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Chapter 6

Finite Element Spaces

One of the advantages of the finite element method is that it can be used with
relative ease to find approximations to solutions of differential equations on general
domains. So far we have only considered approximating in one dimension or in
higher dimensions using rectangular elements. The goal of this chapter is to formally
define a finite element, present some examples of commonly used elements and to
establish a taxonomy for describing elements. Isoparametric elements, which are
used for domains with curved boundaries, are discussed in a later chapter.

To precisely describe a particular finite element, it is not enough to give the
geometric figure, e.g.,a triangle, rectangle, etc. One must also specify the degree of
polynomial that is used. Does describing these two pieces of information uniquely
determine the choice? In fact, no. If we recall in R! using an interval as the geomet-
ric element and specifying a cubic polynomial on each interval does not completely
describe the finite element because we can determine the cubic by function values at
four points or by function and derivative values (as in Hermite cubic) at two points.
Consequently, three pieces of information must be provided to give an adequate
description of a finite element; we must specify the geometric element, the degree of
polynomial, and the degrees of freedom which are used to uniquely determine the
polynomial.

Once we have chosen a particular finite element, we subdivide the domain
into a finite number of geometric elements; this meshing must be “admissible”,
i.e.,satisfy certain properties. We want to construct a finite element space, S, over
this mesh which possesses specific properties. A basic property which we said is a
distinguishing feature of the finite element method is that we use a piecewise poly-
nomial which is a kth degree polynomial when restricted to the specific element.
For conforming finite elements we require our finite element space to be a subspace
of the underlying Hilbert space. For second order problems this space was H(2)
or a subspace and for fourth order problems the underlying space was H?()). Con-
sequently a second property we require is a global smoothness requirement on the
space. Finally, for the finite element method to be computationally efficient we
must be able to construct a basis which has small support. Before addressing some
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102 Chapter 6. Finite Element Spaces

Figure 6.1. Inadmissible triangulation due to “hanging node”
of these issues we consider the admissible “triangulations” of a domain.

6.1 Construction of a finite element space

6.1.1 Admissible triangulations

Once a specific geometric element is chosen, we subdivide the domain Q into a finite
number of individual subsets or geometric elements. We will use the terminology
triangulation to refer to a subdivision of Q even if the specific geometric element
is not a triangle. The subsets form a triangulation of Q, denoted 7", which must
satisfy certain properties. Some of these properties are obvious, such as the fact
that their union is €, while others may not be as obvious. For example, we must
add a condition which guarantees there are no “hanging nodes” as indicated in
Figure 6.1.

Definition 6.1. A subdivision T" of Q into subsets {K1,Ka,...,Kar} is an ad-
missible triangulation of Q if it satisfies the following properties:

(i1) for each j, j = 1,2,..., M, the set K; is closed and the interior of IC; is
non-empty;

(iii) for each Kj, j =1,2,..., M, the boundary OK; is Lipschitz continuous® ;
(1v) if the intersection of two elements IC; and K, is nonempty then the intersection
must be a common vertex of the elements if the intersection is a single point;

otherwise the intersection must be an entire edge or face common to both K,
and IC;.

1A domain in Euclidean space with Lipschitz boundary is one whose boundary is “sufficiently
regular”. Formally, this means that the boundary can be written as, e.g., z = f(z,y) where f is
Lipschitz continuous. Recall that a function g is Lipschitz continuous if ||g(p) — g(q)|| < C'|lp — 4||.
for all p, q.
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The penultimate condition in Definition 6.1 allows the application of Green’s for-
mula over each element.

The parameter h in the triangulation 7" is related to the size of the geometric
elements and generally gives a measure of the coarseness or fineness of the mesh. It
is usually taken to be the diameter of the largest element, i.e..for p,q € R"

n 1/2
h; = max pi — ;| , j=12,.... M
I ek, (;' i~ J

and
h = max{hl,hg,. . .,h]\/[}.

If we have a mesh where all the geometric elements are congruent, then the trian-
gulation is uniform if all the elements are the same size; otherwise the triangulation
is called nonuniform.

Clearly, we are interested in obtaining approximations on successively finer
triangulations. For this reason, it is important to look at properties of families of
triangulations. For example, we know that when we refine a mesh we can’t just
make the elements smaller in one portion of the domain but rather refine in some
uniform way. To define the concept of a shape regular triangulation we introduce the
parameter p = min; p; where p; denotes the diameter of the largest ball contained
in an element ;. Then a triangulation is called shape regular provided there exists

a constant o such that b
o=—. (6.1)

p
A family of triangulations is called shape regular (or just regular) provided o is

uniform over the triangulations.

6.1.2 Formal definition of a finite element

From our previous examples in one and two dimensions, we saw that to completely
describe a finite element we had to give more information than simply the choice
of the geometric element and the degree of the polynomial. In fact, we need three
pieces of information — the geometric element, the specific polynomial space defined
over the geometric element, and the degrees of freedom needed to uniquely deter-
mine the polynomial. We follow Ciarlet’s approach for the formal definition of a
finite element.

Definition 6.2. A finite element in R™ is a triple (KC, Pk, ©x) where

(i) K is a closed subset of R™ with nonempty interior and a Lipschitz continuous
boundary.

(ii) Px is a space of dimension s of real-valued functions over the set KC;

(#ii) O is a set of s linearly independent functionals, 0;, 1 < i < s, defined over
the space P .
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It is assumed that every p € Px is uniquely determined by the values of the s
functionals in Ox.

The set K is the specific geometric element in an admissible triangulation.
The space Py usually consists of a polynomial defined over K; however, we allow
a broader definition so as to include some less common elements. In practice, we
take these functions to be our basis for the space Px. The set O consists of the
degrees of freedom which uniquely determine an element of P.

We can not arbitrarily choose a triple (K, Px, Ox) to define a finite element
because p € Px may not be uniquely determined by the degrees of freedom specified
by Ox. An obvious example is the case where we don’t have enough degrees of
freedom specified; however, even if we have enough constraints they still may not
uniquely determine the polynomials. To demonstrate that the degrees of freedom
uniquely determine the polynomial several approaches can be taken. One approach
is to show that the system of equations which results from imposing the degrees of
freedom on an arbitary p € Px has a unique solution. An alternate approach which
is to actually construct a basis for the space Px. We demonstrate both techniques
when we consider specific finite elements.

