p(x, y)∇u(x, y)] = f(x, y) in Ω,

u(x, y) = u0(x, y) on ∂Ω .
(21)

We shall quickly demonstrate that this simple extension of our model problem
only requires an equally simple extension of the FEniCS program.

28

Let us continue to use our favorite solution u(x, y) = 1 + x2 + 2y2 and
then prescribe p(x, y) = x + y. It follows that u0(x, y) = 1 + x2 + 2y2 and
f(x, y) = −8x− 10y.

What are the modifications we need to do in the d4_p2D.py program from
Section 1.6?

• f must be an Expression since it is no longer a constant,

• a new Expression ‘p‘ must be defined for the variable coefficient,

• the variational problem is slightly changed.

First we address the modified variational problem. Multiplying the PDE by a
test function v and integrating by parts now results in

∫

Ω

p∇u · ∇v dx−

∫

∂Ω

p
∂u

∂n
v ds =

∫

Ω

fv dx .

The function spaces for u and v are the same as in Section 1.2, implying that
the boundary integral vanishes since v = 0 on ∂Ω where we have Dirichlet
conditions. The weak form a(u, v) = L(v) then has

a(u, v) =

∫

Ω

p∇u · ∇v dx, (22)

L(v) =

∫

Ω

fv dx . (23)

In the code from Section 1.3 we must replace

a = inner(nabla_grad(u), nabla_grad(v))*dx

by

a = p*inner(nabla_grad(u), nabla_grad(v))*dx

The definitions of p and f read

p = Expression(’x[0] + x[1]’)
f = Expression(’-8*x[0] - 10*x[1]’)

No additional modifications are necessary. The complete code can be found in
in the file vcp2D.py (variable-coefficient Poisson problem in 2D). You can run
it and confirm that it recovers the exact u at the nodes.

The flux −p∇u may be of particular interest in variable-coefficient Poisson
problems as it often has an interesting physical significance. As explained in
Section 1.9, we normally want the piecewise discontinuous flux or gradient to be
approximated by a continuous vector field, using the same elements as used for

29

the numerical solution u. The approximation now consists of solving w = −p∇u
by a finite element method: find w ∈ V (g) such that

a(w, v) = L(v) ∀v ∈ ˆV (g), (24)

where

a(w, v) =

∫

Ω

w · v dx, (25)

L(v) =

∫

Ω

(−p∇u) · v dx . (26)

This problem is identical to the one in Section 1.9, except that p enters the
integral in L.

The relevant Python statements for computing the flux field take the form

V_g = VectorFunctionSpace(mesh, ’Lagrange’, 1)
w = TrialFunction(V_g)
v = TestFunction(V_g)

a = inner(w, v)*dx
L = inner(-p*grad(u), v)*dx
flux = Function(V_g)
solve(a == L, flux)

The following call to project is equivalent to the above statements:

flux = project(-p*grad(u),
VectorFunctionSpace(mesh, ’Lagrange’, 1))

Plotting the flux vector field is naturally as easy as plotting the gradient (see
Section 1.9):

plot(flux, title=’flux field’)

flux_x, flux_y = flux.split(deepcopy=True) # extract components
plot(flux_x, title=’x-component of flux (-p*grad(u))’)
plot(flux_y, title=’y-component of flux (-p*grad(u))’)

For data analysis of the nodal values of the flux field we can grab the under-
lying numpy arrays:

flux_x_array = flux_x.vector().array()
flux_y_array = flux_y.vector().array()

The program vcp2D.py contains in addition some plots, including a curve
plot comparing flux_x and the exact counterpart along the line y = 1/2. The
associated programming details related to this visualization are explained in
Section 1.12.

30

1.11 Computing Functionals

After the solution u of a PDE is computed, we occasionally want to compute
functionals of u, for example,

1

2
||∇u||2 ≡

1

2

∫

Ω

∇u · ∇u dx, (27)

which often reflects some energy quantity. Another frequently occurring func-
tional is the error

||ue − u|| =

(∫

Ω

(ue − u)2 dx

)1/2

, (28)

where ue is the exact solution. The error is of particular interest when studying
convergence properties. Sometimes the interest concerns the flux out of a part
Γ of the boundary ∂Ω,

F = −

∫

Γ

p∇u ·nnn ds, (29)

where nnn is an outward unit normal at Γ and p is a coefficient (see the problem in
Section 1.10 for a specific example). All these functionals are easy to compute
with FEniCS, and this section describes how it can be done.

Energy Functional. The integrand of the energy functional (27) is described
in the UFL language in the same manner as we describe weak forms:

energy = 0.5*inner(grad(u), grad(u))*dx
E = assemble(energy)

The assemble call performs the integration. It is possible to restrict the inte-
gration to subdomains, or parts of the boundary, by using a mesh function to
mark the subdomains as explained in Section 5.3. The program membrane2.py

carries out the computation of the elastic energy

1

2
||T∇D||2 =

1

2

(

AR

8πσ

)2

||∇w||2

in the membrane problem from Section 1.7.

Convergence Estimation. To illustrate error computations and convergence
of finite element solutions, we modify the d5_p2D.py program from Section 1.9
and specify a more complicated solution,

u(x, y) = sin(ωπx) sin(ωπy)

on the unit square. This choice implies f(x, y) = 2ω2π2u(x, y). With ω re-
stricted to an integer it follows that u0 = 0.

We need to define the appropriate boundary conditions, the exact solution,
and the f function in the code:

31

def boundary(x, on_boundary):
return on_boundary

bc = DirichletBC(V, Constant(0.0), boundary)

omega = 1.0
u_e = Expression(’sin(omega*pi*x[0])*sin(omega*pi*x[1])’,

omega=omega)

f = 2*pi**2*omega**2*u_e

The computation of
(∫

Ω
(ue − u)2 dx

)1/2
can be done by

error = (u - u_e)**2*dx
E = sqrt(assemble(error))

Here, u_e will be interpolated onto the function space V. This implies that the
exact solution used in the integral will vary linearly over the cells, and not as a
sine function, if V corresponds to linear Lagrange elements. This situation may
yield a smaller error u - u_e than what is actually true.

More accurate representation of the exact solution is easily achieved by in-
terpolating the formula onto a space defined by higher-order elements, say of
third degree:

Ve = FunctionSpace(mesh, ’Lagrange’, degree=3)
u_e_Ve = interpolate(u_e, Ve)
error = (u - u_e_Ve)**2*dx
E = sqrt(assemble(error))

To achieve complete mathematical control of which function space the compu-
tations are carried out in, we can explicitly interpolate u to the same space:

u_Ve = interpolate(u, Ve)
error = (u_Ve - u_e_Ve)**2*dx

The square in the expression for error will be expanded and lead to a
lot of terms that almost cancel when the error is small, with the potential of
introducing significant round-off errors. The function errornorm is available
for avoiding this effect by first interpolating u and u_e to a space with higher-
order elements, then subtracting the degrees of freedom, and then performing
the integration of the error field. The usage is simple:

E = errornorm(u_e, u, normtype=’L2’, degree=3)

It is illustrative to look at the short implementation of errornorm:

def errornorm(u_e, u, Ve):
u_Ve = interpolate(u, Ve)
u_e_Ve = interpolate(u_e, Ve)
e_Ve = Function(Ve)
Subtract degrees of freedom for the error field

32

e_Ve.vector()[:] = u_e_Ve.vector().array() - \
u_Ve.vector().array()

error = e_Ve**2*dx
return sqrt(assemble(error))

The errornorm procedure turns out to be identical to computing the expression
(u_e - u)**2*dx directly in the present test case.

Sometimes it is of interest to compute the error of the gradient field: ||∇(u−
ue)|| (often referred to as the H1 seminorm of the error). Given the error field
e_Ve above, we simply write

H1seminorm = sqrt(assemble(inner(grad(e_Ve), grad(e_Ve))*dx))

Finally, we remove all plot calls and printouts of u values in the original
program, and collect the computations in a function:

def compute(nx, ny, degree):
mesh = UnitSquare(nx, ny)
V = FunctionSpace(mesh, ’Lagrange’, degree=degree)
...
Ve = FunctionSpace(mesh, ’Lagrange’, degree=5)
E = errornorm(u_e, u, Ve)
return E

Calling compute for finer and finer meshes enables us to study the con-
vergence rate. Define the element size h = 1/n, where n is the number of
divisions in x and y direction (nx=ny in the code). We perform experiments
with h0 > h1 > h2 · · · and compute the corresponding errors E0, E1, E3 and so
forth. Assuming Ei = Chr

i for unknown constants C and r, we can compare
two consecutive experiments, Ei = Chr

i and Ei−1 = Chr
i−1, and solve for r:

r =
ln(Ei/Ei−1)

ln(hi/hi−1)
.

The r values should approach the expected convergence rate degree+1 as i
increases.

The procedure above can easily be turned into Python code:

import sys
degree = int(sys.argv[1]) # read degree as 1st command-line arg
h = [] # element sizes
E = [] # errors
for nx in [4, 8, 16, 32, 64, 128, 264]:

h.append(1.0/nx)
E.append(compute(nx, nx, degree))

Convergence rates
from math import log as ln # (log is a dolfin name too - and logg :-)
for i in range(1, len(E)):

r = ln(E[i]/E[i-1])/ln(h[i]/h[i-1])
print ’h=%10.2E r=.2f’ (h[i], r)

33

The resulting program has the name d6_p2D.py and computes error norms in
various ways. Running this program for elements of first degree and ω = 1
yields the output

h=1.25E-01 E=3.25E-02 r=1.83
h=6.25E-02 E=8.37E-03 r=1.96
h=3.12E-02 E=2.11E-03 r=1.99
h=1.56E-02 E=5.29E-04 r=2.00
h=7.81E-03 E=1.32E-04 r=2.00
h=3.79E-03 E=3.11E-05 r=2.00

That is, we approach the expected second-order convergence of linear Lagrange
elements as the meshes become sufficiently fine.

Running the program for second-degree elements results in the expected
value r = 3,

h=1.25E-01 E=5.66E-04 r=3.09
h=6.25E-02 E=6.93E-05 r=3.03
h=3.12E-02 E=8.62E-06 r=3.01
h=1.56E-02 E=1.08E-06 r=3.00
h=7.81E-03 E=1.34E-07 r=3.00
h=3.79E-03 E=1.53E-08 r=3.00

However, using (u - u_e)**2 for the error computation, which implies inter-
polating u_e onto the same space as u, results in r = 4 (!). This is an example
where it is important to interpolate u_e to a higher-order space (polynomials
of degree 3 are sufficient here) to avoid computing a too optimistic convergence
rate.

Running the program for third-degree elements results in the expected value
r = 4:

h= 1.25E-01 r=4.09
h= 6.25E-02 r=4.03
h= 3.12E-02 r=4.01
h= 1.56E-02 r=4.00
h= 7.81E-03 r=4.00

Checking convergence rates is the next best method for verifying PDE codes
(the best being exact recovery of a solution as in Section 1.6 and many other
places in this tutorial).

Flux Functionals. To compute flux integrals like (29) we need to define the
nnn vector, referred to as facet normal in FEniCS. If Γ is the complete boundary
we can perform the flux computation by

n = FacetNormal(mesh)
flux = -p*dot(nabla_grad(u), n)*ds
total_flux = assemble(flux)

Although nabla_grad(u) and grad(u) are interchangeable in the above ex-
pression when u is a scalar function, we have chosen to write nabla_grad(u)

because this is the right expression if we generalize the underlying equation
to a vector Laplace/Poisson PDE. With grad(u) we must in that case write
dot(n, grad(u)).

34

It is possible to restrict the integration to a part of the boundary using a
mesh function to mark the relevant part, as explained in Section 5.3. Assuming
that the part corresponds to subdomain number i, the relevant form for the
flux is -p*inner(grad(u), n)*ds(i).

1.12 Visualization of Structured Mesh Data

When finite element computations are done on a structured rectangular mesh,
maybe with uniform partitioning, VTK-based tools for completely unstructured
2D/3D meshes are not required. Instead we can use visualization and data
analysis tools for structured data. Such data typically appear in finite difference
simulations and image analysis. Analysis and visualization of structured data
are faster and easier than doing the same with data on unstructured meshes, and
the collection of tools to choose among is much larger. We shall demonstrate the
potential of such tools and how they allow for tailored and flexible visualization
and data analysis.

A necessary first step is to transform our mesh object to an object repre-
senting a rectangle with equally-shaped rectangular cells. The Python package
scitools (code.google.com/p/scitools) has this type of structure, called a
UniformBoxGrid. The second step is to transform the one-dimensional array
of nodal values to a two-dimensional array holding the values at the corners of
the cells in the structured grid. In such grids, we want to access a value by its
i and j indices, i counting cells in the x direction, and j counting cells in the y
direction. This transformation is in principle straightforward, yet it frequently
leads to obscure indexing errors. The BoxField object in scitools takes con-
veniently care of the details of the transformation. With a BoxField defined on
a UniformBoxGrid it is very easy to call up more standard plotting packages
to visualize the solution along lines in the domain or as 2D contours or lifted
surfaces.

Let us go back to the vcp2D.py code from Section 1.10 and map u onto a
BoxField object:

import scitools.BoxField
u2 = u if u.ufl_element().degree() == 1 else \

interpolate(u, FunctionSpace(mesh, ’Lagrange’, 1))
u_box = scitools.BoxField.dolfin_function2BoxField(

u2, mesh, (nx,ny), uniform_mesh=True)

The function dolfin_function2BoxField can only work with finite element
fields with linear (degree 1) elements, so for higher-degree elements we here
simply interpolate the solution onto a mesh with linear elements. We could also
interpolate/project onto a finer mesh in the higher-degree case. Such trans-
formations to linear finite element fields are very often needed when calling up
plotting packages or data analysis tools. The u.ufl_element() method returns
an object holding the element type, and this object has a method degree() for
returning the element degree as an integer. The parameters nx and ny are
the number of divisions in each space direction that were used when calling

35

UnitSquare to make the mesh object. The result u_box is a BoxField object
that supports ”finite difference” indexing and an underlying grid suitable for
numpy operations on 2D data. Also 1D and 3D meshes (with linear elements)
can be turned into BoxField objects.

The ability to access a finite element field in the way one can access a finite
difference-type of field is handy in many occasions, including visualization and
data analysis. Here is an example of writing out the coordinates and the field
value at a grid point with indices i and j (going from 0 to nx and ny, respectively,
from lower left to upper right corner):

X = 0; Y = 1; Z = 0 # convenient indices

i = nx; j = ny # upper right corner
print ’u(%g,%g)=%g’ % (u_box.grid.coor[X][i],

u_box.grid.coor[Y][j],
u_box.values[i,j])

For instance, the x coordinates are reached by u_box.grid.coor[X]. The grid
attribute is an instance of class UniformBoxGrid.

Many plotting programs can be used to visualize the data in u_box. Mat-
plotlib is now a very popular plotting program in the Python world and could
be used to make contour plots of u_box. However, other programs like Gnuplot,
VTK, and MATLAB have better support for surface plots at the time of this
writing. Our choice in this tutorial is to use the Python package scitools.easyviz,
which offers a uniform MATLAB-like syntax as interface to various plotting
packages such as Gnuplot, Matplotlib, VTK, OpenDX, MATLAB, and oth-
ers. With scitools.easyviz we write one set of statements, close to what one
would do in MATLAB or Octave, and then it is easy to switch between different
plotting programs, at a later stage, through a command-line option, a line in a
configuration file, or an import statement in the program.

A contour plot is made by the following scitools.easyviz command:

import scitools.easyviz as ev
ev.contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

5, clabels=’on’)
evtitle(’Contour plot of u’)
ev.savefig(’u_contours.eps’)

or more compact syntax:
ev.contour(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

5, clabels=’on’,
savefig=’u_contours.eps’, title=’Contour plot of u’)

The resulting plot can be viewed in Figure 1.12a. The contour function needs
arrays with the x and y coordinates expanded to 2D arrays (in the same way as
demanded when making vectorized numpy calculations of arithmetic expressions
over all grid points). The correctly expanded arrays are stored in grid.coorv.
The above call to contour creates 5 equally spaced contour lines, and with
clabels=’on’ the contour values can be seen in the plot.