6.1.3 Properties of finite element spaces

We subdivide the domain into a finite number of individual elements ;. On each
KC; the polynomial space Px; is specified along with the degrees of freedom which
uniquely determine a polynomial p € Px; on the element ;. Then, an associated
finite element space is defined through a systematic process. In every instance, this
space is a finite-dimensional space of functions defined over Q. An outline of the
process is given as follows.

First, one defines the local properties with respect to each set KC; of the finite
element space S". Restricted to each subset K; C Q, functions belonging to Sh
belong to Px,. Furthermore, over each K;, the functions in S" are determined by
the specified degrees of freedom.

Second, one defines the global properties with respect to € of the finite element
space. In particular, the desired order of global continuity and differentiability for
S* must be specified. For example, one could merely require that S* c C°(Q2) or
it may be necessary to require that S" C C1(€Q).

The global properties are dictated by the differential equation which is being
approximated. We have seen that for second order differential equations the un-
derlying global smoothness of the finite element space is S C H'(Q) whereas for
fourth order problems we require S C H?(Q2). The question then arises how we
can guarantee these global properties. Clearly the choice of local properties of S”
influences the global properties.

The following two propositions give conditions which guarantee the standard
global smoothness conditions on S". The significance of the first proposition is that
imposing the global smoothness S* ¢ H'() does not require the functions in S* to
be continuously differentiable but merely continuous; this should be contrasted with
the smoothness requirements for the classical solution of a second order boundary
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value problem. Similarly, the requirement S* C H?(Q) only requires functions
v € 8" to be in C1(Q). In the proposition, the additional assumption that Px; C
H'(K;) is automatically satisfied when Py, is a polynomial space on K;.

Proposition 6.3. Assume that T" is an admissible triangulation of @ C R™ into
the subsets {K;}. Let Px, C H'(K;) for all j, let S" € C°(Q), and let v"|x, € Pk,
for all v € S*. Then S C HY(Q). Moreover, if SE consists of those functions in
S" which vanish on the boundary of Q, then

Sh={v"e S . " =0 0000} Cc H(Q).

Proof. Let v € S"; we must show that v" € H'(Q), i.e.,that v" € L?(Q2) and that
its first-order weak derivatives belong to L?(2). Since v" € C°(Q2) we have that
v" € L?(Q). To demonstrate that its first-order weak derivatives are in L?(Q), we
must find functions w?, i = 1,...,n, such that

/vha‘b dQ:—/wﬁqﬁdQ VoelrQ).

For each 4, we choose the function w to be the function whose restriction on each
finite element IC; is the function d(v"|x,)/dx;; this is possible since P, C H*(K;).
Since each finite element XC; has a Lipschitz-continuous boundary 0K;, we may
apply Green’s formula to obtain

9 3
~/ch O (vh\lcj)¢d:v:—/ (vh‘}gj) 8Z dx-}—/alcj Uh|lcj 6 nix, dS,

K

where n; x; is the ith component of the unit outer normal along the boundary of
K;. Summing over all the elements, we obtain

/wfgbdQ:f/vhaidQJrZ/ Uh‘Kj¢ni>Ki ds.
0 o O o, '

We are done if we can show that the last term vanishes. The boundary of the
elements 0K; can be broken up into segments that are part of J€) and segments
that are also part of the boundary of an adjacent subset, say ;. In the first case,
¢ = 0 so that clearly those terms vanish. In the other case, the boundary integrals
from the two adjacent elements cancel since, by hypothesis, v" € C°(Q) and if two

elements ; and Ky are adjacent then on their common boundary, n; x;, = —n k-
The fact that S} C Hg(Q) follows since 99 is Lipschitz continuous and if
vl e Sk v =0 on 99. ]

Proposition 6.4. Assume that T" is an admissible triangulation of Q C R™ into
the subsets {K;}. Let Px, C H*(K;) for all j, let S" C C*(), and let v"|x, € Pk,
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for all v € S*. Then, S C H?(QY). Moreover, if Sg‘ consists of all functions that
vanish on the boundary, then

St ={vh e S vh =0 0n 00} C H*(Q)N H(Q) (6.2)

and if S& consists of all functions that vanish on the boundary and whose derivative
in the direction of the unit outer normal also vanish on the boundary, then

h
Sh={vhesh . vh:%%zo on 0N} C H3(Q). (6.3)

Proof. The proof is analogous to the proof of Proposition 6.3. The details are left
to the exercises. =

6.2 Examples of finite elements on n-simplices

In R2 the common choices for a geometric element are a triangle and a quadrilateral.
If the domain is polygonal and not rectangular, then triangular elements are needed
to discretize. In R? the commonly used elements are tetrahedra and cubes or bricks.
In a later chapter we consider isoparametric elements to handle domains with curved
boundaries. In this section we look at some of the more commonly used triangular
elements and their variants.

We have seen that to completely specify a finite element, it is not enough to
just choose a geometric element. We must also specify the degree of polynomial on
the element and the degrees of freedom which uniquely determine the polynomial.
To use the element we must also specify a basis which has small support. In the last
chapter we saw that for rectangular elements we could simply use tensor products
of the basis in one-dimension. For triangles or tetrahedra, this approach does not
work. In the following section we see that barycentric coordinates are a useful tool
in writing basis functions on a triangle or tetrahedron. In addition, in Section 77?7
we consider the approach of determining the basis functions on a reference element
and mapping them to the desired element.

In this section and the next we develop a taxonomy for identifying finite
elements whether in one, two or three dimensions. We identify the element by its
geometric shape which is called an n-simplex or an n—rectangle; by its type which
indicates the polynomial space, and by whether it is a Lagrange or Hermite element
which indicates the kind of degrees of freedom used.

6.2.1 n-simplices

The first class of finite elements we consider uses subsets I of R™ that are simplices,
e.g.,line segments in R!, triangles in R? or tetrahedra in R3. Formally, we define an
n-simplez in the following way.
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Definition 6.5. Let 2z, k= 1,...,n+ 1, denote n + 1 points in R™. The convex
hull of these n + 1 points, i.e.,the intersection of all convex sets 2 containing zy,
k=1,...,n+1, is called an n-simplex and the points z;, k = 1,...,n+ 1, are
called the vertices of the n-simplez.

For example, for n = 2 we specify three points {z1, 22, 23} and a 2-simplex is
simply a triangle with vertices (z;,, 2:,), © = 1,2, 3, provided the three points are not
collinear. To enforce the noncollinearity of the points, we require that the matrix

Rl R2y R3
21, 22, z3

1 1 1

2

is nonsingular. Note that the magnitude of the determinant of this matrix is just
the area of the parallelogram formed by the vectors zo — z; and z3 — z;. For n = 3,
we specify four points {z1, 2o, 23,24} and a 3-simplex is just a tetrahedron with
vertices z;, i = 1,...,4, provided the four points are not coplanar, i.e.,provided the
matrix

Rl R2p 231 R4y
Rly 22y R3y R4y
225 33 R4
1 1 1 1

3

is nonsingular. Note that the magnitude of the determinant of this matrix is the
volume of the parallelepiped formed by the vectors z; — z1, i = 2,3, 4.

For an integer j such that 1 < j < n, any j-simplex whose vertices are a subset
of the (n 4 1) vertices of a given n-simplex is called a j-face of the n-simplex. An
(n-1)-face is simply called a face and any 1-face is called an edge. In R?, triangles
have edges, i.e.,1-faces. In R?, tetrahedra have faces (2-faces) and edges (1-faces.)

6.2.2 Barycentric coordinates

A geometric concept which is useful in easily writing polynomial basis functions
on an n-simplex is the idea of barycentric coordinates which were first defined by
Mobius in 1827 (Coexeter 1969, p 27; Fauvel 1993). We know that if we are given a
frame in R™, then we can define a local coordinate system with respect to the frame;
e.g.,Cartesian coordinates. If we are given a set of n + 1 points in R"™ then we can
also define a local coordinate system with respect to these points; such coordinate
systems are called barycentric coordinates.

Suppose we are given a set of n+ 1 points 2z, € R, k=1,...,n+1, such that

2Recall that a set S is convex if given any two points x and y in S then the line segment joining
z and y lies entirely in S.
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the determinant of the matrix

211 221 e ZTLJrll
212 Z22 e Z’I’LJrlQ
: (6.4)
Pln A2, 77 Zatl,

is nonzero. As we have seen, this is just the condition which guarantees in R? that
the points are not collinear and in R? that the points are not coplanar. Consider
the set of all linear combinations of these points of the form

q=MAz1+Xza+ - Apg1Zn41

where
n+1
D N=1
j=1
Then the coordinates (A1, Ag,...,A\pt1) are called the barycentric coordinates of

points of the space with respect to the given points zx, k=1,...,n+ 1.

As an example of barycentric coordinates consider three specific points in R2,
z1 = (0,0), z2 = (1,0) and z3 = (1,1); the points form a triangle. Any linear
combination of these three points such that A\; + A2 + A3 = 1 gives the barycentric
coordinates (with respect to z1, z2, 23) of a point in R2. For example, the barycentric

coordinates (%, i, %) is the point in space with Cartesian coordinates (%, %) since
1 1 1 11
=(0,0) + =(1,0) + = (1,1) = (=, ).
0.0+ 11,0+ 31,1 = (3, 1)

Similarly, the barycentric coordinates (1, —1,1) is the point in space with Cartesian
coordinates (0,1) since

1-(0,0) + (=1)- (1,0) + 1 (1,1) = (0,1).

We notice that the point (%, +) with barycentric coordinates (3, 1, 1) lies within the
triangle formed by the given z;, i = 1,2, 3 whereas the point (0, 1) with barycentric
coordinates (1,—1,1) is not inside the triangle. In general, one can demonstrate
that if 0 < A1, A2, A3 < 1 then the point ¢ = Aj1z1 + Aoz + Azz3 lies inside the
triangle. If any Ag, k = 1,2, 3, is less than zero or greater than one, then the point
q lies outside the triangle. If, for example, A; = 0, then the point ¢ lies on the edge
of the triangle through 2o and z3. The justifications of these statements are left to
the exercises.

Suppose now we are given a point (z1,zs2,...,2,), in a Cartesian coordinate
system or some other frame and want to determine the barycentric coordinates of
the point with respect to a given set of n 4+ 1 points. The barycentric coordinates
(A1, A2, ..., A1) of the point with respect to the prescribed points n+ 1 points 21,

1
1
1
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22,...,2n+1 are found by solving the system
n+1
szi)\j = i=1,...,n
j=1
R (6.5)

SN o= L
j=1

Here z;, denotes the ith component of the point z;. The coefficient matrix of (6.5)
is just the matrix in (6.4) and hence we are guaranteed a unique solution. If we
solve this system for the barycentric coordinates, then we see that the A;(z), j =

1,--+,n+1, are linear functions of the coordinates of the point = (21, x2,...,x,) €
R"”, i.e.,
n
A=Y Gtk + G J=1...n+1, (6.6)
k=1

where (; ; denotes the ¢,j entry of the inverse of the matrix given in (6.4). For
example, the barycentric coordinates with respect to the points z; = (0,0), 2o =
(1,0) and z3 = (1,1) for the Cartesian point (2, 1) are found by solving the system

402
01 1 A %
00 1 Xl=13
11 1 Ao 1

to get ( i, i, %) We can write the barycentric coordinates as

M -1 01 %
A2 0 1 0 1

or in the form of (6.6) as A\; = (=1)xz1 + (0)z2 + 1, Ao = (1)x1 + (—1)z2 + 0, etc.

We now want to see how barycentric coordinates can assist us in writing a basis
for a polynomial space defined on a triangle or tetrahedron where we require that
the basis is a nodal basis, i.e.,it has the property that it is one at one vertex and is
zero at the other vertices. Consider the example of a 2-simplex, i.e.,a triangle, with
vertices {z1, 22, 23}. Then, the barycentric coordinates of a point = (x1,r3) € R?
are determined by solving the linear system

211)\1 + 2’21)\2 + 2’31)\3 = I
Z1, A1+ 2o, A2+ Z3,A3 = T
A+ Ao+ A3 = 1.