36

Other functions for visualizing 2D scalar fields are surf and mesh as known
from MATLAB:

import scitools.easyviz as ev
ev.figure()
ev.surf(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

shading=’interp’, colorbar=’on’,
title=’surf plot of u’, savefig=’u_surf.eps’)

ev.figure()
ev.mesh(u_box.grid.coorv[X], u_box.grid.coorv[Y], u_box.values,

title=’mesh plot of u’, savefig=’u_mesh.eps’)

Figure 1.12 exemplifies the surfaces arising from the two plotting commands
above. You can type pydoc scitools.easyviz in a terminal window to get
a full tutorial. Note that scitools.easyviz offers function names like plot

and mesh, which clash with plot from dolfin and the mesh variable in our
programs. Therefore, we recommend the ev prefix.

A handy feature of BoxField is the ability to give a start point in the grid
and a direction, and then extract the field and corresponding coordinates along
the nearest grid line. In 3D fields one can also extract data in a plane. Say we
want to plot u along the line y = 1/2 in the grid. The grid points, x, and the u
values along this line, uval, are extracted by

start = (0, 0.5)
x, uval, y_fixed, snapped = u_box.gridline(start, direction=X)

The variable snapped is true if the line had to be snapped onto a gridline and
in that case y_fixed holds the snapped (altered) y value. Plotting u versus the
x coordinate along this line, using scitools.easyviz, is now a matter of

ev.figure() # new plot window
ev.plot(x, uval, ’r-’) # ’r--: red solid line
ev.title(’Solution’)
ev.legend(’finite element solution’)

or more compactly:
ev.plot(x, uval, ’r-’, title=’Solution’,

legend=’finite element solution’)

A more exciting plot compares the projected numerical flux in x direction
along the line y = 1/2 with the exact flux:

ev.figure()
flux2_x = flux_x if flux_x.ufl_element().degree() == 1 else \

interpolate(flux_x, FunctionSpace(mesh, ’Lagrange’, 1))
flux_x_box = scitools.BoxField.dolfin_function2BoxField(

flux2_x, mesh, (nx,ny), uniform_mesh=True)
x, fluxval, y_fixed, snapped = \

flux_x_box.gridline(start, direction=X)
y = y_fixed
flux_x_exact = -(x + y)*2*x
ev.plot(x, fluxval, ’r-’,

37

x, flux_x_exact, ’b-’,
legend=(’numerical (projected) flux’, ’exact flux’),
title=’Flux in x-direction (at y=%g)’ % y_fixed,
savefig=’flux.eps’)

As seen from Figure 1.12b, the numerical flux is accurate except in the boundary
elements.

The visualization constructions shown above and used to generate the figures
are found in the program vcp2D.py in the stationary/poisson directory.

It should be easy with the information above to transform a finite ele-
ment field over a uniform rectangular or box-shaped mesh to the corresponding
BoxField object and perform MATLAB-style visualizations of the whole field
or the field over planes or along lines through the domain. By the transfor-
mation to a regular grid we have some more flexibility than what Viper offers.
However, we remark that comprehensive tools like VisIt, MayaVi2, or ParaView
also have the possibility for plotting fields along lines and extracting planes in
3D geometries, though usually with less degree of control compared to Gnu-
plot, MATLAB, and Matplotlib. For example, in investigations of numerical
accuracy or numerical artifacts one is often interested in studying curve plots
where only the nodal values sampled. This is straightforward with a structured
mesh data structure, but more difficult in visualization packages utilizing un-
structured grids, as hitting exactly then nodes when sampling a function along
a line through the grid might be non-trivial.

1.13 Combining Dirichlet and Neumann Conditions

Let us make a slight extension of our two-dimensional Poisson problem from
Section 1.1 and add a Neumann boundary condition. The domain is still the
unit square, but now we set the Dirichlet condition u = u0 at the left and right
sides, x = 0 and x = 1, while the Neumann condition

−
∂u

∂n
= g

is applied to the remaining sides y = 0 and y = 1. The Neumann condition is
also known as a natural boundary condition (in contrast to an essential boundary
condition).

Let ΓD and ΓN denote the parts of ∂Ω where the Dirichlet and Neumann
conditions apply, respectively. The complete boundary-value problem can be
written as

−∇2u = f in Ω, (30)

u = u0 on ΓD, (31)

−
∂u

∂n
= g on ΓN . (32)

Again we choose u = 1+ x2 +2y2 as the exact solution and adjust f , g, and u0

38

Contour plot of u 4
 3.5
 3

 2.5
 2

 1.5

 0 0.2 0.4 0.6 0.8 1
 0

 0.2

 0.4

 0.6

 0.8

 1

(a)

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0 0.2 0.4 0.6 0.8 1

Flux in x-direction (at y=0.5)

numerical (projected) flux
exact flux

(b)

Figure 5: Examples of plots created by transforming the finite element field
to a field on a uniform, structured 2D grid: (a) contour plot of the solution;
(b) curve plot of the exact flux −p∂u/∂x against the corresponding projected
numerical flux.

39

surf plot of u

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 1
 1.5

 2
 2.5

 3
 3.5

 4

 1

 1.5

 2

 2.5

 3

 3.5

 4

(a)

mesh plot of u

 0
 0.2

 0.4
 0.6

 0.8
 1

 0
 0.2

 0.4
 0.6

 0.8
 1

 1
 1.5

 2
 2.5

 3
 3.5

 4

(b)

Figure 6: Examples of plots created by transforming the finite element field to
a field on a uniform, structured 2D grid: (a) a surface plot of the solution; (b)
lifted mesh plot of the solution.

40

accordingly:

f = −6,

g =

{

−4, y = 1
0, y = 0

u0 = 1 + x2 + 2y2 .

For ease of programming we may introduce a g function defined over the whole
of Ω such that g takes on the right values at y = 0 and y = 1. One possible
extension is

g(x, y) = −4y .

The first task is to derive the variational problem. This time we cannot omit
the boundary term arising from the integration by parts, because v is only zero
on ΓD. We have

−

∫

Ω

(∇2u)v dx =

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds,

and since v = 0 on ΓD,

−

∫

∂Ω

∂u

∂n
v ds = −

∫

ΓN

∂u

∂n
v ds =

∫

ΓN

gv ds,

by applying the boundary condition on ΓN . The resulting weak form reads

∫

Ω

∇u · ∇v dx+

∫

ΓN

gv ds =

∫

Ω

fv dx . (33)

Expressing this equation in the standard notation a(u, v) = L(v) is straightfor-
ward with

a(u, v) =

∫

Ω

∇u · ∇v dx, (34)

L(v) =

∫

Ω

fv dx−

∫

ΓN

gv ds . (35)

How does the Neumann condition impact the implementation? Starting
with any of the previous files d*_p2D.py, say d4_p2D.py, we realize that the
statements remain almost the same. Only two adjustments are necessary:

• The function describing the boundary where Dirichlet conditions apply
must be modified.

• The new boundary term must be added to the expression in L.

Step 1 can be coded as

41

def Dirichlet_boundary(x, on_boundary):
if on_boundary:

if x[0] == 0 or x[0] == 1:
return True

else:
return False

else:
return False

A more compact implementation reads

def Dirichlet_boundary(x, on_boundary):
return on_boundary and (x[0] == 0 or x[0] == 1)

As pointed out already in Section 1.3, testing for an exact match of real numbers
is not good programming practice so we introduce a tolerance in the test:

def Dirichlet_boundary(x, on_boundary):
tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and \

(abs(x[0]) < tol or abs(x[0] - 1) < tol)

The second adjustment of our program concerns the definition of L, where
we have to add a boundary integral and a definition of the g function to be
integrated:

g = Expression(’-4*x[1]’)
L = f*v*dx - g*v*ds

The ds variable implies a boundary integral, while dx implies an integral over
the domain Ω. No more modifications are necessary.

The file dn1_p2D.py in the stationary/poisson directory implements this
problem. Running the program verifies the implementation: u equals the exact
solution at all the nodes, regardless of how many elements we use.

1.14 Multiple Dirichlet Conditions

The PDE problem from the previous section applies a function u0(x, y) for set-
ting Dirichlet conditions at two parts of the boundary. Having a single function
to set multiple Dirichlet conditions is seldom possible. The more general case
is to have m functions for setting Dirichlet conditions on m parts of the bound-
ary. The purpose of this section is to explain how such multiple conditions are
treated in FEniCS programs.

Let us return to the case from Section 1.13 and define two separate functions
for the two Dirichlet conditions:

−∇2u = −6 in Ω,

u = uL on Γ0,

u = uR on Γ1,

−
∂u

∂n
= g on ΓN .

42

Here, Γ0 is the boundary x = 0, while Γ1 corresponds to the boundary x = 1.
We have that uL = 1+ 2y2, uR = 2+ 2y2, and g = −4y. For the left boundary
Γ0 we define the usual triple of a function for the boundary value, a function
for defining the boundary of interest, and a DirichletBC object:

u_L = Expression(’1 + 2*x[1]*x[1]’)

def left_boundary(x, on_boundary):
tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = DirichletBC(V, u_L, left_boundary)

For the boundary x = 1 we write a similar code snippet:

u_R = Expression(’2 + 2*x[1]*x[1]’)

def right_boundary(x, on_boundary):
tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = DirichletBC(V, u_R, right_boundary)

The various essential conditions are then collected in a list and used in the
solution process:

bcs = [Gamma_0, Gamma_1]
...
solve(a == L, u, bcs)
or
problem = LinearVariationalProblem(a, L, u, bcs)
solver = LinearVariationalSolver(problem)
solver.solve()

In other problems, where the u values are constant at a part of the boundary,
we may use a simple Constant object instead of an Expression object.

The file dn2_p2D.py contains a complete program which demonstrates the
constructions above. An extended example with multiple Neumann conditions
would have been quite natural now, but this requires marking various parts of
the boundary using the mesh function concept and is therefore left to Section 5.3.

1.15 A Linear Algebra Formulation

Given a(u, v) = L(v), the discrete solution u is computed by inserting u =
∑N

j=1 Ujφj into a(u, v) and demanding a(u, v) = L(v) to be fulfilled for N test

functions φ̂1, . . . , φ̂N . This implies

N
∑

j=1

a(φj , φ̂i)Uj = L(φ̂i), i = 1, . . . , N,

43

which is nothing but a linear system,

AU = b,

where the entries in A and b are given by

Aij = a(φj , φ̂i),

bi = L(φ̂i) .

The examples so far have specified the left- and right-hand side of the vari-
ational formulation and then asked FEniCS to assemble the linear system and
solve it. An alternative to is explicitly call functions for assembling the coef-
ficient matrix A and the right-side vector b, and then solve the linear system
AU = b with respect to the U vector. Instead of solve(a == L, u, bc) we
now write

A = assemble(a)
b = assemble(L)
bc.apply(A, b)
u = Function(V)
U = u.vector()
solve(A, U, b)

The variables a and L are as before. That is, a refers to the bilinear form
involving a TrialFunction object (say u) and a TestFunction object (v), and
L involves a TestFunction object (v). From a and L, the assemble function
can compute A and b.

The matrix A and vector b are first assembled without incorporating es-
sential (Dirichlet) boundary conditions. Thereafter, the call bc.apply(A, b)

performs the necessary modifications of the linear system such that u is guaran-
teed to equal the prescribed boundary values. When we have multiple Dirichlet
conditions stored in a list bcs, as explained in Section 1.14, we must apply each
condition in bcs to the system:

bcs is a list of DirichletBC objects
for bc in bcs:

bc.apply(A, b)

There is an alternative function assemble_system, which can assemble the
system and take boundary conditions into account in one call:

A, b = assemble_system(a, L, bcs)

The assemble_system function incorporates the boundary conditions in the
element matrices and vectors, prior to assembly. The conditions are also in-
corporated in a symmetric way to preserve eventual symmetry of the coefficient
matrix. With bc.apply(A, b) the matrix A is modified in an unsymmetric way.

Note that the solution u is, as before, a Function object. The degrees of
freedom, U = A−1b, are filled into ‘u‘’s Vector object (u.vector()) by the
solve function.

44

The object A is of type Matrix, while b and u.vector() are of type Vector.
We may convert the matrix and vector data to numpy arrays by calling the
array() method as shown before. If you wonder how essential boundary con-
ditions are incorporated in the linear system, you can print out A and b before
and after the bc.apply(A, b) call:

A = assemble(a)
b = assemble(L)
if mesh.num_cells() < 16: # print for small meshes only

print A.array()
print b.array()

bc.apply(A, b)
if mesh.num_cells() < 16:

print A.array()
print b.array()

With access to the elements in A through a numpy array we can easily perform
computations on this matrix, such as computing the eigenvalues (using the
eig function in numpy.linalg). We can alternatively dump A and b to file in
MATLAB format and invoke MATLAB or Octave to analyze the linear system.
Dumping the arrays A and b to MATLAB format is done by

import scipy.io
scipy.io.savemat(’Ab.mat’, {’A’: A, ’b’: b})

Writing load Ab.mat in MATLAB or Octave will then make the variables A

and b available for computations.
Matrix processing in Python or MATLAB/Octave is only feasible for small

PDE problems since the numpy arrays or matrices in MATLAB file format are
dense matrices. DOLFIN also has an interface to the eigensolver package SLEPc,
which is a preferred tool for computing the eigenvalues of large, sparse matrices
of the type encountered in PDE problems (see demo/la/eigenvalue in the
DOLFIN source code tree for a demo).

A complete code where the linear system AU = b is explicitly assembled and
solved is found in the file dn3_p2D.py in the directory stationary/poisson.
This code solves the same problem as in dn2_p2D.py (Section 1.14). For small
linear systems, the program writes out A and b before and after incorporation of
essential boundary conditions and illustrates the difference between assemble

and assemble_system. The reader is encouraged to run the code for a 2 × 1
mesh (UnitSquare(2, 1) and study the output of A.

By default, solve(A, U, b) applies sparse LU decomposition as solver.
Specification of an iterative solver and preconditioner is done through two op-
tional arguments:

solve(A, U, b, ’cg’, ’ilu’)

Appropriate names of solvers and preconditioners are found in Section 7.4.
To control tolerances in the stopping criterion and the maximum number of

iterations, one can explicitly form a KrylovSolver object and set items in its
parameters attribute (see also Section 1.5):

45

solver = KrylovSolver(’cg’, ’ilu’)
solver.parameters[’absolute_tolerance’] = 1E-7
solver.parameters[’relative_tolerance’] = 1E-4
solver.parameters[’maximum_iterations’] = 1000
u = Function(V)
U = u.vector()
set_log_level(DEBUG)
solver.solve(A, U, b)

The program dn4_p2D.py is a modification of dn3_p2D.py illustrating this latter
approach.

The choice of start vector for the iterations in a linear solver is often impor-
tant. With the solver.solve(A, U, b) call the default start vector is the zero
vector. A start vector with random numbers in the interval [−100, 100] can be
computed as

n = u.vector().array().size
U = u.vector()
U[:] = numpy.random.uniform(-100, 100, n)
solver.parameters[’nonzero_initial_guess’] = True
solver.solve(A, U, b)

Note that we must turn off the default behavior of setting the start vector
(”initial guess”) to zero. A random start vector is included in the dn4_p2D.py

code.
Creating the linear system explicitly in a program can have some advantages

in more advanced problem settings. For example, Amay be constant throughout
a time-dependent simulation, so we can avoid recalculating A at every time level
and save a significant amount of simulation time. Sections 3.2 and 3.3 deal with
this topic in detail.

1.16 Parameterizing the Number of Space Dimensions

FEniCS makes it is easy to write a unified simulation code that can operate in
1D, 2D, and 3D. We will conveniently make use of this feature in forthcoming
examples. As an appetizer, go back to the introductory program d1_p2D.py

in the stationary/poisson directory and change the mesh construction from
UnitSquare(6, 4) to UnitCube(6, 4, 5). Now the domain is the unit cube
partitioned into 6 × 4 × 5 boxes, and each box is divided into six tetrahedra-
shaped finite elements for computations. Run the program and observe that we
can solve a 3D problem without any other modifications (!). The visualization
allows you to rotate the cube and observe the function values as colors on the
boundary.