It is easy to see that if x is one of the vertices of the 2-simplex, say = = zi, , then
Aj(2zx) = 0,k where d;; = 0 if j # k and is equal to one if j = k. For example, if
x = z then the barycentric coordinates of x are (1,0,0). Note also that A;(x) is
zero along the edge formed by 2z and z3 since it is a linear function which is zero
at zo and z3; thus the side of the triangle formed by the vertices zo and z3 can be
described by the equation A\; = 0.
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Figure 6.2. n-simplicies of type(1)

o—0
interval

; tetrahedron
triangle

Summarizing, we have that the barycentric coordinates (A1, A2, A3) are linear
functions of z (from (6.6) ) which take on the values (1,0,0) at © = z;, the values
(0,1,0) at = 29 and (0,0,1) at = 23. Consequently, A; is a linear function of x
which is one at the vertex z; and is zero at the other two vertices z9 and z3; similar
conditions hold for Ay and A3. Hence these barycentric coordinates can serve as
basis functions for the space of linear polynomials over the triangle formed by the
points z1, z2, and z3. When we consider quadratic or higher order basis functions
we see that we can simply take appropriate products of the A;, j =1,...,n+1.

6.2.3 Lagrange finite elements on n-simplices

When all the specified degrees of freedom are function values, then the finite element
is referred to as a Lagrange finite element. Lagrange finite elements on n-simplices
lead to finite element spaces that are subspaces of C°(Q) and hence by Proposi-
tion 6.3 they are subspaces of H!(€2). Such finite elements are often referred to
as “C%-elements”. In the taxonomy of finite elements such elements are called n-
simplices of type (£) where the qualifier “type (¢)” refers to the degree of polynomial
specified on the n-simplex.

Lagrange finite element on an n-simplices of type (1)

We first consider an n-simplex of type (1); i.e.,we are using a linear polynomial
defined over an interval in R!, a triangle in R? or a tetrahedron in R3. These are
illustrated in Figure 6.2. We choose P(K) = P;(K) to be linear polynomials defined
over K. Since the dim(Py(K)) = 3 in R? and dim(P(K)) = 4 in R3, we expect a
linear function on IC to be uniquely determined by its values at the n + 1 nodes of
the n-simplex. This can be proved in several ways; in the following proposition we
prove the result using a linear algebra argument and then following the proof we
outline an alternate argument.
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Proposition 6.6. Let IC be an n-simplex in R™, n = 1,2, 3, with vertices z1, ..., Zn41-
A polynomial p(x) € Py(K) is uniquely determined by its values at the vertices.

Proof. We present a proof for the case n = 2 and leave the case n = 3 to the
exercises; we have already addressed the case of an interval in R!. Let p = ¢o +
c1x1 + coxo where cg, ¢, co are constants and let n;, ¢ = 1,2,3 be the prescribed
values of p(z) at the vertices. Then we must show that there is a unique function
p(z) € P1(K) such that p(z;) = n;, i = 1,2, 3; i.e.,that the linear system

N =co+c12i, +cazi, fori=1,2,3

has a unique solution. Note that the requirement that this coefficient matrix be
nonsingular is equivalent to the condition which guaranteed that the vertices were
not collinear in R2. -

Alternately, we could have shown that any polynomial p(z) € P;(K) can
be written in terms of its values 7; at the vertices. Recall that the barycentric
coordinates satisfy \;(zx) = d;x for 1 < i,k < 3 so that in R? the polynomial

mAL(z) + n2Aa(z) + n3A3(x)

has the desired property; i.e.,when we evaluate it at the vertices we get the nodal
values. Thus any linear polynomial on an n-simplex with vertices {21,..., 2,41}

can be written as
n+1

p(x) = Zp(zi)ki(x) :

Summarizing, we define the 2-simplez of type(1) to be the set K where K is a
triangle with vertices z;, i = 1,2, 3 together with the space P;(K) and the degrees
of freedom of the finite element consisting of the values at the three vertices. A 3-
simplex of type(1)is a set IC, where K is a tetrahedron with vertices z;, i = 1,2,...,4,
together with the space P;(K) and the degrees of freedom of the finite element being
the values at the four vertices.

Lagrange finite element on n-simplices of type (2)

Results for n-simplices of type £ for £ > 1 follow in an analogous fashion. In R?
we know that the dimension of P5(K) is six so we must specify a second degree
polynomial at six points to uniquely determine it; the dimension of P3(K) is ten
so that a third degree polynomial must be specified at ten points on the triangle.
The most commonly chosen points are the obvious ones. These points form the gth
order principal lattice of an n-simplex K given by

n+1 n+1
£(€71’L) = {szakzk : ZO’kzl,
k=1 k=1

12 (-1
Uk€{07z,z7,771},1§k§n+1}

(6.7)
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Figure 6.3. ¢t order lattice for a 2-simplex

where 21, 29, ..., 2,41 are the vertices of K. It is easy to demonstrate that £(¢,n)
contains (“lf") points. For example, in R? for £ = 1 o, € {0,1} so that the points
in £(1,2) are {21, 22,23}, i.e.,the vertices of the triangle. For £ = 2, o}, € {0,%,1}

’» 9
so that

21+ 22 21+ 23 22+ 23
2 72 7 2 } ’

i.e.,the verticies of the triangle and the midpoints of the sides. The ¢th order princi-

pal lattice for a 2-simplex for £ = 1, 2, 3, 4 is illustrated in Figure 6.3. The following

proposition states that an 2t order polynomial on an n-simplex is uniquely deter-

mined by its values at the points in the corresponding principal lattice.

6(27 2) = {217 22,23,

Proposition 6.7. Let K be an n-simplex in R™ with vertices zx, 1 < k < n+ 1.
Then for a given integer £ > 1, any polynomial p € Py is uniquely determined by its
value at the points in L(¢,n) defined by (6.7).

Proof. The proof is left to the exercies. ]

We now know that any quadratic polynomial on an m-simplex is uniquely
determined by its values at the nodes and the midpoints of the edges of the n-
simplex. If we can write any p € P>(K) in terms of the specified values at these
nodes then we will have a basis for the space. For example, for a 2-simplex we want
to write

3

p(r) = Zp(zz)qz(z) + p(212)q12(x) + p(213)q13 () + p(223)q23(T)

where ¢;, ¢ = 1,2,3, and ¢i2, ¢13, and g23 are quadratic functions on K and z;;
represents the midpoint of the edge joining the nodes z; and z;. We use products
of the linear barycentric coordinates to write these quadratic functions which serve
as our basis functions with small support. First, consider the function g; which is
a quadratic function which has the properties ¢1(2z1) = 1 and ¢1(z) = 0 at the five
points z9, 23, 212, 213, and za3. Recall that A\;(z) is a linear function such that
A1(z1) =1, Ai(22) = Ai(z3) = 0, so in barycentric coordinates the equation of the
line through 29 and z3 is just Ay = 0; similarly, the equation through the midpoints
z12 and z13 is Ay = 1/2. Since the point zo3 lies on the line A\; = 0 we have that
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(@) <)\1(x) _ ;)

vanishes at the five points za, 23, 212, 213, and z93. Hence we choose ¢;(z) =
CAi(z) (M(z) — 4) and normalize so that g1(z1) = 1. Since Ai(z1) = 1 we set
C = 2. In a similar manner ¢; = \;(z)(2A;(x) — 1), ¢ = 2,3. Now we must construct
a quadratic function gio which has the properties that gi2(z12) = 1 and ¢12(z) =0
at the vertices and the remaining midpoints. In this case the equation of the line
through z; and z3 is A = 0 and the line through 2z, and z3 is Ay = 0. Thus
the quadratic A\ (z)A2(x) has the property that it is zero at the verticies and the
midpoints zo3, 213 and takes on the value one-fourth at z15; consequently we take
q12(x) = 4\ (x)A2(z). In general, ¢;;(z) = 4\;(z)A;(z). Combining these results
we have that for p € Py(K) where K is a 2-simplex

the quadratic function

3
p=>_p(z)\i(2\; — 1) + 4p(212) M X2 + 4p(213) A1 As + 4p(223) A s
=1

For a n-simplex

n+1 n+1
=Y p)XNN = 1)+ > 4p(zi)Nide ¥ p € Pa(K). (6.8)
=1 i k=1

i<j
Recall that to determine the barycentric coordinates with respect to the points z;,
i=1,...,n+1 we had to solve an (n+ 1) x (n + 1) linear system of equations.
We now define the n-simplex of type (2) to be an n-simplex K together with the
space P»(K) and the degrees of freedom consisting of the values at the vertices and
the midpoints of the edges. Properties of the n-simplex of type(2) are summarized
in Table 6.1
The cases ¢ > 3 can be handled in a similar manner. Their properties are
summarized in Table 6.1. See the exercises for details.

6.2.4 Hermite 2-simplices

In our examples so far in this chapter we have considered Lagrange finite elements
whose degrees of freedom were function values at a prescribed set of points and the
resulting finite element spaces were subspaces of H!(Q). In the examples in this
section, we consider finite elements in which some of the degrees of freedom are
partial derivatives, or more generally, directional derivatives. We denote the partial
derivative of a function p(x) in the direction of the line segment through two points
a,b € R" and evaluated at a point x = ¢ € R by Dy, yp(c). Of course, knowledge
of the directional derivatives at a point is equivalent to the knowledge of the partial
derivatives.

Hermite 2-simplex of type(3)

Recall that in R' we used the space of cubic Hermite polynomials to construct a
subspace of H?(Q2). However, we see that in R? (and also in R3) using Hermite
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cubics generates a finite element space which is only a subspace of C°(Q) and thus
only a subspace of H!(£2) by Proposition 6.3. In the next section we consider an
example of a C1(Q) triangular element in R?.

To uniquely determine a cubic polynomial on a triangle, we must specify ten
conditions since dim P; = 10. The following result gives ten degrees of freedom
which are combinations of function and derivative values that uniquely determine
a polynomial p € Ps.

Proposition 6.8. Let K be an 2-simplex with vertices z;, 1 < i < 3, and let
2193 = 2(21 + 22 + 23). Then any polynomial p(x) in the space P3(K) is uniquely
determined by its value at the vertices, p(z;), i = 1,2,3 and the value of its two first
partial derivatives at the vertices zj, 1 < j < 3, and its value at the point z123.

Proof. First note we are specifying 10 degrees of freedom and dim(P3) = 10 in
R?. To show uniqueness we demonstrate that if p € P3(K) and &;, n;;, ¢ are given
values then the 10 x 10 system

p(zi)=¢& fori=1,2,3
@(z)— ;; fori=1,23and j=1,2
(91']‘ i) = Tij = 1,4 J=1
p(2’123):C

has a unique solution. An easy way to show this is to set all the given values, &;,
n;; and ¢, to zero and prove that p(z) must be identically zero.

If we show that p € P5(KC) is zero along each edge of the triangle, then we know
that p = aliA2A3 for some constant o where A; are the barycentric coordinates
defined by (6.5). Then, since p(z123) = 0 we have that @ = 0 and thus p(z) must
be identically zero in K. To demonstrate that p € P3(K) is zero along each edge
of the triangle we note that along the line containing the vertices z; and z; p is
a cubic polynomial of one variable and hence we need four conditions to uniquely
determine it. But p(z;) = p(z;) = 0 and that Dy, . 1p(2;) = D, .,;)p(2;) = 0 and
thus p is zero on each edge [z, z;]. n

We can now define the finite element which is called the Hermite 2-simplezx of
type(3) where the partial derivatives at each vertex are degrees of freedom as well
as the values at the vertices and the barycenter. Since knowledge of the directional
derivatives at each vertex is equivalent to the knowledge of the partial derivatives
at each vertex, we can specify either as degrees of freedom. The properties of
the Hermite 2-simplex of type (3) are summarized in Table 6.1. Note that in the
illustration of the element in the table we indicate the partial derivative degrees of
freedom at z; by a circle centered at z;.

We now associate a finite element space S with a subdivision of Q C R? into
Hermite 2-simplices of type(3). Then a function v € S" implies that the restriction
v"|xc, is in the space Px, = P5(K;) for each K; and is defined by its values at all the
vertices of the subdivison, its values at the centers of gravity of all the triangles, and
the values of its two first partial derivatives at all the vertices of the subdivision. If
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we assume that we have an admissible triangulation of our domain into 2-simplices
then we are able to obtain the following result.