The forthcoming material introduces some convenient technicalities such
that the same program can run in 1D, 2D, or 3D without any modifications.
Consider the simple model problem

u′′(x) = 2 in [0, 1], u(0) = 0, u(1) = 1, (36)

46

with exact solution u(x) = x2. Our aim is to formulate and solve this problem
in a 2D and a 3D domain as well. We may generalize the domain [0, 1] to a
rectangle or box of any size in the y and z directions and pose homogeneous
Neumann conditions ∂u/∂n = 0 at all additional boundaries y = const and
z = const to ensure that u only varies with x. For example, let us choose a unit
hypercube as domain: Ω = [0, 1]d, where d is the number of space dimensions.
The generalized d-dimensional Poisson problem then reads

∇2u = 2 in Ω,
u = 0 on Γ0,
u = 1 on Γ1,

∂u
∂n = 0 on ∂Ω\ (Γ0 ∪ Γ1) ,

(37)

where Γ0 is the side of the hypercube where x = 0, and where Γ1 is the side
where x = 1.

Implementing a PDE for any d is no more complicated than solving a problem
with a specific number of dimensions. The only non-trivial part of the code is
actually to define the mesh. We use the command line for the user-input to the
program. The first argument can be the degree of the polynomial in the finite
element basis functions. Thereafter, we supply the cell divisions in the various
spatial directions. The number of command-line arguments will then imply the
number of space dimensions. For example, writing 3 10 3 4 on the command
line means that we want to approximate u by piecewise polynomials of degree 3,
and that the domain is a three-dimensional cube with 10×3×4 divisions in the
x, y, and z directions, respectively. The Python code can be quite compact:

degree = int(sys.argv[1])
divisions = [int(arg) for arg in sys.argv[2:]]
d = len(divisions)
domain_type = [UnitInterval, UnitSquare, UnitCube]
mesh = domain_type[d-1](*divisions)
V = FunctionSpace(mesh, ’Lagrange’, degree)

First note that although sys.argv[2:] holds the divisions of the mesh, all
elements of the list sys.argv[2:] are string objects, so we need to explicitly
convert each element to an integer. The construction domain_type[d-1] will
pick the right name of the object used to define the domain and generate the
mesh. Moreover, the argument *divisions sends all the component of the
list divisions as separate arguments. For example, in a 2D problem where
divisions has two elements, the statement

mesh = domain_type[d-1](*divisions)

is equivalent to

mesh = UnitSquare(divisions[0], divisions[1])

The next part of the program is to set up the boundary conditions. Since
the Neumann conditions have ∂u/∂n = 0 we can omit the boundary integral

47

from the weak form. We then only need to take care of Dirichlet conditions at
two sides:

tol = 1E-14 # tolerance for coordinate comparisons
def Dirichlet_boundary0(x, on_boundary):

return on_boundary and abs(x[0]) < tol

def Dirichlet_boundary1(x, on_boundary):
return on_boundary and abs(x[0] - 1) < tol

bc0 = DirichletBC(V, Constant(0), Dirichlet_boundary0)
bc1 = DirichletBC(V, Constant(1), Dirichlet_boundary1)
bcs = [bc0, bc1]

Note that this code is independent of the number of space dimensions. So are
the statements defining and solving the variational problem:

u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-2)
a = inner(nabla_grad(u), nabla_grad(v))*dx
L = f*v*dx

u = Function(V)
solve(a == L, u, bcs)

The complete code is found in the file paD.py (Poisson problem in ”anyD”).
If we want to parameterize the direction in which u varies, say by the space

direction number e, we only need to replace x[0] in the code by x[e]. The
parameter e could be given as a second command-line argument. The reader is
encouraged to perform this modification.

2 Nonlinear Problems

Now we shall address how to solve nonlinear PDEs in FEniCS. Our sample PDE
for implementation is taken as a nonlinear Poisson equation:

−∇ · (q(u)∇u) = f . (38)

The coefficient q(u) makes the equation nonlinear (unless q(u) is constant in u).
To be able to easily verify our implementation, we choose the domain, q(u),

f , and the boundary conditions such that we have a simple, exact solution u.
Let Ω be the unit hypercube [0, 1]d in d dimensions, q(u) = (1 + u)m, f = 0,
u = 0 for x0 = 0, u = 1 for x0 = 1, and ∂u/∂n = 0 at all other boundaries
xi = 0 and xi = 1, i = 1, . . . , d− 1. The coordinates are now represented by the
symbols x0, . . . , xd−1. The exact solution is then

u(x0, . . . , xd) =
(

(2m+1 − 1)x0 + 1
)1/(m+1)

− 1 . (39)

We refer to Section 1.16 for details on formulating a PDE problem in d space
dimensions.

48

The variational formulation of our model problem reads: Find u ∈ V such
that

F (u; v) = 0 ∀v ∈ V̂ , (40)

where

F (u; v) =

∫

Ω

q(u)∇u · ∇v dx, (41)

and

V̂ = {v ∈ H1(Ω) : v = 0 on x0 = 0 and x0 = 1},

V = {v ∈ H1(Ω) : v = 0 on x0 = 0 and v = 1 on x0 = 1} .

The discrete problem arises as usual by restricting V and V̂ to a pair of discrete
spaces. As usual, we omit any subscript on discrete spaces and simply say V and
V̂ are chosen finite dimensional according to some mesh with some element type.
Similarly, we let u be the discrete solution and use ue for the exact solution if
it becomes necessary to distinguish between the two.

The discrete nonlinear problem is then wirtten as: find u ∈ V such that

F (u; v) = 0 ∀v ∈ V̂ , (42)

with u =
∑N

j=1 Ujφj . Since F is a nonlinear function of u, the variational
statement gives rise to a system of nonlinear algebraic equations. [[[FEniCS
can be used in alternative ways for solving a nonlinear PDE problem. We shall
in the following subsections go through four solution strategies:

1. a simple Picard-type iteration,

2. a Newton method at the algebraic level,

3. a Newton method at the PDE level, and

4. an automatic approach where FEniCS attacks the nonlinear variational
problem directly.

The ”black box” strategy 4 is definitely the simplest one from a programmer’s
point of view, but the others give more manual control of the solution process
for nonlinear equations (which also has some pedagogical advantages, especially
for newcomers to nonlinear finite element problems).

2.1 Picard Iteration

Picard iteration is an easy way of handling nonlinear PDEs: we simply use
a known, previous solution in the nonlinear terms so that these terms become
linear in the unknown u. The strategy is also known as the method of successive
substitutions. For our particular problem, we use a known, previous solution
in the coefficient q(u). More precisely, given a solution uk from iteration k, we

49

seek a new (hopefully improved) solution uk+1 in iteration k+1 such that uk+1

solves the linear problem,

∇ ·
(

q(uk)∇uk+1
)

= 0, k = 0, 1, . . . (43)

The iterations require an initial guess u0. The hope is that uk → u as k →∞,
and that uk+1 is sufficiently close to the exact solution u of the discrete problem
after just a few iterations.

We can easily formulate a variational problem for uk+1 from (43). Equiv-
alently, we can approximate q(u) by q(uk) in (41) to obtain the same linear
variational problem. In both cases, the problem consists of seeking uk+1 ∈ V
such that

F̃ (uk+1; v) = 0 ∀v ∈ V̂ , k = 0, 1, . . . , (44)

with

F̃ (uk+1; v) =

∫

Ω

q(uk)∇uk+1 · ∇v dx . (45)

Since this is a linear problem in the unknown uk+1, we can equivalently use the
formulation

a(uk+1, v) = L(v), (46)

with

a(u, v) =

∫

Ω

q(uk)∇u · ∇v dx (47)

L(v) = 0 . (48)

The iterations can be stopped when ǫ ≡ ||uk+1 − uk|| < tol, where tol is a
small tolerance, say 10−5, or when the number of iterations exceed some critical
limit. The latter case will pick up divergence of the method or unacceptable
slow convergence.

In the solution algorithm we only need to store uk and uk+1, called u_k and
u in the code below. The algorithm can then be expressed as follows:

def q(u):
return (1+u)**m

Define variational problem for Picard iteration
u = TrialFunction(V)
v = TestFunction(V)
u_k = interpolate(Constant(0.0), V) # previous (known) u
a = inner(q(u_k)*nabla_grad(u), nabla_grad(v))*dx
f = Constant(0.0)
L = f*v*dx

Picard iterations
u = Function(V) # new unknown function
eps = 1.0 # error measure ||u-u_k||
tol = 1.0E-5 # tolerance
iter = 0 # iteration counter
maxiter = 25 # max no of iterations allowed
while eps > tol and iter < maxiter:

50

iter += 1
solve(a == L, u, bcs)
diff = u.vector().array() - u_k.vector().array()
eps = numpy.linalg.norm(diff, ord=numpy.Inf)
print ’iter=%d: norm=%g’ % (iter, eps)
u_k.assign(u) # update for next iteration

We need to define the previous solution in the iterations, u_k, as a finite element
function so that u_k can be updated with u at the end of the loop. We may
create the initial Function u_k by interpolating an Expression or a Constant

to the same vector space as u lives in (V).
In the code above we demonstrate how to use numpy functionality to compute

the norm of the difference between the two most recent solutions. Here we apply
the maximum norm (ℓ∞ norm) on the difference of the solution vectors (ord=1
and ord=2 give the ℓ1 and ℓ2 vector norms – other norms are possible for numpy
arrays, see pydoc numpy.linalg.norm).

The file picard_np.py contains the complete code for this nonlinear Poisson
problem. The implementation is d dimensional, with mesh construction and
setting of Dirichlet conditions as explained in Section 1.16. For a 33 × 33 grid
with m = 2 we need 9 iterations for convergence when the tolerance is 10−5.

2.2 A Newton Method at the Algebraic Level

After having discretized our nonlinear PDE problem, we may use Newton’s
method to solve the system of nonlinear algebraic equations. From the contin-
uous variational problem (40), the discrete version (42) results in a system of

equations for the unknown parameters U1, . . . , UN (by inserting u =
∑N

j=1 Ujφj

and v = φ̂i in (42)):

Fi(U1, . . . , UN) ≡

N
∑

j=1

∫

Ω

(

q

(

N
∑

ℓ=1

Uℓφℓ

)

∇φjUj

)

· ∇φ̂i dx = 0, i = 1, . . . , N .

(49)
Newton’s method for the system Fi(U1, . . . , Uj) = 0, i = 1, . . . , N can be for-
mulated as

N
∑

j=1

∂

∂Uj
Fi(U

k
1 , . . . , U

k
N)δUj = −Fi(U

k
1 , . . . , U

k
N), i = 1, . . . , N, (50)

Uk+1
j = Uk

j + ωδUj , j = 1, . . . , N, (51)

where ω ∈ [0, 1] is a relaxation parameter, and k is an iteration index. An initial
guess u0 must be provided to start the algorithm.

The original Newton method has ω = 1, but in problems where it is difficult
to obtain convergence, so-called under-relaxation with ω < 1 may help. It means
that one takes a smaller step than what is suggested by Newton’s method.

We need, in a program, to compute the Jacobian matrix ∂Fi/∂Uj and the
right-hand side vector −Fi. Our present problem has Fi given by (49). The

51

derivative ∂Fi/∂Uj becomes

∫

Ω

q′(

N
∑

ℓ=1

Uk
ℓ φℓ)φj∇(

N
∑

j=1

Uk
j φj) · ∇φ̂i + q

(

N
∑

ℓ=1

Uk
ℓ φℓ

)

∇φj · ∇φ̂i

 dx . (52)

The following results were used to obtain (52):

∂u

∂Uj
=

∂

∂Uj

N
∑

j=1

Ujφj = φj ,
∂

∂Uj
∇u = ∇φj ,

∂

∂Uj
q(u) = q′(u)φj . (53)

We can reformulate the Jacobian matrix in (52) by introducing the short nota-

tion uk =
∑N

j=1 U
k
j φj :

∂Fi

∂Uj
=

∫

Ω

[

q′(uk)φj∇u
k · ∇φ̂i + q(uk)∇φj · ∇φ̂i

]

dx . (54)

In order to make FEniCS compute this matrix, we need to formulate a cor-
responding variational problem. Looking at the linear system of equations in
Newton’s method,

N
∑

j=1

∂Fi

∂Uj
δUj = −Fi, i = 1, . . . , N,

we can introduce v as a general test function replacing φ̂i, and we can identify the
unknown δu =

∑N
j=1 δUjφj . From the linear system we can now go ”backwards”

to construct the corresponding linear discrete weak form to be solved in each
Newton iteration:
∫

Ω

[

q′(uk)δu∇uk · ∇v + q(uk)∇δu · ∇v
]

dx = −

∫

Ω

q(uk)∇uk · ∇v dx . (55)

This variational form fits the standard notation a(δu, v) = L(v) with

a(δu, v) =

∫

Ω

[

q′(uk)δu∇uk · ∇v + q(uk)∇δu · ∇v
]

dx

L(v) = −

∫

Ω

q(uk)∇uk · ∇v dx .

Note the important feature in Newton’s method that the previous solution uk

replaces u in the formulas when computing the matrix ∂Fi/∂Uj and vector Fi

for the linear system in each Newton iteration.
We now turn to the implementation. To obtain a good initial guess u0, we

can solve a simplified, linear problem, typically with q(u) = 1, which yields
the standard Laplace equation ∇2u0 = 0. The recipe for solving this problem
appears in Sections 1.2, 1.3, and 1.13. The code for computing u0 becomes as
follows:

52

tol = 1E-14
def left_boundary(x, on_boundary):

return on_boundary and abs(x[0]) < tol

def right_boundary(x, on_boundary):
return on_boundary and abs(x[0]-1) < tol

Gamma_0 = DirichletBC(V, Constant(0.0), left_boundary)
Gamma_1 = DirichletBC(V, Constant(1.0), right_boundary)
bcs = [Gamma_0, Gamma_1]

Define variational problem for initial guess (q(u)=1, i.e., m=0)
u = TrialFunction(V)
v = TestFunction(V)
a = inner(nabla_grad(u), nabla_grad(v))*dx
f = Constant(0.0)
L = f*v*dx
A, b = assemble_system(a, L, bcs)
u_k = Function(V)
U_k = u_k.vector()
solve(A, U_k, b)

Here, u_k denotes the solution function for the previous iteration, so that the
solution after each Newton iteration is u = u_k + omega*du. Initially, u_k is
the initial guess we call u0 in the mathematics.

The Dirichlet boundary conditions for δu, in the problem to be solved in each
Newton iteration, are somewhat different than the conditions for u. Assuming
that uk fulfills the Dirichlet conditions for u, δu must be zero at the boundaries
where the Dirichlet conditions apply, in order for uk+1 = uk + ωδu to fulfill
the right boundary values. We therefore define an additional list of Dirichlet
boundary conditions objects for δu:

Gamma_0_du = DirichletBC(V, Constant(0), left_boundary)
Gamma_1_du = DirichletBC(V, Constant(0), right_boundary)
bcs_du = [Gamma_0_du, Gamma_1_du]

The nonlinear coefficient and its derivative must be defined before coding the
weak form of the Newton system:

def q(u):
return (1+u)**m

def Dq(u):
return m*(1+u)**(m-1)

du = TrialFunction(V) # u = u_k + omega*du
a = inner(q(u_k)*nabla_grad(du), nabla_grad(v))*dx + \

inner(Dq(u_k)*du*nabla_grad(u_k), nabla_grad(v))*dx
L = -inner(q(u_k)*nabla_grad(u_k), nabla_grad(v))*dx

The Newton iteration loop is very similar to the Picard iteration loop in
Section 2.1:

53

du = Function(V)
u = Function(V) # u = u_k + omega*du
omega = 1.0 # relaxation parameter
eps = 1.0
tol = 1.0E-5
iter = 0
maxiter = 25
while eps > tol and iter < maxiter:

iter += 1
A, b = assemble_system(a, L, bcs_du)
solve(A, du.vector(), b)
eps = numpy.linalg.norm(du.vector().array(), ord=numpy.Inf)
print ’Norm:’, eps
u.vector()[:] = u_k.vector() + omega*du.vector()
u_k.assign(u)

There are other ways of implementing the update of the solution as well:

u.assign(u_k) # u = u_k
u.vector().axpy(omega, du.vector())

or
u.vector()[:] += omega*du.vector()

The axpy(a, y) operation adds a scalar a times a Vector y to a Vector object.
It is usually a fast operation calling up an optimized BLAS routine for the
calculation.