Lemma 6.9. Let S” be the finite element space associated with Hermite 2-simplices
of type(8). Then the inclusion

Shc Q) nHY Q) (6.9)
holds.

Proof. Because of Proposition 6.3 it suffices to show that S* ¢ C°(2). Along any
common side of two adjacent triangles, there is a unique polynomial of degree three
in one variable which takes on the prescribed values and prescribed first derviatives
at the endpoints of the side yielding a total of four conditions and thus uniquely
determines a cubic in one variable. =

It is tempting to think that the inclusion S* c C*(Q) holds for Hermite n-
simplices of type(3); however, this is not the case. Although the tangential deriva-
tive along an edge is continuous from element to element, the normal derivative is
not.

Finally, we should produce a basis set consisting of functions of minimial
support. As before, we can use the barycentric coordinates to write a polynomial
p € Ps in terms of its values at the vertices and the barycenter, and the six values
of its directional derivatives at the vertices; ultimately they are used to construct
a basis for our corresponding finite element space. In particular, we want to write
any p € Ps as a linear combination of appropriate cubic polynomials times the value
of p and its partial derivatives at the vertices, z;, ¢ = 1,2,3, and its value at the
barycenter z123. For example, the cubic basis function at the vertex z; should have
the property that it is one at z1, zero at zs, 23, 2123 and, in addition, its partial
derivatives at nodes z;, i = 1,2,3, should be zero. Specifically, for all p € P5(K),
K Cc R?

3
p(x) = Zp(zl) (—2/\? + 3)\12 - 7)\1)\2)\3)
=t 3 3 (6.10)
—|—27p(2123)/\1/\2/\3 + Z Z D[zl,zJ]p(Zz)/\z/\J(2)\z + )\j — 1) .
=5

It is easy to see that when we evaluate p(x) given by (6.10) at z;, 1 < i < 3 and
at z123 we get the corresponding function values p(z;), 1 < i < 3, and p(z123).
It is a little more difficult to show that when we evaluate D[Zi,zj]p(m) at z; then
the terms multiplying p(z;) and p(z123) are zero and the polynomial multiplying
Dy, 2 p(z;) is one. The proof of this is left to the exercises but basically we must
show that Dy, .,1(AiAjAk)(2;) = 0, when we differentiate the term —2A7 + 3A? the
terms cancel, and a relationship of the form Dy, .. 1A; = 0jr — Aj(2:), 1 < k < 3,
k # i then if k = j £ i we get the desired result.
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6.2.5 (! elements on n-simplices

For fourth order differential equations, the inclusion S* C H?(Q) is needed; how-
ever, none of the examples presented so far satisfy this condition. Recall that the
difficulty in the Hermite 2-simplex was the fact that the normal derivatives did not
agree along an edge common to two adjacent elements.

The Argyris triangle

The first C! element which we consider is the Argyris triangle which uses a complete
polynomial of degree five. The degrees of freedom consist of function values and
first and second derivatives at the vertices in addition to normal derivatives at the
midpoints of the sides. It can be shown that in R? any p(z) € Ps is uniquely
determined by the 21 degrees of freedom given by

O ={D%(z),|a| <2,1<i<3, 88 p(zjk), 1 <i <3},

(2

where n; denotes the normal along the edge of the triangle formed by z;, zi, j #
k # i and zj;, denotes the midpoint of that edge. Note that we have used multi-
index notation to denote the derivatives to simplify the statement of the degrees
of freedom. The Argyris 21-degree of freedom triangle is illustrated in Table 6.1
where we use | to indicate normal derivatives and a circle to indicate derivatives at
vertices.

A finite element space is constructed in the usual manner. Since we require
the normal derivative at the midpoint of each edge to be a degree of freedom, we
expect the normal derivative as well as the tangential derivative along an edge to
be continuous. The following result demonstrates that the finite element space
generated by using the Argyris triangle is a subspace of H?(f2) and thus can be
used to approximate fourth order problems.

Proposition 6.10. Let S be the finite element space associated with the Argyris
triangle. Then the inclusion

Shc cl(Q)n H(Q)
holds.

Proof. By Proposition 6.4, it suffices to show that S* ¢ C1(Q). Let K; and IC; be
two adjacent triangles with a common side [bg,bs] where by, by denote vertices of
the triangulation and let v" € S”. Considered as functions of an abscissa ¢ along
bk, be] the functions v"|k, and v"[x, are polynomials of degreee five in the variable
t. Call these polynomials ¢; and go. Since, by the definition of the space S", we
have

q(br) = ¢'(bx) = ¢" (bx) = q(be) = ¢'(be) = ¢"(be) =0

where ¢ = q; — go; it then follows that ¢ = 0 and hence the inclusion S* c C°(f2)
holds. Likewise, call 1 and rq, the restrictions to the side [by, bs] of the functions
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0 0

?vh |k, and ?vh ;- Then 7y and ry are polynomials of degree four in the variable
7 7

t and again, from the definition of S", we have the five conditions

T(bk) = ’I”/(bk) = T(bkg) = T(bg) = ’I”/(bg) =0

where 7 = r; — ro and by is the midpoint of the side [bg, be]. Therefore, r = 0. We
have thus shown the continuity of the normal derivative. Since ¢ = 0 along [bx, be],

q = 0 along [bg, by] also. Therefore, the first derivatives are also continuous on {.
|

One difficulty with the Argyris triangle is that there are 21 degrees of freedom.
A modification to the Argyris triangle is the Bell element which suppresses the
values of the normal slopes at the nodes at the three midpoint sides, reducing the
degrees of freedom to 18. Functions in the finite element space associated with the
Bell element are in a space Pg where Py C Pg C P;. Here Py denotes the space of
all fifth degree polynomials whose normal derivatives along each side of the triangle
are third degree polynomials. Note that, in general, in the Argyris triangle the
normal derivative of p € Ps along each edge is a fourth degree polynomial. In this
element the degrees of freedom are

O = {D%(z),|a| < 2,1 <i<3}.

The determination of the basis functions for both the Argyris and Bell triangles
is somewhat involved. The reader is referred to [?] for details.