Mesh construction for a d-dimensional problem with arbitrary degree of the
Lagrange elements can be done as explained in Section 1.16. The complete
program appears in the file alg_newton_np.py.

2.3 A Newton Method at the PDE Level

Although Newton’s method in PDE problems is normally formulated at the
linear algebra level, i.e., as a solution method for systems of nonlinear algebraic
equations, we can also formulate the method at the PDE level. This approach
yields a linearization of the PDEs before they are discretized. FEniCS users will
probably find this technique simpler to apply than the more standard method
in Section 2.2.

Given an approximation to the solution field, uk, we seek a perturbation δu
so that

uk+1 = uk + δu (56)

fulfills the nonlinear PDE. However, the problem for δu is still nonlinear and
nothing is gained. The idea is therefore to assume that δu is sufficiently small
so that we can linearize the problem with respect to δu. Inserting uk+1 in the
PDE, linearizing the q term as

q(uk+1) = q(uk) + q′(uk)δu+O((δu)2) ≈ q(uk) + q′(uk)δu, (57)

and dropping nonlinear terms in δu, we get

∇ ·
(

q(uk)∇uk
)

+∇ ·
(

q(uk)∇δu
)

+∇ ·
(

q′(uk)δu∇uk
)

= 0 .

54

We may collect the terms with the unknown δu on the left-hand side,

∇ ·
(

q(uk)∇δu
)

+∇ ·
(

q′(uk)δu∇uk
)

= −∇ ·
(

q(uk)∇uk
)

, (58)

The weak form of this PDE is derived by multiplying by a test function v and
integrating over Ω, integrating as usual the second-order derivatives by parts:
∫

Ω

(

q(uk)∇δu · ∇v + q′(uk)δu∇uk · ∇v
)

dx = −

∫

Ω

q(uk)∇uk · ∇v dx . (59)

The variational problem reads: find δu ∈ V such that a(δu, v) = L(v) for all
v ∈ V̂ , where

a(δu, v) =

∫

Ω

(

q(uk)∇δu · ∇v + q′(uk)δu∇uk · ∇v
)

dx, (60)

L(v) = −

∫

Ω

q(uk)∇uk · ∇v dx . (61)

The function spaces V and V̂ , being continuous or discrete, are as in the linear
Poisson problem from Section 1.2.

We must provide some initial guess, e.g., the solution of the PDE with
q(u) = 1. The corresponding weak form a0(u

0, v) = L0(v) has

a0(u, v) =

∫

Ω

∇u · ∇v dx, L0(v) = 0 .

Thereafter, we enter a loop and solve a(δu, v) = L(v) for δu and compute a new
approximation uk+1 = uk + δu. Note that δu is a correction, so if u0 satisfies
the prescribed Dirichlet conditions on some part ΓD of the boundary, we must
demand δu = 0 on ΓD.

Looking at (60) and (61), we see that the variational form is the same as for
the Newton method at the algebraic level in Section 2.2. Since Newton’s method
at the algebraic level required some ”backward” construction of the underlying
weak forms, FEniCS users may prefer Newton’s method at the PDE level, which
this author finds more straightforward, although not so commonly documented
in the literature on numerical methods for PDEs. There is seemingly no need
for differentiations to derive a Jacobian matrix, but a mathematically equivalent
derivation is done when nonlinear terms are linearized using the first two Taylor
series terms and when products in the perturbation δu are neglected.

The implementation is identical to the one in Section 2.2 and is found in the
file pde_newton_np.py. The reader is encouraged to go through this code to be
convinced that the present method actually ends up with the same program as
needed for the Newton method at the linear algebra level in Section 2.2.

2.4 Solving the Nonlinear Variational Problem Directly

The previous hand-calculations and manual implementation of Picard or New-
ton methods can be automated by tools in FEniCS. In a nutshell, one can just
write

55

problem = NonlinearVariationalProblem(F, u, bcs, J)
solver = NonlinearVariationalSolver(problem)
solver.solve()

where F corresponds to the nonlinear form F (u; v), u is the unknown Function

object, bcs represents the essential boundary conditions (in general a list of
DirichletBC objects), and J is a variational form for the Jacobian of F.

Let us explain in detail how to use the built-in tools for nonlinear variational
problems and their solution. The F form corresponding to (41) is straightfor-
wardly defined as follows, assuming q(u) is coded as a Python function:

u_ = Function(V) # most recently computed solution
v = TestFunction(V)
F = inner(q(u_)*nabla_grad(u_), nabla_grad(v))*dx

Note here that u_ is a Function (not a TrialFunction). An alternative and
perhaps more intuitive formula for F is to define F (u; v) directly in terms of a
trial function for u and a test function for v, and then create the proper F by

u = TrialFunction(V)
v = TestFunction(V)
F = inner(q(u)*nabla_grad(u), nabla_grad(v))*dx
u_ = Function(V) # the most recently computed solution
F = action(F, u_)

The latter statement is equivalent to F (u = u−; v), where u− is an existing
finite element function representing the most recently computed approximation
to the solution. (Note that uk and uk+1 in the previous notation correspond to
u− and u in the present notation. We have changed notation to better align the
mathematics with the associated UFL code.)

The derivative J (J) of F (F) is formally the Gateaux derivativeDF (uk; δu, v)
of F (u; v) at u = u− in the direction of δu. Technically, this Gateaux derivative
is derived by computing

lim
ǫ→0

d

dǫ
Fi(u− + ǫδu; v) . (62)

The δu is now the trial function and u− is the previous approximation to the
solution u. We start with

d

dǫ

∫

Ω

∇v · (q(u− + ǫδu)∇(u− + ǫδu)) dx

and obtain
∫

Ω

∇v · [q′(u− + ǫδu)δu∇(u− + ǫδu) + q(u− + ǫδu)∇δu] dx,

which leads to
∫

Ω

∇v · [q′(u−)δu∇(u−) + q(u−)∇δu] dx, (63)

56

as ǫ → 0. This last expression is the Gateaux derivative of F . We may use
J or a(δu, v) for this derivative, the latter having the advantage that we easily
recognize the expression as a bilinear form. However, in the forthcoming code
examples J is used as variable name for the Jacobian.

The specification of J goes as follows if du is the TrialFunction:

du = TrialFunction(V)
v = TestFunction(V)
u_ = Function(V) # the most recently computed solution
F = inner(q(u_)*nabla_grad(u_), nabla_grad(v))*dx

J = inner(q(u_)*nabla_grad(du), nabla_grad(v))*dx + \
inner(Dq(u_)*du*nabla_grad(u_), nabla_grad(v))*dx

The alternative specification of F, with u as TrialFunction, leads to

u = TrialFunction(V)
v = TestFunction(V)
u_ = Function(V) # the most recently computed solution
F = inner(q(u)*nabla_grad(u), nabla_grad(v))*dx
F = action(F, u_)

J = inner(q(u_)*nabla_grad(u), nabla_grad(v))*dx + \
inner(Dq(u_)*u*nabla_grad(u_), nabla_grad(v))*dx

The UFL language, used to specify weak forms, supports differentiation of
forms. This feature facilitates automatic symbolic computation of the Jacobian J

by calling the function derivative with F, the most recently computed solution
(Function), and the unknown (TrialFunction) as parameters:

du = TrialFunction(V)
v = TestFunction(V)
u_ = Function(V) # the most recently computed solution
F = inner(q(u_)*nabla_grad(u_), nabla_grad(v))*dx

J = derivative(F, u_, du) # Gateaux derivative in dir. of du

or

u = TrialFunction(V)
v = TestFunction(V)
u_ = Function(V) # the most recently computed solution
F = inner(q(u)*nabla_grad(u), nabla_grad(v))*dx
F = action(F, u_)

J = derivative(F, u_, u) # Gateaux derivative in dir. of u

The derivative function is obviously very convenient in problems where dif-
ferentiating F by hand implies lengthy calculations.

The preferred implementation of F and J, depending on whether du or u is the
TrialFunction object, is a matter of personal taste. Derivation of the Gateaux
derivative by hand, as shown above, is most naturally matched by an implemen-
tation where du is the TrialFunction, while use of automatic symbolic differ-
entiation with the aid of the derivative function is most naturally matched by

57

an implementation where u is the TrialFunction. We have implemented both
approaches in two files: vp1_np.py with u as TrialFunction, and vp2_np.py

with du as TrialFunction. The directory stationary/nonlinear_poisson

contains both files. The first command-line argument determines if the Jaco-
bian is to be automatically derived or computed from the hand-derived formula.

The following code defines the nonlinear variational problem and an asso-
ciated solver based on Newton’s method. We here demonstrate how key pa-
rameters in Newton’s method can be set, as well as the choice of solver and
preconditioner, and associated parameters, for the linear system occurring in
the Newton iteration.

problem = NonlinearVariationalProblem(F, u_, bcs, J)
solver = NonlinearVariationalSolver(problem)

prm = solver.parameters
prm[’newton_solver’][’absolute_tolerance’] = 1E-8
prm[’newton_solver’][’relative_tolerance’] = 1E-7
prm[’newton_solver’][’maximum_iterations’] = 25
prm[’newton_solver’][’relaxation_parameter’] = 1.0
if iterative_solver:

prm[’linear_solver’] = ’gmres’
prm[’preconditioner’] = ’ilu’
prm[’krylov_solver’][’absolute_tolerance’] = 1E-9
prm[’krylov_solver’][’relative_tolerance’] = 1E-7
prm[’krylov_solver’][’maximum_iterations’] = 1000
prm[’krylov_solver’][’gmres’][’restart’] = 40
prm[’krylov_solver’][’preconditioner’][’ilu’][’fill_level’] = 0

set_log_level(PROGRESS)

solver.solve()

A list of available parameters and their default values can as usual be printed by
calling info(prm, True). The u_ we feed to the nonlinear variational problem
object is filled with the solution by the call solver.solve().

3 Time-Dependent Problems

The examples in Section 1 illustrate that solving linear, stationary PDE prob-
lems with the aid of FEniCS is easy and requires little programming. That is,
FEniCS automates the spatial discretization by the finite element method. The
solution of nonlinear problems, as we showed in Section 2, can also be automated
(cf. Section 2.4), but many scientists will prefer to code the solution strategy of
the nonlinear problem themselves and experiment with various combinations of
strategies in difficult problems. Time-dependent problems are somewhat similar
in this respect: we have to add a time discretization scheme, which is often quite
simple, making it natural to explicitly code the details of the scheme so that the
programmer has full control. We shall explain how easily this is accomplished
through examples.

58

3.1 A Diffusion Problem and Its Discretization

Our time-dependent model problem for teaching purposes is naturally the sim-
plest extension of the Poisson problem into the time domain, i.e., the diffusion
problem

∂u

∂t
= ∇2u+ f in Ω, for t > 0, (64)

u = u0 on ∂Ω, for t > 0, (65)

u = I at t = 0 . (66)

Here, u varies with space and time, e.g., u = u(x, y, t) if the spatial domain Ω is
two-dimensional. The source function f and the boundary values u0 may also
vary with space and time. The initial condition I is a function of space only.

A straightforward approach to solving time-dependent PDEs by the finite
element method is to first discretize the time derivative by a finite difference
approximation, which yields a recursive set of stationary problems, and then
turn each stationary problem into a variational formulation.

Let superscript k denote a quantity at time tk, where k is an integer count-
ing time levels. For example, uk means u at time level k. A finite difference
discretization in time first consists in sampling the PDE at some time level, say
k:

∂

∂t
uk = ∇2uk + fk . (67)

The time-derivative can be approximated by a finite difference. For simplicity
and stability reasons we choose a simple backward difference:

∂

∂t
uk ≈

uk − uk−1

∆t
, (68)

where ∆t is the time discretization parameter. Inserting (68) in (67) yields

uk − uk−1

∆t
= ∇2uk + fk . (69)

This is our time-discrete version of the diffusion PDE (64). Reordering (69) so
that uk appears on the left-hand side only, shows that (69) is a recursive set of
spatial (stationary) problems for uk (assuming uk−1 is known from computations
at the previous time level):

u0 = I, (70)

uk −∆t∇2uk = uk−1 +∆tfk, k = 1, 2, . . . (71)

Given I, we can solve for u0, u1, u2, and so on.
We use a finite element method to solve the equations (70) and (71). This

requires turning the equations into weak forms. As usual, we multiply by a
test function v ∈ V̂ and integrate second-derivatives by parts. Introducing the
symbol u for uk (which is natural in the program too), the resulting weak form

59

can be conveniently written in the standard notation: a0(u, v) = L0(v) for (70)
and a(u, v) = L(v) for (71), where

a0(u, v) =

∫

Ω

uv dx, (72)

L0(v) =

∫

Ω

Iv dx, (73)

a(u, v) =

∫

Ω

(uv +∆t∇u · ∇v) dx, (74)

L(v) =

∫

Ω

(

uk−1 +∆tfk
)

v dx . (75)

The continuous variational problem is to find u0 ∈ V such that a0(u
0, v) = L0(v)

holds for all v ∈ V̂ , and then find uk ∈ V such that a(uk, v) = L(v) for all v ∈ V̂ ,
k = 1, 2,

Approximate solutions in space are found by restricting the functional spaces
V and V̂ to finite-dimensional spaces, exactly as we have done in the Poisson
problems. We shall use the symbol u for the finite element approximation at
time tk. In case we need to distinguish this space-time discrete approximation
from the exact solution of the continuous diffusion problem, we use ue for the
latter. By uk−1 we mean, from now on, the finite element approximation of the
solution at time tk−1.

Note that the forms a0 and L0 are identical to the forms met in Section 1.9,
except that the test and trial functions are now scalar fields and not vector
fields. Instead of solving (70) by a finite element method, i.e., projecting I
onto V via the problem a0(u, v) = L0(v), we could simply interpolate u0 from

I. That is, if u0 =
∑N

j=1 U
0
j φj , we simply set Uj = I(xj , yj), where (xj , yj)

are the coordinates of node number j. We refer to these two strategies as
computing the initial condition by either projecting I or interpolating I. Both
operations are easy to compute through one statement, using either the project
or interpolate function.

3.2 Implementation

Our program needs to perform the time stepping explicitly, but can rely on
FEniCS to easily compute a0, L0, a, and L, and solve the linear systems for
the unknowns. We realize that a does not depend on time, which means that
its associated matrix also will be time independent. Therefore, it is wise to
explicitly create matrices and vectors as in Section 1.15. The matrix A arising
from a can be computed prior to the time stepping, so that we only need to
compute the right-hand side b, corresponding to L, in each pass in the time
loop. Let us express the solution procedure in algorithmic form, writing u for
the unknown spatial function at the new time level (uk) and u1 for the spatial
solution at one earlier time level (uk−1):

• define Dirichlet boundary condition (u0, Dirichlet boundary, etc.)

60

• if u1 is to be computed by projecting I:

– define a0 and L0

– assemble matrix M from a0 and vector b from L0

– solve MU = b and store U in u1

• else: (interpolation)

– let u1 interpolate I

• define a and L

• assemble matrix A from a

• set some stopping time T

• t = ∆t

• while t ≤ T

– assemble vector b from L

– apply essential boundary conditions

– solve AU = b for U and store in u

– t← t+∆t

– u1 ← u (be ready for next step)

Before starting the coding, we shall construct a problem where it is easy to
determine if the calculations are correct. The simple backward time difference
is exact for linear functions, so we decide to have a linear variation in time.
Combining a second-degree polynomial in space with a linear term in time,

u = 1 + x2 + αy2 + βt, (76)

yields a function whose computed values at the nodes may be exact, regardless
of the size of the elements and ∆t, as long as the mesh is uniformly partitioned.
By inserting (76) in the PDE problem (64), it follows that u0 must be given as
(76) and that f(x, y, t) = β − 2− 2α and I(x, y) = 1 + x2 + αy2.

A new programming issue is how to deal with functions that vary in space and
time, such as the the boundary condition u0 given by (76). A natural solution
is to apply an Expression object with time t as a parameter, in addition to the
parameters α and β (see Section 1.7 for Expression objects with parameters):

alpha = 3; beta = 1.2
u0 = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,

alpha=alpha, beta=beta, t=0)

The time parameter can later be updated by assigning values to u0.t.
Given a mesh and an associated function space V, we can specify the u0

function as

61

alpha = 3; beta = 1.2
u0 = Expression(’1 + x[0]*x[0] + alpha*x[1]*x[1] + beta*t’,

{’alpha’: alpha, ’beta’: beta})
u0.t = 0

This function expression has the components of x as independent variables, while
alpha, beta, and t are parameters. The parameters can either be set through a
dictionary at construction time, as demonstrated for alpha and beta, or anytime
through attributes in the function object, as shown for the t parameter.

The essential boundary conditions, along the whole boundary in this case,
are set in the usual way,

def boundary(x, on_boundary): # define the Dirichlet boundary
return on_boundary

bc = DirichletBC(V, u0, boundary)

We shall use u for the unknown u at the new time level and u_1 for u at the
previous time level. The initial value of u_1, implied by the initial condition on
u, can be computed by either projecting or interpolating I. The I(x, y) function
is available in the program through u0, as long as u0.t is zero. We can then
do

u_1 = interpolate(u0, V)
or
u_1 = project(u0, V)

Note that we could, as an equivalent alternative to using project, define a0 and
L0 as we did in Section 1.9 and form the associated variational problem. To
actually recover the exact solution (76) to machine precision, it is important not
to compute the discrete initial condition by projecting I, but by interpolating I
so that the nodal values are exact at t = 0 (projection results in approximative
values at the nodes).

The definition of a and L goes as follows:

dt = 0.3 # time step

u = TrialFunction(V)
v = TestFunction(V)
f = Constant(beta - 2 - 2*alpha)

a = u*v*dx + dt*inner(nabla_grad(u), nabla_grad(v))*dx
L = (u_1 + dt*f)*v*dx

A = assemble(a) # assemble only once, before the time stepping

Finally, we perform the time stepping in a loop:

u = Function(V) # the unknown at a new time level
T = 2 # total simulation time
t = dt

62

while t <= T:
b = assemble(L)
u0.t = t
bc.apply(A, b)
solve(A, u.vector(), b)

t += dt
u_1.assign(u)

Observe that u0.t must be updated before the bc.apply statement, to enforce
computation of Dirichlet conditions at the current time level.

The time loop above does not contain any comparison of the numerical and
the exact solution, which we must include in order to verify the implementation.
As in many previous examples, we compute the difference between the array of
nodal values of u and the array of the interpolated exact solution. The following
code is to be included inside the loop, after u is found:

u_e = interpolate(u0, V)
maxdiff = numpy.abs(u_e.vector().array()-u.vector().array()).max()
print ’Max error, t=%.2f: %-10.3f’ % (t, maxdiff)

The right-hand side vector b must obviously be recomputed at each time
level. With the construction b = assemble(L), a new vector for b is allocated in
memory in every pass of the time loop. It would be much more memory friendly
to reuse the storage of the b we already have. This is easily accomplished by

b = assemble(L, tensor=b)

That is, we send in our previous b, which is then filled with new values and
returned from assemble. Now there will be only a single memory allocation of
the right-hand side vector. Before the time loop we set b = None such that b is
defined in the first call to assemble.

The complete program code for this time-dependent case is stored in the file
d1_d2D.py in the directory transient/diffusion.

3.3 Avoiding Assembly

The purpose of this section is to present a technique for speeding up FEniCS
simulators for time-dependent problems where it is possible to perform all as-
sembly operations prior to the time loop. There are two costly operations in
the time loop: assembly of the right-hand side b and solution of the linear sys-
tem via the solve call. The assembly process involves work proportional to the
number of degrees of freedom N , while the solve operation has a work estimate
of O(Nα), for some α ≥ 1. As N → ∞, the solve operation will dominate for
α > 1, but for the values of N typically used on smaller computers, the assembly
step may still represent a considerable part of the total work at each time level.
Avoiding repeated assembly can therefore contribute to a significant speed-up
of a finite element code in time-dependent problems.

63

To see how repeated assembly can be avoided, we look at the L(v) form in
(75), which in general varies with time through uk−1, fk, and possibly also with
∆t if the time step is adjusted during the simulation. The technique for avoiding
repeated assembly consists in expanding the finite element functions in sums
over the basis functions φi, as explained in Section 1.15, to identify matrix-vector
products that build up the complete system. We have uk−1 =

∑N
j=1 U

k−1
j φj ,

and we can expand fk as fk =
∑N

j=1 F
k
j φj . Inserting these expressions in L(v)

and using v = φ̂i result in

∫

Ω

(

uk−1 +∆tfk
)

v dx =

∫

Ω

N
∑

j=1

Uk−1
j φj +∆t

N
∑

j=1

F k
j φj

 φ̂i dx,

=

N
∑

j=1

(∫

Ω

φ̂iφj dx

)

Uk−1
j +∆t

N
∑

j=1

(∫

Ω

φ̂iφj dx

)

F k
j .

Introducing Mij =
∫

Ω
φ̂iφj dx, we see that the last expression can be written

N
∑

j=1

MijU
k−1
j +∆t

N
∑

j=1

MijF
k
j ,

which is nothing but two matrix-vector products,

MUk−1 +∆tMF k,

if M is the matrix with entries Mij and

Uk−1 = (Uk−1
1 , . . . , Uk−1

N)T ,

and
F k = (F k

1 , . . . , F
k
N)T .

We have immediate access to Uk−1 in the program since that is the vector
in the u_1 function. The F k vector can easily be computed by interpolating
the prescribed f function (at each time level if f varies with time). Given M ,
Uk−1, and F k, the right-hand side b can be calculated as

b = MUk−1 +∆tMF k .

That is, no assembly is necessary to compute b.
The coefficient matrix A can also be split into two terms. We insert v = φ̂i

and uk =
∑N

j=1 U
k
j φj in the expression (74) to get

N
∑

j=1

(∫

Ω

φ̂iφj dx

)

Uk
j +∆t

N
∑

j=1

(∫

Ω

∇φ̂i · ∇φj dx

)

Uk
j ,

which can be written as a sum of matrix-vector products,

MUk +∆tKUk = (M +∆tK)Uk,

64

if we identify the matrix M with entries Mij as above and the matrix K with
entries

Kij =

∫

Ω

∇φ̂i · ∇φj dx . (77)

The matrix M is often called the ”mass matrix” while ”stiffness matrix” is a
common nickname for K. The associated bilinear forms for these matrices, as
we need them for the assembly process in a FEniCS program, become

aK(u, v) =

∫

Ω

∇u · ∇v dx, (78)

aM (u, v) =

∫

Ω

uv dx . (79)

The linear system at each time level, written as AUk = b, can now be
computed by first computing M and K, and then forming A = M + ∆tK at
t = 0, while b is computed as b = MUk−1 +∆tMF k at each time level.

The following modifications are needed in the d1_d2D.py program from the
previous section in order to implement the new strategy of avoiding assembly
at each time level:

• Define separate forms aM and aK

• Assemble aM to M and aK to K

• Compute A = M +∆tK

• Define f as an Expression

• Interpolate the formula for f to a finite element function F k

• Compute b = MUk−1 +∆tMF k

The relevant code segments become

1.
a_K = inner(nabla_grad(u), nabla_grad(v))*dx
a_M = u*v*dx

2. and 3.
M = assemble(a_M)
K = assemble(a_K)
A = M + dt*K

4.
f = Expression(’beta - 2 - 2*alpha’, beta=beta, alpha=alpha)

5. and 6.
while t <= T:

f_k = interpolate(f, V)
F_k = f_k.vector()
b = M*u_1.vector() + dt*M*F_k

The complete program appears in the file d2_d2D.py.

65

3.4 A Physical Example

With the basic programming techniques for time-dependent problems from Sec-
tions 3.3-3.2 we are ready to attack more physically realistic examples. The
next example concerns the question: How is the temperature in the ground
affected by day and night variations at the earth’s surface? We consider some
box-shaped domain Ω in d dimensions with coordinates x0, . . . , xd−1 (the prob-
lem is meaningful in 1D, 2D, and 3D). At the top of the domain, xd−1 = 0, we
have an oscillating temperature

T0(t) = TR + TA sin(ωt),

where TR is some reference temperature, TA is the amplitude of the temperature
variations at the surface, and ω is the frequency of the temperature oscillations.
At all other boundaries we assume that the temperature does not change any-
more when we move away from the boundary, i.e., the normal derivative is zero.
Initially, the temperature can be taken as TR everywhere. The heat conduc-
tivity properties of the soil in the ground may vary with space so we introduce
a variable coefficient κ reflecting this property. Figure 7 shows a sketch of the
problem, with a small region where the heat conductivity is much lower.

The initial-boundary value problem for this problem reads

̺c
∂T

∂t
= ∇ · (κ∇T) in Ω× (0, tstop], (80)

T = T0(t) on Γ0, (81)

∂T

∂n
= 0 on ∂Ω\Γ0, (82)

T = TR at t = 0 . (83)

Here, ̺ is the density of the soil, c is the heat capacity, κ is the thermal conduc-
tivity (heat conduction coefficient) in the soil, and Γ0 is the surface boundary
xd−1 = 0.

We use a θ-scheme in time, i.e., the evolution equation ∂P/∂t = Q(t) is
discretized as

P k − P k−1

∆t
= θQk + (1− θ)Qk−1,

where θ ∈ [0, 1] is a weighting factor: θ = 1 corresponds to the backward
difference scheme, θ = 1/2 to the Crank-Nicolson scheme, and θ = 0 to a
forward difference scheme. The θ-scheme applied to our PDE results in

̺c
T k − T k−1

∆t
= θ∇ ·

(

κ∇T k
)

+ (1− θ)∇ ·
(

k∇T k−1
)

.

Bringing this time-discrete PDE into weak form follows the technique shown
many times earlier in this tutorial. In the standard notation a(T, v) = L(v) the

66

∂u/∂n = 0∂u/∂n = 0

y

x

T0(t) = TR + TA sin(ωt)

D

W

κ ≪ κ0

̺, c, κ0

∂u/∂n = 0

Figure 7: Sketch of a (2D) problem involving heating and cooling of the ground
due to an oscillating surface temperature.

67

weak form has

a(T, v) =

∫

Ω

(̺cTv + θ∆tκ∇T · ∇v) dx, (84)

L(v) =

∫

Ω

(

̺cT k−1v − (1− θ)∆tκ∇T k−1 · ∇v
)

dx . (85)

Observe that boundary integrals vanish because of the Neumann boundary con-
ditions.

The size of a 3D box is taken as W ×W × D, where D is the depth and
W = D/2 is the width. We give the degree of the basis functions at the command
line, then D, and then the divisions of the domain in the various directions. To
make a box, rectangle, or interval of arbitrary (not unit) size, we have the
DOLFIN classes Box, Rectangle, and Interval at our disposal. The mesh and
the function space can be created by the following code:

degree = int(sys.argv[1])
D = float(sys.argv[2])
W = D/2.0
divisions = [int(arg) for arg in sys.argv[3:]]
d = len(divisions) # no of space dimensions
if d == 1:

mesh = Interval(divisions[0], -D, 0)
elif d == 2:

mesh = Rectangle(-W/2, -D, W/2, 0, divisions[0], divisions[1])
elif d == 3:

mesh = Box(-W/2, -W/2, -D, W/2, W/2, 0,
divisions[0], divisions[1], divisions[2])

V = FunctionSpace(mesh, ’Lagrange’, degree)

The Rectangle and Box objects are defined by the coordinates of the ”mini-
mum” and ”maximum” corners.

Setting Dirichlet conditions at the upper boundary can be done by

T_R = 0; T_A = 1.0; omega = 2*pi

T_0 = Expression(’T_R + T_A*sin(omega*t)’,
T_R=T_R, T_A=T_A, omega=omega, t=0.0)

def surface(x, on_boundary):
return on_boundary and abs(x[d-1]) < 1E-14

bc = DirichletBC(V, T_0, surface)

The κ function can be defined as a constant κ1 inside the particular rect-
angular area with a special soil composition, as indicated in Figure 7. Outside
this area κ is a constant κ0. The domain of the rectangular area is taken as

[−W/4,W/4]× [−W/4,W/4]× [−D/2,−D/2 +D/4]

in 3D, with [−W/4,W/4]×[−D/2,−D/2+D/4] in 2D and [−D/2,−D/2+D/4]
in 1D. Since we need some testing in the definition of the κ(xxx) function, the most

68

straightforward approach is to define a subclass of Expression, where we can
use a full Python method instead of just a C++ string formula for specifying a
function. The method that defines the function is called eval:

class Kappa(Function):
def eval(self, value, x):

"""x: spatial point, value[0]: function value."""
d = len(x) # no of space dimensions
material = 0 # 0: outside, 1: inside
if d == 1:

if -D/2. < x[d-1] < -D/2. + D/4.:
material = 1

elif d == 2:
if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4.:
material = 1

elif d == 3:
if -D/2. < x[d-1] < -D/2. + D/4. and \

-W/4. < x[0] < W/4. and -W/4. < x[1] < W/4.:
material = 1

value[0] = kappa_0 if material == 0 else kappa_1

The eval method gives great flexibility in defining functions, but a downside is
that C++ calls up eval in Python for each point x, which is a slow process, and
the number of calls is proportional to the number of nodes in the mesh. Function
expressions in terms of strings are compiled to efficient C++ functions, being
called from C++, so we should try to express functions as string expressions if
possible. (The eval method can also be defined through C++ code, but this
is much more complicated and not covered here.) Using inline if-tests in C++,
we can make string expressions for κ:

kappa_str = {}
kappa_str[1] = ’x[0] > -D/2 && x[0] < -D/2 + D/4 ? kappa_1 : kappa_0’
kappa_str[2] = ’x[0] > -W/4 && x[0] < W/4 ’\

’&& x[1] > -D/2 && x[1] < -D/2 + D/4 ? ’\
’kappa_1 : kappa_0’

kappa_str[3] = ’x[0] > -W/4 && x[0] < W/4 ’\
’x[1] > -W/4 && x[1] < W/4 ’\
’&& x[2] > -D/2 && x[2] < -D/2 + D/4 ?’\
’kappa_1 : kappa_0’

kappa = Expression(kappa_str[d],
D=D, W=W, kappa_0=kappa_0, kappa_1=kappa_1)

Let T denote the unknown spatial temperature function at the current time
level, and let T_1 be the corresponding function at one earlier time level. We are
now ready to define the initial condition and the a and L forms of our problem:

T_prev = interpolate(Constant(T_R), V)

rho = 1
c = 1
period = 2*pi/omega
t_stop = 5*period

69

dt = period/20 # 20 time steps per period
theta = 1

T = TrialFunction(V)
v = TestFunction(V)
f = Constant(0)
a = rho*c*T*v*dx + theta*dt*kappa*\

inner(nabla_grad(T), nabla_grad(v))*dx
L = (rho*c*T_prev*v + dt*f*v -

(1-theta)*dt*kappa*inner(nabla_grad(T), nabla_grad(v)))*dx

A = assemble(a)
b = None # variable used for memory savings in assemble calls
T = Function(V) # unknown at the current time level

We could, alternatively, break a and L up in subexpressions and assemble a mass
matrix and stiffness matrix, as exemplified in Section 3.3, to avoid assembly of b
at every time level. This modification is straightforward and left as an exercise.
The speed-up can be significant in 3D problems.