Hsieh-Clough-Toucher triangles

In an effort to create an element which generates a finite element space that is
a subspace of H?(Q) but which has fewer degrees of freedom, researchers have
developed composite type elements commonly called macro elements. In the Hsieh-
Clough-Tocher triangle, the triangle is first decomposed into three triangles by
connecting the barycenter of the given triangle with each of its vertices. On each
of the subtriangles a cubic polynomial is constructed so that the resulting function
is C! on the original triangle. There are a total of 12 degrees of freedom which
consist of the function values and first partial derivatives at the three vertices of the
original triangle in addition to the normal derivative at the midpoints of the sides
of the original triangle.

There is also a reduced Hsieh-Clough-Toucher triangle where the degrees of
freedom have been reduced to nine. Once again, the construction of the basis
functions are involved; the reader is referred to [?, ?] for details.

6.3 Examples of finite elements on n-rectangles

In this section we assume that 2 C R" is a region that can be subdivided into
rectangular elements. Many of the results are analogous to those when we subdivide
a polyhedral region into n-simplices.
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Table 6.1. Triangular elements

degrees of element Pe(K) dim P
freedom
A 2-simplex of type (1) P1(K) 3
A 2-simplex of type (2) P2 (K) 6
A 2-simplex of type (3) P3(K) 10
A Hermite cubic 2-simplex Ps(K) 10
& Argyris triangle P5(K) 21
i i Bell triangle Pp C P5(K) 18

We let @y, for positive integers ¢, be the space of all polynomials of degree
less than or equal to ¢ with respect to each of the n variables xy,xs,...,x,. For
example, if n = 2 and ¢ = 1 @, =span{l,z1,z2,z122}. We note that we always
have the inclusion P, C Q¢ and in general,

dim(Q,) = (£ +1)". (6.11)

We formally define an n-rectangle in R™ as a product of compact intervals with
non-empty interiors.

Definition 6.11. An n-rectangle, K in R™ is defined by
n
K= H[(I,‘,bi] = {j’: (.131,1‘2,. .o ,Z‘n) Qg < ZT; < bi,l < 7 < n} (6.12)
i=1

for finite a;, b; for each i =1,... ,n.
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6.3.1 n-rectangles of type(/)

As in the case of n-simplices, once we have chosen the degree of @), then we must
specify points for the degrees of freedom, i.e.,points where if we prescribe a polyno-
mial of degree ¢ in the n-rectangle then the polynomial is uniquely determined. An
easy way to specify the degrees of freedom is to consider a particular n-rectangle,
namely the unit hypercube [0,1]™ and specify the points on it. Then a linear map-
ping gives the points on an arbitrary n-rectangle. The following proposition gives
a set of points which guarantees that a polynomial in @y is uniquely determined by
its values on the set.

Proposition 6.12. A polynomial p € Q is uniquely determined by its values on
the set

M(é,n):{xz (’2??) cR" : ije{0,1,~-,€},1§j§n}. (6.13)

Proof. See exercises. [
For example, in R?
M(1,2) = {(0,0),(0,1), (1,0), (1, 1)}
and in R?
M(1,3) ={(0,0,0),(0,1,0),(0,0,1),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)}.

Thus a 2-rectangle of type(1l) consists of a rectangular element K, the space of
linear polynomials on I, Q1 (K), whose dimension is 4 and whose degrees of freedom
consist of the values at the four vertices. Similarly a 3-rectangle of type(1) consists
of a rectangular element K, the linear polynomials on K, @1 (K), whose dimension
is 8 and whose degrees of freedom consist of the values at the eight vertices.

For n-rectangles of type(2)

NENO NS NI WEH)!

M(272) *{(030>7(071)3(170)7(131)7(072 9 232 ) 9

Thus a 2-rectangle of type(2) consists of a rectangular element K, the space of
quadratic polynomials on K, Q2(K), whose dimension is 9 and whose degrees of
freedom consist of the values at the four vertices, the midpoints of the edges and
the barycenter of the rectangle. Similar properties hold for a 3-rectangle of type(2),
2- and 3-rectangles of type(3).

6.3.2 Example of a rectangular C'! element

For fourth order problems, the inclusion S* C H2?(Q) is needed. We can easily
define a rectangular element in R? for which S* C H?(Q2) holds. The element is
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254(0,1) i (L)

I

—
D= =
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(070)21 29 (1»0) 22 (270)

Figure 6.4. Ezample of an affine transformation in a 2-simplex

. Ip dp 0? .
defined by prescribing p(z;), a—xl(zl), 8—362(21), mp(zz) at the four vertices

of the rectangular element. The resulting polynomial p is in the space Qs which
has dimension 16. The element is referred to as the Bogner-Fox-Schmit rectangle.
The proof that the finite element space constructed in the usual manner using this
element is a subspace of C1(1) is left to the exercises.

6.4 Affine families of finite elements

In this section we want to demonstrate that for many choices of finite elements,
instead of specifying a finite element discretization by the data IC, P, and O, we
can prescribe one reference finite element and the affine or linear function which
maps the vertices of the reference element into the vertices of the geometric element
in the admissible triangulation of the domain. We begin discussion of affine families
of finite elements with an example.

We first consider the specific situation depicted in Figure 6.4 where we wish
to find an affine mapping which maps the vertices of triangle K into the vertices
of triangle K; i.e.,we seek F)c such that Fi(2;) = z;, i = 1,2,3 where 2; are the
vertices of triangle K and z; the vertices of triangle IC. In this case, Fic(&) can be
explicitly written as

(2)-maa=3 (1) (2)+(1)

Clearly Fx maps the vertices in the reference triangle K into the corresponding

vertices in triangle L. Moreover, since the mapping is linear, F;C(%,O) = (%, i),
F (0, %) = (%, %), and FK(%, %) = (%, %), i.e.,the midpoints are preserved under

the transformation. In addition, the center of mass is preserved as well other points
which we may use as degrees of freedom.