The time loop is very similar to what we have displayed in Section 3.2:

T = Function(V) # unknown at the current time level
t = dt
while t <= t_stop:

b = assemble(L, tensor=b)
T_0.t = t
bc.apply(A, b)
solve(A, T.vector(), b)
visualization statements
t += dt
T_prev.assign(T)

The complete code in sin_daD.py contains several statements related to visual-
ization and animation of the solution, both as a finite element field (plot calls)
and as a curve in the vertical direction. The code also plots the exact analytical
solution,

T (x, t) = TR + TAe
ax sin(ωt+ ax), a =

√

ω̺c

2κ
,

which is valid when κ = κ0 = κ1.
Implementing this analytical solution as a Python function taking scalars

and numpy arrays as arguments requires a word of caution. A straightforward
function like

def T_exact(x):
a = sqrt(omega*rho*c/(2*kappa_0))
return T_R + T_A*exp(a*x)*sin(omega*t + a*x)

will not work and result in an error message from UFL. The reason is that the
names exp and sin are those imported by the from dolfin import * state-
ment, and these names come from UFL and are aimed at being used in varia-
tional forms. In the T_exact function where x may be a scalar or a numpy array,
we therefore need to explicitly specify numpy.exp and numpy.sin:

70

def T_exact(x):
a = sqrt(omega*rho*c/(2*kappa_0))
return T_R + T_A*numpy.exp(a*x)*numpy.sin(omega*t + a*x)

The reader is encouraged to play around with the code and test out various
parameter sets:

1. TR = 0, TA = 1, κ0 = κ1 = 0.2, ̺ = c = 1, ω = 2π

2. TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.01, ̺ = c = 1, ω = 2π

3. TR = 0, TA = 1, κ0 = 0.2, κ1 = 0.001, ̺ = c = 1, ω = 2π

4. TR = 10 C, TA = 10 C, κ0 = 2.3 K−1Ns−1, κ1 = 100 K−1Ns−1, ̺ =
1500 kg/m

3
, c = 1480 Nmkg−1K−1, ω = 2π/24 1/h = 7.27 · 10−5 1/s,

D = 1.5 m

5. As above, but κ0 = 12.3 K−1Ns−1 and κ1 = 104 K−1Ns−1

Data set number 4 is relevant for real temperature variations in the ground
(not necessarily the large value of κ1), while data set number 5 exaggerates the
effect of a large heat conduction contrast so that it becomes clearly visible in
an animation.

4 Creating More Complex Domains

Up to now we have been very fond of the unit square as domain, which is an
appropriate choice for initial versions of a PDE solver. The strength of the finite
element method, however, is its ease of handling domains with complex shapes.
This section shows some methods that can be used to create different types of
domains and meshes.

Domains of complex shape must normally be constructed in separate pre-
processor programs. Two relevant preprocessors are Triangle for 2D domains
and NETGEN for 3D domains.

4.1 Built-In Mesh Generation Tools

DOLFIN has a few tools for creating various types of meshes over domains with
simple shape: UnitInterval, UnitSquare, UnitCube, Interval, Rectangle,
Box, UnitCircle, and UnitSphere. Some of these names have been briefly
met in previous sections. The hopefully self-explanatory code snippet below
summarizes typical constructions of meshes with the aid of these tools:

1D domains
mesh = UnitInterval(20) # 20 cells, 21 vertices
mesh = Interval(20, -1, 1) # domain [-1,1]

2D domains (6x10 divisions, 120 cells, 77 vertices)
mesh = UnitSquare(6, 10) # ’right’ diagonal is default

71

The diagonals can be right, left or crossed
mesh = UnitSquare(6, 10, ’left’)
mesh = UnitSquare(6, 10, ’crossed’)

Domain [0,3]x[0,2] with 6x10 divisions and left diagonals
mesh = Rectangle(0, 0, 3, 2, 6, 10, ’left’)

6x10x5 boxes in the unit cube, each box gets 6 tetrahedra:
mesh = UnitCube(6, 10, 5)

Domain [-1,1]x[-1,0]x[-1,2] with 6x10x5 divisions
mesh = Box(-1, -1, -1, 1, 0, 2, 6, 10, 5)

10 divisions in radial directions
mesh = UnitCircle(10)
mesh = UnitSphere(10)

4.2 Transforming Mesh Coordinates

A mesh that is denser toward a boundary is often desired to increase accuracy in
that region. Given a mesh with uniformly spaced coordinates x0, . . . , xM−1 in
[a, b], the coordinate transformation ξ = (x−a)/(b−a) maps x onto ξ ∈ [0, 1]. A
new mapping η = ξs, for some s > 1, stretches the mesh toward ξ = 0 (x = a),
while η = ξ1/s makes a stretching toward ξ = 1 (x = b). Mapping the η ∈ [0, 1]
coordinates back to [a, b] gives new, stretched x coordinates,

x̄ = a+ (b− a)

(

x− a

b− a

)s

(86)

toward x = a, or

x̄ = a+ (b− a)

(

x− a

b− a

)1/s

(87)

toward x = b
One way of creating more complex geometries is to transform the vertex

coordinates in a rectangular mesh according to some formula. Say we want to
create a part of a hollow cylinder of Θ degrees, with inner radius a and outer
radius b. A standard mapping from polar coordinates to Cartesian coordinates
can be used to generate the hollow cylinder. Given a rectangle in (x̄, ȳ) space
such that a ≤ x̄ ≤ b and 0 ≤ ȳ ≤ 1, the mapping

x̂ = x̄ cos(Θȳ), ŷ = x̄ sin(Θȳ),

takes a point in the rectangular (x̄, ȳ) geometry and maps it to a point (x̂, ŷ) in
a hollow cylinder.

The corresponding Python code for first stretching the mesh and then map-
ping it onto a hollow cylinder looks as follows:

72

Theta = pi/2
a, b = 1, 5.0
nr = 10 # divisions in r direction
nt = 20 # divisions in theta direction
mesh = Rectangle(a, 0, b, 1, nr, nt, ’crossed’)

First make a denser mesh towards r=a
x = mesh.coordinates()[:,0]
y = mesh.coordinates()[:,1]
s = 1.3

def denser(x, y):
return [a + (b-a)*((x-a)/(b-a))**s, y]

x_bar, y_bar = denser(x, y)
xy_bar_coor = numpy.array([x_bar, y_bar]).transpose()
mesh.coordinates()[:] = xy_bar_coor
plot(mesh, title=’stretched mesh’)

def cylinder(r, s):
return [r*numpy.cos(Theta*s), r*numpy.sin(Theta*s)]

x_hat, y_hat = cylinder(x_bar, y_bar)
xy_hat_coor = numpy.array([x_hat, y_hat]).transpose()
mesh.coordinates()[:] = xy_hat_coor
plot(mesh, title=’hollow cylinder’)
interactive()

The result of calling denser and cylinder above is a list of two vectors, with
the x and y coordinates, respectively. Turning this list into a numpy array object
results in a 2×M array, M being the number of vertices in the mesh. However,
mesh.coordinates() is by a convention an M × 2 array so we need to take the
transpose. The resulting mesh is displayed in Figure 8.

Setting boundary conditions in meshes created from mappings like the one
illustrated above is most conveniently done by using a mesh function to mark
parts of the boundary. The marking is easiest to perform before the mesh is
mapped since one can then conceptually work with the sides in a pure rectangle.

5 Handling Domains with Different Materials

Solving PDEs in domains made up of different materials is a frequently en-
countered task. In FEniCS, these kind of problems are handled by defining
subdomains inside the domain. The subdomains may represent the various ma-
terials. We can thereafter define material properties through functions, known
in FEniCS as mesh functions, that are piecewise constant in each subdomain.
A simple example with two materials (subdomains) in 2D will demonstrate the
basic steps in the process.

73

Figure 8: Hollow cylinder generated by mapping a rectangular mesh, stretched
toward the left side.

5.1 Working with Two Subdomains

Suppose we want to solve

∇ · [k(x, y)∇u(x, y)] = 0, (88)

in a domain Ω consisting of two subdomains where k takes on a different value
in each subdomain. For simplicity, yet without loss of generality, we choose for
the current implementation the domain Ω = [0, 1]× [0, 1] and divide it into two
equal subdomains, as depicted in Figure 5.1,

Ω0 = [0, 1]× [0, 1/2], Ω1 = [0, 1]× (1/2, 1] .

We define k(x, y) = k0 in Ω0 and k(x, y) = k1 in Ω1, where k0 > 0 and k1 > 0
are given constants. As boundary conditions, we choose u = 0 at y = 0, u = 1
at y = 1, and ∂u/∂n = 0 at x = 0 and x = 1. One can show that the exact
solution is now given by

u(x, y) =

{

2yk1

k0+k1

, y ≤ 1/2
(2y−1)k0+k1

k0+k1

, y ≥ 1/2
(89)

As long as the element boundaries coincide with the internal boundary y = 1/2,
this piecewise linear solution should be exactly recovered by Lagrange elements
of any degree. We use this property to verify the implementation.

Physically, the present problem may correspond to heat conduction, where
the heat conduction in Ω1 is ten times more efficient than in Ω0. An alternative

74

6

-
x

y

u = 0

u = 1

Ω1

Ω0

∂u
∂n = 0 ∂u

∂n = 0

Figure 9: Sketch of a Poisson problem with a variable coefficient that is constant
in each of the two subdomains Ω0 and Ω1.

interpretation is flow in porous media with two geological layers, where the
layers’ ability to transport the fluid differs by a factor of 10.

5.2 Implementation

The new functionality in this subsection regards how to define the subdomains
Ω0 and Ω1. For this purpose we need to use subclasses of class SubDomain, not
only plain functions as we have used so far for specifying boundaries. Consider
the boundary function

def boundary(x, on_boundary):
tol = 1E-14
return on_boundary and abs(x[0]) < tol

for defining the boundary x = 0. Instead of using such a stand-alone function, we
can create an instance (or object) of a subclass of SubDomain, which implements
the inside method as an alternative to the boundary function:

class Boundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14
return on_boundary and abs(x[0]) < tol

boundary = Boundary()
bc = DirichletBC(V, Constant(0), boundary)

A word about computer science terminology may be used here: The term in-
stance means a Python object of a particular type (such as SubDomain, Function

75

FunctionSpace, etc.). Many use instance and object as interchangeable terms.
In other computer programming languages one may also use the term variable
for the same thing. We mostly use the well-known term object in this text.

A subclass of SubDomain with an inside method offers functionality for
marking parts of the domain or the boundary. Now we need to define one class
for the subdomain Ω0 where y ≤ 1/2 and another for the subdomain Ω1 where
y ≥ 1/2:

class Omega0(SubDomain):
def inside(self, x, on_boundary):

return True if x[1] <= 0.5 else False

class Omega1(SubDomain):
def inside(self, x, on_boundary):

return True if x[1] >= 0.5 else False

Notice the use of <= and >= in both tests. For a cell to belong to, e.g., Ω1,
the inside method must return True for all the vertices x of the cell. So to
make the cells at the internal boundary y = 1/2 belong to Ω1, we need the test
x[1] >= 0.5.

The next task is to use a MeshFunction to mark all cells in Ω0 with the
subdomain number 0 and all cells in Ω1 with the subdomain number 1. Our
convention is to number subdomains as 0, 1, 2,

A MeshFunction is a discrete function that can be evaluated at a set of so-
called mesh entities. Examples of mesh entities are cells, facets, and vertices. A
MeshFunction over cells is suitable to represent subdomains (materials), while
a MeshFunction over facets is used to represent pieces of external or internal
boundaries. Mesh functions over vertices can be used to describe continuous
fields.

Since we need to define subdomains of Ω in the present example, we must
make use of a MeshFunction over cells. The MeshFunction constructor is fed
with three arguments: 1) the type of value: ’int’ for integers, ’uint’ for
positive (unsigned) integers, ’double’ for real numbers, and ’bool’ for logical
values; 2) a Mesh object, and 3) the topological dimension of the mesh entity in
question: cells have topological dimension equal to the number of space dimen-
sions in the PDE problem, and facets have one dimension lower. Alternatively,
the constructor can take just a filename and initialize the MeshFunction from
data in a file.

We start with creating a MeshFunction whose values are non-negative inte-
gers (’uint’) for numbering the subdomains. The mesh entities of interest are
the cells, which have dimension 2 in a two-dimensional problem (1 in 1D, 3 in
3D). The appropriate code for defining the MeshFunction for two subdomains
then reads

subdomains = MeshFunction(’uint’, mesh, 2)
Mark subdomains with numbers 0 and 1
subdomain0 = Omega0()
subdomain0.mark(subdomains, 0)

76

subdomain1 = Omega1()
subdomain1.mark(subdomains, 1)

Calling subdomains.array() returns a numpy array of the subdomain values.
That is, subdomain.array()[i] is the subdomain value of cell number i. This
array is used to look up the subdomain or material number of a specific element.

We need a function k that is constant in each subdomain Ω0 and Ω1. Since
we want k to be a finite element function, it is natural to choose a space of
functions that are constant over each element. The family of discontinuous
Galerkin methods, in FEniCS denoted by ’DG’, is suitable for this purpose.
Since we want functions that are piecewise constant, the value of the degree
parameter is zero:

V0 = FunctionSpace(mesh, ’DG’, 0)
k = Function(V0)

To fill k with the right values in each element, we loop over all cells (i.e., indices
in subdomain.array()), extract the corresponding subdomain number of a cell,
and assign the corresponding k value to the k.vector() array:

k_values = [1.5, 50] # values of k in the two subdomains
for cell_no in range(len(subdomains.array())):

subdomain_no = subdomains.array()[cell_no]
k.vector()[cell_no] = k_values[subdomain_no]

Long loops in Python are known to be slow, so for large meshes it is prefer-
able to avoid such loops and instead use vectorized code. Normally this im-
plies that the loop must be replaced by calls to functions from the numpy li-
brary that operate on complete arrays (in efficient C code). The functional-
ity we want in the present case is to compute an array of the same size as
subdomain.array(), but where the value i of an entry in subdomain.array()

is replaced by k_values[i]. Such an operation is carried out by the numpy

function choose:

help = numpy.asarray(subdomains.array(), dtype=numpy.int32)
k.vector()[:] = numpy.choose(help, k_values)

The help array is required since choose cannot work with subdomain.array()

because this array has elements of type uint32. We must therefore transform
this array to an array help with standard int32 integers.

Having the k function ready for finite element computations, we can pro-
ceed in the normal manner with defining essential boundary conditions, as in
Section 1.14, and the a(u, v) and L(v) forms, as in Section 1.10. All the details
can be found in the file mat2_p2D.py.

5.3 Multiple Neumann, Robin, and Dirichlet Condition

Let us go back to the model problem from Section 1.14 where we had both
Dirichlet and Neumann conditions. The term v*g*ds in the expression for L

77

implies a boundary integral over the complete boundary, or in FEniCS terms,
an integral over all exterior facets. However, the contributions from the parts
of the boundary where we have Dirichlet conditions are erased when the linear
system is modified by the Dirichlet conditions. We would like, from an efficiency
point of view, to integrate v*g*ds only over the parts of the boundary where we
actually have Neumann conditions. And more importantly, in other problems
one may have different Neumann conditions or other conditions like the Robin
type condition. With the mesh function concept we can mark different parts
of the boundary and integrate over specific parts. The same concept can also
be used to treat multiple Dirichlet conditions. The forthcoming text illustrates
how this is done.

Essentially, we still stick to the model problem from Section 1.14, but replace
the Neumann condition at y = 0 by a Robin condition:

−
∂u

∂n
= p(u− q),

where p and q are specified functions. The Robin condition is most often used
to model heat transfer to the surroundings and arise naturally from Newton’s
cooling law.

Since we have prescribed a simple solution in our model problem, u = 1 +
x2+2y2, we adjust p and q such that the condition holds at y = 0. This implies
that q = 1 + x2 + 2y2 and p can be arbitrary (the normal derivative at y = 0:
∂u/∂n = −∂u/∂y = −4y = 0).

Now we have four parts of the boundary: ΓN which corresponds to the upper
side y = 1, ΓR which corresponds to the lower part y = 0, Γ0 which corresponds
to the left part x = 0, and Γ1 which corresponds to the right part x = 1. The
complete boundary-value problem reads

−∇2u = −6 in Ω, (90)

u = uL on Γ0, (91)

u = uR on Γ1, (92)

−
∂u

∂n
= p(u− q) on ΓR, (93)

−
∂u

∂n
= g on ΓN . (94)

The involved prescribed functions are uL = 1+2y2, uR = 2+2y2, q = 1+x2+2y2,
p is arbitrary, and g = −4y.

Integration by parts of −
∫

Ω
v∇2u dx becomes as usual

−

∫

Ω

v∇2u dx =

∫

Ω

∇u · ∇v dx−

∫

∂Ω

∂u

∂n
v ds .

The boundary integral vanishes on Γ0 ∪ Γ1, and we split the parts over ΓN and
ΓR since we have different conditions at those parts:

−

∫

∂Ω

v
∂u

∂n
ds = −

∫

ΓN

v
∂u

∂n
ds−

∫

ΓR

v
∂u

∂n
ds =

∫

ΓN

vg ds+

∫

ΓR

vp(u− q) ds .

78

The weak form then becomes
∫

Ω

∇u · ∇v dx+

∫

ΓN

gv ds+

∫

ΓR

p(u− q)v ds =

∫

Ω

fv dx,

We want to write this weak form in the standard notation a(u, v) = L(v), which
requires that we identify all integrals with both u and v, and collect these in
a(u, v), while the remaining integrals with v and not u go into L(v). The integral
from the Robin condition must of this reason be split in two parts:

∫

ΓR

p(u− q)v ds =

∫

ΓR

puv ds−

∫

ΓR

pqv ds .

We then have

a(u, v) =

∫

Ω

∇u · ∇v dx+

∫

ΓR

puv ds, (95)

L(v) =

∫

Ω

fv dx−

∫

ΓN

gv ds+

∫

ΓR

pqv ds . (96)

A natural starting point for implementation is the dn2_p2D.py program in
the directory stationary/poisson. The new aspects are

• definition of a mesh function over the boundary,

• marking each side as a subdomain, using the mesh function,

• splitting a boundary integral into parts.

Task 1 makes use of the MeshFunction object, but contrary to Section 5.2, this
is not a function over cells, but a function over cell facets. The topological di-
mension of cell facets is one lower than the cell interiors, so in a two-dimensional
problem the dimension becomes 1. In general, the facet dimension is given as
mesh.topology().dim()-1, which we use in the code for ease of direct reuse in
other problems. The construction of a MeshFunction object to mark boundary
parts now reads

boundary_parts = \
MeshFunction("uint", mesh, mesh.topology().dim()-1)

As in Section 5.2 we use a subclass of SubDomain to identify the various parts of
the mesh function. Problems with domains of more complicated geometries may
set the mesh function for marking boundaries as part of the mesh generation.
In our case, the y = 0 boundary can be marked by

class LowerRobinBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[1]) < tol

Gamma_R = LowerRobinBoundary()
Gamma_R.mark(boundary_parts, 0)

79

The code for the y = 1 boundary is similar and is seen in dnr_p2D.py.
The Dirichlet boundaries are marked similarly, using subdomain number 2

for Γ0 and 3 for Γ1:

class LeftBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0]) < tol

Gamma_0 = LeftBoundary()
Gamma_0.mark(boundary_parts, 2)

class RightBoundary(SubDomain):
def inside(self, x, on_boundary):

tol = 1E-14 # tolerance for coordinate comparisons
return on_boundary and abs(x[0] - 1) < tol

Gamma_1 = RightBoundary()
Gamma_1.mark(boundary_parts, 3)

Specifying the DirichletBC objects may now make use of the mesh function
(instead of a SubDomain subclass object) and an indicator for which subdomain
each condition should be applied to:

u_L = Expression(’1 + 2*x[1]*x[1]’)
u_R = Expression(’2 + 2*x[1]*x[1]’)
bcs = [DirichletBC(V, u_L, boundary_parts, 2),

DirichletBC(V, u_R, boundary_parts, 3)]

Some functions need to be defined before we can go on with the a and L of
the variational problem:

g = Expression(’-4*x[1]’)
q = Expression(’1 + x[0]*x[0] + 2*x[1]*x[1]’)
p = Constant(100) # arbitrary function can go here
u = TrialFunction(V)
v = TestFunction(V)
f = Constant(-6.0)

The new aspect of the variational problem is the two distinct boundary in-
tegrals. Having a mesh function over exterior cell facets (our boundary_parts
object), where subdomains (boundary parts) are numbered as 0, 1, 2, . . ., the
special symbol ds(0) implies integration over subdomain (part) 0, ds(1) de-
notes integration over subdomain (part) 1, and so on. The idea of multiple
‘ds‘-type objects generalizes to volume integrals too: dx(0), dx(1), etc., are
used to integrate over subdomain 0, 1, etc., inside Ω.

The variational problem can be defined as

a = inner(nabla_grad(u), nabla_grad(v))*dx + p*u*v*ds(0)
L = f*v*dx - g*v*ds(1) + p*q*v*ds(0)

For the ds(0) and ds(1) symbols to work we must obviously connect them (or
a and L) to the mesh function marking parts of the boundary. This is done by
a certain keyword argument to the assemble function:

80

A = assemble(a, exterior_facet_domains=boundary_parts)
b = assemble(L, exterior_facet_domains=boundary_parts)

Then essential boundary conditions are enforced, and the system can be solved
in the usual way:

for bc in bcs:
bc.apply(A, b)

u = Function(V)
U = u.vector()
solve(A, U, b)

The complete code is in the dnr_p2D.py file in the stationary/poisson direc-
tory.

6 More Examples

Many more topics could be treated in a FEniCS tutorial, e.g., how to solve sys-
tems of PDEs, how to work with mixed finite element methods, how to create
more complicated meshes and mark boundaries, and how to create more ad-
vanced visualizations. However, to limit the size of this tutorial, the examples
end here. There are, fortunately, a rich set of FEniCS demos. The FEniCS doc-
umentation explains a collection of PDE solvers in detail: the Poisson equation,
the mixed formulation for the Poission equation, the Biharmonic equation, the
equations of hyperelasticity, the Cahn-Hilliard equation, and the incompress-
ible Navier-Stokes equations. Both Python and C++ versions of these solvers
are explained. An eigenvalue solver is also documented. In the dolfin/demo

directory of the DOLFIN source code tree you can find programs for these and
many other examples, including the advection-diffusion equation, the equations
of elastodynamics, a reaction-diffusion equation, various finite element methods
for the Stokes problem, discontinuous Galerkin methods for the Poisson and
advection-diffusion equations, and an eigenvalue problem arising from electro-
magnetic waveguide problem with Nedelec elements. There are also numerous
demos on how to apply various functionality in FEniCS, e.g., mesh refinement
and error control, moving meshes (for ALE methods), computing functionals
over subsets of the mesh (such as lift and drag on bodies in flow), and creating
separate subdomain meshes from a parent mesh.

The project cbc.solve (https://launchpad.net/cbc.solve) offers more com-
plete PDE solvers for the Navier-Stokes equations, the equations of hyper-
elasticity, fluid-structure interaction, viscous mantle flow, and the bidomain
model of electrophysiology. Most of these solvers are described in the ”FEniCS
book” [14] (https://launchpad.net/fenics-book). Another project, cbc.rans
(https://launchpad.net/cbc.rans), offers an environment for very flexible
and easy implementation of Navier-Stokes solvers and turbulence [20, 19]. For
example, cbc.rans contains an elliptic relaxation model for turbulent flow in-
volving 18 nonlinear PDEs. FEniCS proved to be an ideal environment for
implementing such complicated PDE models. The easy construction of systems

81

https://launchpad.net/cbc.solve
https://launchpad.net/fenics-book
https://launchpad.net/cbc.rans

of nonlinear PDEs in cbc.rans has been further generalized to simplify the im-
plementation of large systems of nonlinear PDEs in general. The functionality
is found in the cbc.pdesys package (https://launchpad.net/cbcpdesys).

7 Miscellaneous Topics

7.1 Glossary

Below we explain some key terms used in this tutorial.
FEniCS: name of a software suite composed of many individual software

components (see fenicsproject.org). Some components are DOLFIN and
Viper, explicitly referred to in this tutorial. Others are FFC and FIAT, heavily
used by the programs appearing in this tutorial, but never explicitly used from
the programs.

DOLFIN: a FEniCS component, more precisely a C++ library, with a
Python interface, for performing important actions in finite element programs.
DOLFIN makes use of many other FEniCS components and many external
software packages.

Viper: a FEniCS component for quick visualization of finite element meshes
and solutions.

UFL: a FEniCS component implementing the unified form language for spec-
ifying finite element forms in FEniCS programs. The definition of the forms,
typically called a and L in this tutorial, must have legal UFL syntax. The same
applies to the definition of functionals (see Section 1.11).

Class (Python): a programming construction for creating objects containing
a set of variables and functions. Most types of FEniCS objects are defined
through the class concept.

Instance (Python): an object of a particular type, where the type is im-
plemented as a class. For instance, mesh = UnitInterval(10) creates an in-
stance of class UnitInterval, which is reached by the name mesh. (Class
UnitInterval is actually just an interface to a corresponding C++ class in
the DOLFIN C++ library.)

Class method (Python): a function in a class, reached by dot notation:
instance_name.method_name

argument self (Python): required first parameter in class methods, repre-
senting a particular object of the class. Used in method definitions, but never in
calls to a method. For example, if method(self, x) is the definition of method
in a class Y, method is called as y.method(x), where y is an instance of class Y.
In a call like y.method(x), method is invoked with self=y.

Class attribute (Python): a variable in a class, reached by dot notation:
instance_name.attribute_name

82

https://launchpad.net/cbcpdesys

7.2 Overview of Objects and Functions

Most classes in FEniCS have an explanation of the purpose and usage that can
be seen by using the general documentation command pydoc for Python objects.
You can type

Terminal

pydoc dolfin.X

to look up documentation of a Python class X from the DOLFIN library (X
can be UnitSquare, Function, Viper, etc.). Below is an overview of the most
important classes and functions in FEniCS programs, in the order they typically
appear within programs.

UnitSquare(nx, ny): generate mesh over the unit square [0, 1]× [0, 1] using
nx divisions in x direction and ny divisions in y direction. Each of the nx*ny

squares are divided into two cells of triangular shape.
UnitInterval, UnitCube, UnitCircle, UnitSphere, Interval, Rectangle,

and Box: generate mesh over domains of simple geometric shape, see Section 4.
FunctionSpace(mesh, element_type, degree): a function space defined

over a mesh, with a given element type (e.g., ’Lagrange’ or ’DG’), with basis
functions as polynomials of a specified degree.

Expression(formula, p1=v1, p2=v2, ...): a scalar- or vector-valued func-
tion, given as a mathematical expression formula (string) written in C++ syn-
tax. The spatial coordinates in the expression are named x[0], x[1], and x[2],
while time and other physical parameters can be represented as symbols p1,
p2, etc., with corresponding values v1, v2, etc., initialized through keyword ar-
guments. These parameters become attributes, whose values can be modified
when desired.

Function(V): a scalar- or vector-valued finite element field in the function
space V. If V is a FunctionSpace object, Function(V) becomes a scalar field,
and with V as a VectorFunctionSpace object, Function(V) becomes a vector
field.

SubDomain: class for defining a subdomain, either a part of the boundary,
an internal boundary, or a part of the domain. The programmer must subclass
SubDomain and implement the inside(self, x, on_boundary) function (see
Section 1.3) for telling whether a point x is inside the subdomain or not.

Mesh: class for representing a finite element mesh, consisting of cells, vertices,
and optionally faces, edges, and facets.

MeshFunction: tool for marking parts of the domain or the boundary. Used
for variable coefficients (”material properties”, see Section 5.1) or for boundary
conditions (see Section 5.3).

DirichletBC(V, value, where): specification of Dirichlet (essential) bound-
ary conditions via a function space V, a function value(x) for computing the
value of the condition at a point x, and a specification where of the boundary,
either as a SubDomain subclass instance, a plain function, or as a MeshFunction

83

instance. In the latter case, a 4th argument is provided to describe which sub-
domain number that describes the relevant boundary.

TestFunction(V): define a test function on a space V to be used in a varia-
tional form.

TrialFunction(V): define a trial function on a space V to be used in a
variational form to represent the unknown in a finite element problem.

assemble(X): assemble a matrix, a right-hand side, or a functional, given a
from X written with UFL syntax.

assemble_system(a, L, bcs): assemble the matrix and the right-hand
side from a bilinear (a) and linear (L) form written with UFL syntax. The
bcs parameter holds one or more DirichletBC objects.

LinearVariationalProblem(a, L, u, bcs): define a variational problem,
given a bilinear (a) and linear (L) form, written with UFL syntax, and one or
more DirichletBC objects stored in bcs.

LinearVariationalSolver(problem): create solver object for a linear vari-
ational problem object (problem).

solve(A, U, b): solve a linear system with A as coefficient matrix (Matrix
object), U as unknown (Vector object), and b as right-hand side (Vector ob-
ject). Usually, U = u.vector(), where u is a Function object representing the
unknown finite element function of the problem, while A and b are computed
by calls to assemble or assemble_system.

plot(q): quick visualization of a mesh, function, or mesh function q, using
the Viper component in FEniCS.

interpolate(func, V): interpolate a formula or finite element function
func onto the function space V.

project(func, V): project a formula or finite element function func onto
the function space V.

7.3 User-Defined Functions

When defining a function in terms of a mathematical expression inside a string
formula, e.g.,

myfunc = Expression(’sin(x[0])*cos(x[1])’)

the expression contained in the first argument will be turned into a C++ func-
tion and compiled to gain efficiency. Therefore, the syntax used in the expression
must be valid C++ syntax. Most Python syntax for mathematical expressions
are also valid C++ syntax, but power expressions make an exception: p**amust
be written as pow(p,a) in C++ (this is also an alternative Python syntax). The
following mathematical functions can be used directly in C++ expressions when
defining Expression objects: cos, sin, tan, acos, asin, atan, atan2, cosh,
sinh, tanh, exp, frexp, ldexp, log, log10, modf, pow, sqrt, ceil, fabs, floor,
and fmod. Moreover, the number π is available as the symbol pi. All the listed
functions are taken from the cmath C++ header file, and one may hence consult
documentation of cmath for more information on the various functions.

84

Parameters in expression strings must be initialized via keyword arguments
when creating the Expression object:

myfunc = Expression(’sin(w_x*x[0])*cos(w_y*x[1])’,
w_x=pi, w_y=2*pi)

7.4 Linear Solvers and Preconditioners

The following solution methods for linear systems can be accessed in FEniCS
programs:

Name Method
’lu’ sparse LU factorization (Gaussian elim.)
’cholesky’ sparse Cholesky factorization
’cg’ Conjugate gradient method
’gmres’ Generalized minimal residual method
’bicgstab’ Biconjugate gradient stabilized method
’minres’ Minimal residual method
’tfqmr’ Transpose-free quasi-minimal residual method
’richardson’ Richardson method

Possible choices of preconditioners include

Name Method
’none’ No preconditioner
’ilu’ Incomplete LU factorization
’icc’ Incomplete Cholesky factorization
’jacobi’ Jacobi iteration
’bjacobi’ Block Jacobi iteration
’sor’ Successive over-relaxation
’amg’ Algebraic multigrid (BoomerAMG or ML)
’additive_schwarz’ Additive Schwarz
’hypre_amg’ Hypre algebraic multigrid (BoomerAMG)
’hypre_euclid’ Hypre parallel incomplete LU factorization
’hypre_parasails’ Hypre parallel sparse approximate inverse
’ml_amg’ ML algebraic multigrid

Many of the choices listed above are only offered by a specific backend, so setting
the backend appropriately is necessary for being able to choose a desired linear
solver or preconditioner.

An up-to-date list of the available solvers and preconditioners in FEniCS
can be produced by

list_linear_solver_methods()
list_krylov_solver_preconditioners()

85

7.5 Using a Backend-Specific Solver

The linear algebra backend determines the specific data structures that are
used in the Matrix and Vector classes. For example, with the PETSc backend,
Matrix encapsulates a PETSc matrix storage structure, and Vector encapsu-
lates a PETSc vector storage structure. Sometimes one wants to perform op-
erations directly on (say) the underlying PETSc objects. These can be fetched
by

A_PETSc =
down_cast(A).mat() b_PETSc = down_cast(b).vec() U_PETSc =
down_cast(u.vector()).vec()

Here, u is a Function, A is a Matrix, and b is a Vector. The same syntax
applies if we want to fetch the underlying Epetra, uBLAS, or MTL4 matrices
and vectors.