Suppose now that we choose Px = P;(K) and Py = Pl(le) and we want to
compare a basis function quSi ep (l@) evaluated at a point & with the corresponding
basis function in Py evaluated at x = Fi(&). For example, the basis function
(;33 defined on K which is associated with node z3 = (0,1) is (]33 = I and the
basis function ¢3 defined on K which is associated with node z3 = (1,1) is ¢3 =
%xl + %Jlg — 1. If we evaluate each basis function at, e.g.,the barycenter we get
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the same value, i.e.g{)::,(%,%) = 3 and ¢3(,3) = 3. This is because (Z,3) =
FK(%, %) Consequently, to evaluate basis functions on K at quadrature points on

K, we simply evaluate the corresponding basis function on the reference triangle
at the corresponding quadrature point. However, this is not true when we deal
with derivatives of basis functions as when we construct a stiffness matrix. For
example, ggf =0 and %ﬁ = % We shouldn’t expect this to hold because we are
differentiating with respect to different variables so clearly we must consider the

transformation. The Jacobian of our transformation is given by

69:1 69:1 3 1

_ o1 O _ 2 2
r=(m 2)=(11)

9z: 0za 2 2

By the chain rule we have

06 _ 09 day 09 O,
(’9551 a E)xl 89?:1 a-’IfZ ai‘z

so that

9¢ dz1 Bzp 9¢ 9¢

8921 _ 3@1 3@1 3171 _ JT Bml

d¢ — | 9z  Ozo o | o9 |-

BER 0o 0o Oz Oz
Thus

99 99

< aml ) — =T ( 821 )
B¢ | 9¢ | -
63?2 6522

For our problem this just becomes

so that with ég = I we have

O¢s 1003 10¢5 1 _1
dxr1  20%; 203y 22
0ds _ 1095 300 _ 3 _3
8x2_28:%1+28£2_0+2_2

which agrees with what we would get if we differentiated ¢3(x1,x2) = %xl + %xz —1.

In summary, we have seen that if we have a reference element and an affine
function which maps the reference element into a particular K of our admissible
triangulation, then all of the calculations can be performed on the reference element.
Moreover, using a reference element and the linear map is a simple way to describe
a family of finite elements.

Consider the case where we are given a family (I, Px,©x) of triangles of
type(2) and our goal is to describe this family as simply as possible. Let K be a
reference triangle with vertices Z; and edge midpoints 2;; = (2, +2;)/2,1 <i < j <
3, and let

@IE = {ﬁ(ﬁl),l <1< 3; ﬁ(iij),l <i<j3< 3}
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so that the element (I/C\,P,E,GE) with Pg = PQ(I/C\) is also a triangle of type(2).
Given any finite element K in the family, there exists a unique invertible affine
mapping
Fi : & € R? = Fi(#) = Bed + bg
such that
FK(ZA:i) = Z;, 1 < ) < 3;

that is, Bx is an invertible 2 x 2 matrix and bx a vector in R2. In the previous
example we constructed a specific Fi of this form. Then it automatically follows
that
F;C(éij):zij 1§Z<]§3

since the property of a point being the midpoint of a line segment is preserved under
an affine mapping. Likewise the points such as z;;;, = %(zi—i-zj +2z1), Ziij = %zi—i—%zj,
etc. keep their geometrical definitions through affine transformations. Once we have
established the relation & € K — x = Fic(&) € K, between the points of the sets K
and IE, it is natural to associate the spaces

Pe=1{p: K—=RY p=p[Fc'(2)], p€ Pe}
with the space Px. Then it follows that
Pi. = Px = P2(K)

since the mapping Fi is affine.

In other words, rather than prescribing the family by the data K, P, Ok, one
cas prescribe one reference finite element (IC, Pg,©g) and the affine mappings Fx.
Then for our example of a 2-simplex of type(2), a typical element in the family
(K, Px,Ox) is such that

~

K = Fk(K)
Pc = {p:K—R': p=p[Fc'(x)], p € Pg}
Ok = {p[Fx(2)],1<i<3; p[Fic(Zi;)],1 <i<j<3}.

With this example in mind, we can now give the general definition that two
finite elements (IC, Pg,O¢) and (K, Pk, Ok), with degrees of freedom of the form
(?7), are said to be affine-equivalent if there exists an invertile affine mapping

F:2e€R"—> F(&)=Bt+beR"

such that the following relations hold:

~

K =F(K) (6.14)
Pe={p: K—RYyp=p[F ' (2)],p € P} (6.15)
(6.16)

whenever the nodes z; (2; occur in the definitions of the set ©x (Og). It is clear that
two n-simplices of type({) for a given £ > 1 are affine-equivalent. Likewise, two n-
rectangles of type(¢) are affine-equivalent through diagonal affine transformations.
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Indeed, any two identical Lagrange finite elements that we have considered are
affine-equivalent. The situation for Hermite elements is less simple. For example,
consider two Hermite n-simplices of type(3) with sets of degrees of freedom involving
D, ., 1p(2;). Then it is clear that they are affine-equivalent because the relations

Zj—Zi:F(éj)—F(éi):B(ZA’j—éi),lSLjS’n,i#j.

On the other hand,the Argyris 21-degee of freedom triangle, is not, in general,
affine-equivalent unless they are equilateral triangles since the normal derivative
degrees of freedom are not preserved through an affine transformation, i.e.,the prop-
erty of a vector that it be perpendicular to a hyperplane is not, in general, preserved
through an affine mapping.

A family of finite elements is called an affine family if all its finite elements are
affine-equivalent to a single finite element, which is called the reference finite element
of the family. Note that the reference element, which we denote by (K, PgO¢) need
not belong to the family. In the case of an affine family consisting of n-simplices, it
is customary to choose the set KC to be the unit n-simplex with vertices

2 =(1,0,...,0), 2, = (0,1,0,...) -+ 2, = (0,0,...,0,1), 2,41 = (0,0,...,0)

for which the barycentric coordinates take the simple form

AZ:I‘ZISZS?’L,aHd )\n_H:l—Z:z:i.

i=1

In the case of an affine family of rectangular elements, the usual choice for the
refence set K is either the unit hypercube [0,1]™ or the hypercube [—1,1]".

The concept of affine family of finite elements is important because (i) in
practical computations the calculations for the matrix entries are performed on
the reference element; and (ii) for such families an elegant interpolation theory
can be developed, which in turn is the basis for most of the convergence theorems
concerning finite element approximations.