Sometimes one wants to implement tailored solution algorithms, using spe-
cial features of the underlying numerical packages. Here is an example where we
create an ML preconditioned Conjugate Gradient solver by programming with
Trilinos-specific objects directly. Given a linear system AU = b, represented
by a Matrix object A, and two Vector objects U and b in a Python program,
the purpose is to set up a solver using the Aztec Conjugate Gradient method
from Trilinos’ Aztec library and combine that solver with the algebraic multigrid
preconditioner ML from the ML library in Trilinos. Since the various parts of
Trilinos are mirrored in Python through the PyTrilinos package, we can operate
directly on Trilinos-specific objects.

try:
from PyTrilinos import Epetra, AztecOO, TriUtils, ML

except:
print ’’’You Need to have PyTrilinos with’

Epetra, AztecOO, TriUtils and ML installed
for this demo to run’’’

exit()

from dolfin import *

if not has_la_backend(’Epetra’):
print ’Warning: Dolfin is not compiled with Trilinos’
exit()

parameters[’linear_algebra_backend’] = ’Epetra’

create matrix A and vector b in the usual way
u is a Function

Fetch underlying Epetra objects
A_epetra = down_cast(A).mat()
b_epetra = down_cast(b).vec()
U_epetra = down_cast(u.vector()).vec()

Sets up the parameters for ML using a python dictionary
ML_param = {"max levels" : 3,

"output" : 10,

86

"smoother: type" : "ML symmetric Gauss-Seidel",
"aggregation: type" : "Uncoupled",
"ML validate parameter list" : False

}

Create the preconditioner
prec = ML.MultiLevelPreconditioner(A_epetra, False)
prec.SetParameterList(ML_param)
prec.ComputePreconditioner()

Create solver and solve system
solver = AztecOO.AztecOO(A_epetra, U_epetra, b_epetra)
solver.SetPrecOperator(prec)
solver.SetAztecOption(AztecOO.AZ_solver, AztecOO.AZ_cg)
solver.SetAztecOption(AztecOO.AZ_output, 16)
solver.Iterate(MaxIters=1550, Tolerance=1e-5)

plot(u)

7.6 Installing FEniCS

The FEniCS software components are available for Linux, Windows and Mac
OS X platforms. Detailed information on how to get FEniCS running on such
machines are available at the fenicsproject.org website. Here are just some
quick descriptions and recommendations by the author.

To make the installation of FEniCS as painless and reliable as possible, the
reader is strongly recommended to use Ubuntu Linux. (Even though Mac users
now can get FEniCS by a one-click install, I recommend using Ubuntu on Mac,
unless you have high Unix competence and much experience with compiling
and linking C++ libraries on Mac OS X.) Any standard PC can easily be
equipped with Ubuntu Linux, which may live side by side with either Windows
or Mac OS X or another Linux installation. Basically, you download Ubuntu
from www.ubuntu.com/getubuntu/download, burn the file on a CD or copy
it to a memory stick, reboot the machine with the CD or memory stick, and
answer some usually straightforward questions (if necessary). On Windows,
Wubi is a tool that automatically installs Ubuntu on the machine. Just give a
user name and password for the Ubuntu installation, and Wubi performs the
rest. The graphical user interface (GUI) of Ubuntu is quite similar to both
Windows 7 and Mac OS X, but to be efficient when doing science with FEniCS
this author recommends to run programs in a terminal window and write them
in a text editor like Emacs or Vim. You can employ an integrated development
environment such as Eclipse, but intensive FEniCS developers and users tend
to find terminal windows and plain text editors more user friendly.

Instead of making it possible to boot your machine with the Linux Ubuntu
operating system, you can run Ubuntu in a separate window in your existing op-
eration system. There are several solutions to chose among: the free VirtualBox
and VMWare Player, or the commercial tools VMWare Fusion and Parallels
(just search for the names to download the programs).

87

Once the Ubuntu window is up and running, FEniCS is painlessly installed
by

Terminal

sudo apt-get install fenics

Sometimes the FEniCS software in a standard Ubuntu installation lacks some re-
cent features and bug fixes. Visiting the detailed download page on fenicsproject.org
and copying a few Unix commands is all you have to do to install a newer version
of the software.

7.7 Troubleshooting: Compilation Problems

Expressions and variational forms in a FEniCS program need to be compiled to
C++ and linked with libraries if the expressions or forms have been modified
since last time they were compiled. The tool Instant, which is part of the
FEniCS software suite, is used for compiling and linking C++ code so that it
can be used with Python.

Sometimes the compilation fails. You can see from the series of error mes-
sages which statement in the Python program that led to a compilation problem.
Make sure to scroll back and identify whether the problematic line is associated
with an expression, variational form, or the solve step.

The final line in the output of error messages points to a log file from the
compilation where one can examine the error messages from the compiler. It
is usually the last lines of this log file that are of interest. Occasionally, the
compiler’s message can quickly lead to an understanding of the problem. A more
fruitful approach is normally to examine the below list of common compilation
problems and their remedies.

Problems with the Instant Cache. Instant remembers information about
previous compilations and versions of your program. Sometimes removal of this
information can solve the problem. Just run

Terminal

instant-clean

in a terminal window.

Syntax Errors in Expressions. If the compilation problem arises from line
with an Expression object, examine the syntax of the expression carefully.
Section 7.3 contains some information on valid syntax. You may also want to
examine the log file, pointed to in the last line in the output of error messages.
The compiler’s message about the syntax problem may lead you to a solution.

Some common problems are

1. using a**b for exponentiation (illegal in C++) instead of pow(a, b),

88

file:fenicsproject.org

2. forgetting that the spatial coordinates are denoted by a vector x,

3. forgetting that the x, y, and z coordinates in space correspond to x[0],
x[1], and x[2], respectively.

Failure to initialize parameters in the expressions lead to a compilation error
where this problem is explicitly pointed out.

Problems in the Solve Step. Sometimes the problem lies in the solve step
where a variational form is turned into a system of algebraic equations. The
error message ”Unable to extract all indicies” points to a problem with the
variational form. Common errors include

1. missing either the TrialFunction or the TestFunction object,

2. no terms without TrialFunction objects.

3. mathematically invalid operations in the variational form.

The first problem implies that one cannot make a matrix system or system of
nonlinear algebraic equations out of the variational form. The second problem
means that there is no ”right-hand side” terms in the PDE with known quan-
tities. Sometimes this is seemingly the case mathematically because the ”right-
hand side” is zero. Variational forms must represent this case as Constant(0)*v*dx
where v is a TestFunction object. An example of the third problem is to take
the inner product of a scalar and a vector (causing in this particular case the
error message to be ”Shape mismatch”).

All Programs Fail to Compile. On Ubuntu Linux unfinished updates of
the system (run by Update Manager) may causes all compilations to fail. When
previously working programs no longer can be compiled, reboot Ubuntu, run
the Update Manager, and wait until it has finished. Try compiling a working
program again.

7.8 Books on the Finite Element Method

There are a large number of books on the finite element method. The books
typically fall in either of two categories: the abstract mathematical version
of the method and the engineering ”structural analysis” formulation. FEniCS
builds heavily on concepts in the abstract mathematical exposition. An easy-
to-read book, which provides a good general background for using FEniCS,
is Gockenbach [8]. The book by Donea and Huerta [5] has a similar style,
but aims at readers with interest in fluid flow problems. Hughes [10] is also
highly recommended, especially for those interested in solid mechanics and heat
transfer applications.

Readers with background in the engineering ”structural analysis” version of
the finite element method may find Bickford [1] as an attractive bridge over to

89

the abstract mathematical formulation that FEniCS builds upon. Those who
have a weak background in differential equations in general should consult a
more fundamental book, and Eriksson et al. [6] is a very good choice. On the
other hand, FEniCS users with a strong background in mathematics and interest
in the mathematical properties of the finite element method, will appreciate the
texts by Brenner and Scott [3], Braess [2], Ern and Guermond [7], Quarteroni
and Valli [21], or Ciarlet [4].

7.9 Books on Python

Two very popular introductory books on Python are ”Learning Python” by
Lutz [16] and ”Practical Python” by Hetland [9]. More advanced and com-
prehensive books include ”Programming Python” by Lutz [15], and ”Python
Cookbook” [18] and ”Python in a Nutshell” [17] by Martelli. The web page
http://wiki.python.org/moin/PythonBooks lists numerous additional books.
Very few texts teach Python in a mathematical and numerical context, but the
references [12, 13, 11] are exceptions.

7.10 Acknowledgments

The author is very thankful to Johan Hake, Anders Logg, Kent-Andre Mardal,
and Kristian Valen-Sendstad for promptly answering all my questions about
FEniCS functionality and for implementing all my requests. I will in partic-
ular thank Professor Douglas Arnold for very valuable feedback on the text.
Øystein Sørensen pointed out a lot of typos and contributed with many helpful
comments. Many errors and typos were also reported by Mauricio Angeles, Ida
Drøsdal, Hans Ekkehard Plesser, and Marie Rognes. Ekkehard Ellmann as well
as two anonymous reviewers provided a series of suggestions and improvements.

8 Bibliography

References

[1] W. B. Bickford. A First Course in the Finite Element Method. Irwin, 2nd
edition, 1994.

[2] Dietrich Braess. Finite elements. Cambridge University Press, Cambridge,
third edition, 2007.

[3] Susanne C. Brenner and L. Ridgway Scott. The mathematical theory of fi-
nite element methods, volume 15 of Texts in Applied Mathematics. Springer,
New York, third edition, 2008.

[4] Philippe G. Ciarlet. The finite element method for elliptic problems, vol-
ume 40 of Classics in Applied Mathematics. Society for Industrial and

90

Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978
original [North-Holland, Amsterdam; MR0520174 (58 #25001)].

[5] J. Donea and A. Huerta. Finite Element Methods for Flow Problems. Wiley,
2003.

[6] K. Eriksson, D. Estep, P. Hansbo, and C. Johnson. Computational Differ-
ential Equations. Cambridge University Press, 1996.

[7] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements.
Springer, 2004.

[8] M. Gockenbach. Understanding and Implementing the Finite Element
Method. SIAM, 2006.

[9] M. L. Hetland. Practical Python. APress, 2002.

[10] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic
Finite Element Analysis. Prentice-Hall, 1987.

[11] J. Kiusalaas. Numerical Methods in Engineering with Python. Cambridge,
2005.

[12] H. P. Langtangen. Python Scripting for Computational Science. Springer,
third edition, 2009.

[13] H. P. Langtangen. A Primer on Scientific Programming with Python. Texts
in Computational Science and Engineering, vol 6. Springer, second edition,
2011.

[14] A. Logg, K.-A. Mardal, and G. N. Wells, editors. Automated Solution of
Partial Differential Equations by the Finite Element Method. Springer,
2011.

[15] M. Lutz. Programming Python. O’Reilly, third edition, 2006.

[16] M. Lutz. Learning Python. O’Reilly, third edition, 2007.

[17] A. Martelli. Python in a Nutshell. O’Reilly, second edition, 2006.

[18] A. Martelli and D. Ascher. Python Cookbook. O’Reilly, second edition,
2005.

[19] M. Mortensen, H. P. Langtangen, and J. Myre. cbc.rans – a new flexible,
programmable software framework for computational fluid dynamics. In
H. I. Andersson and B. Skallerud, editors, Sixth National Conference on
Computational Mechanics (MekIT’11). Tapir, 2011.

[20] M. Mortensen, H. P. Langtangen, and G. N. Wells. A FEniCS-based
programming framework for modeling turbulent flow by the Reynolds-
averaged Navier-Stokes equations. Advances in Water Resources, 2011.
DOI: 10.1016/j.advwatres.2011.02.013.

91

[21] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differen-
tial Equations. Springer Series in Computational Mathematics. Springer,
1994.

92

Index

alg newton np.py, 52
assemble, 44, 63
assemble system, 44
assembly of linear systems, 44
assembly, increasing efficiency, 63
attribute (class), 82
automatic differentiation, 57

boundary conditions, 77
boundary specification (class), 75
boundary specification (function), 11
Box, 71
BoxField, 35

CG finite element family, 10
class, 82
compilation problems, 88
contour plot, 36
coordinate stretching, 72
coordinate transformations, 72

d1 d2D.py, 61
d1 p2D.py, 8
d2 d2D.py, 65
d2 p2D.py, 15
d3 p2D.py, 17
d4 p2D.py, 17, 45
d5 p2D.py, 28
d6 p2D.py, 31
degree of freedom, 18
degrees of freedom array, 18, 27
degrees of freedom array (vector field),

27
derivative, 57
dimension-independent code, 46
Dirichlet boundary conditions, 11, 77
DirichletBC, 11
dn1 p2D.py, 41
dn2 p2D.py, 42
dn3 p2D.py, 45
dnr p2D.py, 79
DOLFIN, 82
DOLFIN mesh, 10

down-casting matrices and vectors, 86

energy functional, 31
Epetra, 86
error functional, 31
Expresion, 22
Expression, 11
Expression with parameters, 22

FEniCS, 82
finite element specifications, 10
flux functional, 34
functionals, 31
FunctionSpace, 10

Gateaux derivative, 56

heterogeneous media, 73
heterogeneous medium, 68

info function, 16
instance, 82
interpolate, 19
interpolation, 19, 22
Interval, 71

Jacobian, automatic computation, 57
Jacobian, manual computation, 51

KrylovSolver, 45

Lagrange finite element family, 10
linear algebra backend, 15
linear systems (in FEniCS), 44
LinearVariationalProblem, 17
LinearVariationalSolver, 17

mat2 p2D.py, 75
membrane1.py, 22
membrane1v.p, 24
membrane2.py, 31
Mesh, 10
mesh transformations, 72
method (class), 82

93

MTL4, 15
multi-material domain, 68, 73

Neumann boundary conditions, 38, 77
Newton’s method (algebraic equations),

51
Newton’s method (PDE level), 54
nodal values array, 18, 27
nonlinear variational problems, 58
NonlinearVariationalProblem, 58
NonlinearVariationalSolver, 58

paD.py, 47
parameters database, 16
pde newton np.py, 55
PETSc, 15, 86
Picard iteration, 49
picard np.py, 50
plot, 24
Poisson’s equation, 5
Poisson’s equation with variable coef-

ficient, 28
project, 28
projection, 26, 28
pydoc, 19, 83

random start vector (linear systems),
46

Rectangle, 71
Robin boundary conditions, 77

scitools, 35
self, 82
sin daD.py, 66
SLEPc, 45
structured mesh, 35
successive substitutions, 49

test function, 6
TestFunction, 11
time-dependent PDEs, 59
trial function, 6
TrialFunction, 11
Trilinos, 15, 86
troubleshooting, 88

uBLAS, 15

UFL, 12, 82
UMFPACK, 16
under-relaxation, 51
UniformBoxGrid, 35
UnitCircle, 71
UnitCube, 71
UnitInterval, 71
UnitSphere, 71
UnitSquare, 71

variational formulation, 6
vcp2D.py, 29
Viper, 24, 82
visualization, 24
visualization, structured mesh, 35
vp1 np.py, 55
vp2 np.py, 55
VTK, 24

94

	Fundamentals
	The Poisson equation
	Variational Formulation
	Implementation
	Controlling the Solution Process
	Linear Variational Problem and Solver Objects
	Examining the Discrete Solution
	Solving a Real Physical Problem
	Quick Visualization with VTK
	Computing Derivatives
	A Variable-Coefficient Poisson Problem
	Computing Functionals
	Visualization of Structured Mesh Data
	Combining Dirichlet and Neumann Conditions
	Multiple Dirichlet Conditions
	A Linear Algebra Formulation
	Parameterizing the Number of Space Dimensions

	Nonlinear Problems
	Picard Iteration
	A Newton Method at the Algebraic Level
	A Newton Method at the PDE Level
	Solving the Nonlinear Variational Problem Directly

	Time-Dependent Problems
	A Diffusion Problem and Its Discretization
	Implementation
	Avoiding Assembly
	A Physical Example

	Creating More Complex Domains
	Built-In Mesh Generation Tools
	Transforming Mesh Coordinates

	Handling Domains with Different Materials
	Working with Two Subdomains
	Implementation
	Multiple Neumann, Robin, and Dirichlet Condition

	More Examples
	Miscellaneous Topics
	Glossary
	Overview of Objects and Functions
	User-Defined Functions
	Linear Solvers and Preconditioners
	Using a Backend-Specific Solver
	Installing FEniCS
	Troubleshooting: Compilation Problems
	Books on the Finite Element Method
	Books on Python
	Acknowledgments

	Bibliography

