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Chapter 5

Simple Examples on

Rectangular Domains

In this chapter we consider simple elliptic boundary value problems in rectangular
domains in R

2 or R
3; our prototype example is the Poisson equation but we also

briefly consider the biharmonic equation and the Helmholtz equation. Similar to
our exposition of the two-point boundary value problem in Chapter ??, we consider
the implementation of different boundary conditions for our prototype equation.
Much of this chapter is a straightforward extension of the analysis presented in
the previous chapter for the two-point boundary value problem. However, a few
important differences are evident.

For the finite element approximation of these elliptic boundary value problems,
we only consider approximating with finite elements spaces which are obtained by
taking tensor products of one-dimensional finite element spaces. In Chapter ??

we consider the general problem of determining finite element spaces on polygonal
domains and in a later chapter we consider isoparametric finite elements for curved
domains.

5.1 The Poisson equation with homogeneous
Dirichlet boundary data

In this section we consider Poisson’s equation defined in a bounded domain in R
2

or R
3 with homogeneous Dirichlet boundary data. We let ~x denote a point in R

2

or R
3. Specifically, we let Ω be an open, connected, bounded set in R

2 or R
3 and

let ∂Ω denotes its boundary. At this point in our discussion of the finite element
method, we only have the background to use finite element spaces which are tensor
products of the one dimensional finite element spaces discussed in the last chapter.
Consequently, when we move to the discretization stage we require that Ω be a
rectangular domain. However, the weak formulations that we present hold for more
general domains. In the next chapters we address the problem of discretizing using
other elements suitable for more general domains. We let Ω denote the closure of
Ω; i.e., Ω = Ω ∪ ∂Ω. Let f = f(~x) be a given function that is continuous on the
closure of Ω; i.e., f ∈ C(Ω). We say that a function u(~x) defined on Ω is a classical
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86 Chapter 5. Simple Examples on Rectangular Domains

solution of the Poisson equation with homogeneous Dirichlet boundary conditions
if u ∈ C2(Ω), u ∈ C(Ω) and u satisfies

−∆u(~x) = f(~x) for ~x ∈ Ω (5.1a)

u(~x) = 0 for ~x ∈ ∂Ω , (5.1b)

where ∆u = uxx + uyy in R
2 or analogously ∆u = uxx + uyy + uzz in R

3. It is
well known that for sufficiently smooth ∂Ω there exists a unique classical solution
of (6.1).

In the sequel, we assume enough smoothness of the boundary so that the
domain admits the application of the divergence theorem. Every polygonal domain
or a domain with a piecewise smooth boundary has sufficient smoothness for our
purposes.

We make extensive use of Green’s formula which is the analog of the integration
by parts formula in higher dimensions and is derived from the divergence theorem
of vector calculus. Let ~n denote the unit outer normal to ∂Ω and let dS denote the
measure defined on the boundary and dV the measure of volume. We have that for
v ∈ C1(Ω), w ∈ C2(Ω)

∫

Ω

v∆w dV =

∫

∂Ω

v(~n · ∇w) dS −

∫

Ω

∇w · ∇v dV

or equivalently
∫

Ω

v∆w dV =

∫

∂Ω

v
∂w

∂~n
dS −

∫

Ω

∇w · ∇v dV . (5.2)

5.1.1 Weak formulation

To define the weak formulation we first determine the underly As before, we impose
the homogeneous Dirichlet boundary conditions by constraining our space H1(Ω);
in particular we have the space

H1
0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω} .

The weak formulation which we consider is

{ seek u ∈ H1
0 (Ω) such that

A(u, v) =

∫

Ω

∇v · ∇w dV = (f, v) ∀ v ∈ H1
0 (Ω) .

(5.3)

The solution u ∈ H1
0 (Ω) of (6.3) is called the generalized or weak solution of (6.1).

If u satisfies the classical problem (6.1) then u satisfies the weak formulation
(6.1) because

∫

Ω

fv dV = −

∫

Ω

∆uv dV ∀ v ∈ H1
0 (Ω)

=

∫

Ω

∇u · ∇v dV −

∫

∂Ω

∂u

∂~n
v dS
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=

∫

Ω

∇u · ∇v dV

= A(u, v) ,

where we have used Green’s formula (6.2) and imposed the fact that v = 0 on ∂Ω.
The existence and uniqueness of a weak solution to (6.3) can be verified by

satisfying the hypotheses of the Lax-Milgram theorem. Recall that the norm on
H1(Ω) is defined by

‖u‖
2
1 =

∫

Ω

(

u2 + ∇u · ∇u
)

dV = ‖u‖2
0 + ‖∇u‖2

0 = ‖u‖2
0 + |u|21 .

The bilinear form is bounded on all of H1(Ω) since

|A(u, v)| =
∣

∣

∣

∫

Ω

∇u · ∇v dV
∣

∣

∣ = | (∇u,∇v) |

≤ ‖∇u‖0‖∇v‖0 ≤ ‖u‖1 ‖v‖1 ,

where we used the Cauchy-Schwarz inequality and the definition of the H1 and L2

norms.
We must now show coercivity of the bilinear form, i.e., there exists a constant

m > 0 such that

A(u, u) =

∫

Ω

(∇u · ∇u) dV ≥ m ‖u‖
2
1 ∀ u ∈ H1

0 (Ω) .

Note that the bilinear form A(u, u) can also be written as

A(u, u) = |u|21 =
1

2

(

|u|21 + |u|21
)

.

Our underlying Hilbert space is H1
0 (Ω) so we can use the Poincaré inequality to

demonstrate that the standard H1-norm is norm equivalent to this semi-norm and
thus coercivity is guaranteed in an analogous manner to the homogeneous Dirichlet
problem for the two-point boundary value problem of the last chapter. Specifically,
we have

A(u, u) =
1

2

(

|u|21 + |u|21
)

≥
1

2
min{1,

1

C2
p

}
(

‖u‖2
0 + |u|21

)

= m ‖u‖
2
1 ,

where Cp is the constant in the Poincaré inequality. We have demonstrated the
boundedness and coercivity of the bilinear form defined in (??) and thus the Lax-
Milgram theorem guarantees the existence and uniqueness of a solution to the weak
problem (6.3) because the right-hand side is obviously a bounded linear functional
on H1(Ω). The bilinear form is symmetric and so we know that approximating the
solution of the weak problem is equivalent to the minimization problem

min
v∈H1

0
(Ω)

∫

Ω

(1

2
∇v · ∇v − fv

)

dV .
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5.1.2 Approximation using bilinear functions

In later chapters we consider finite element spaces over polygonal or curved do-
mains. At present, we restrict the domain so that we can use rectangular elements;
therefore, the finite element spaces can be constructed from the spaces used in the
previous chapter. As in the one-dimensional case, we must now choose a finite di-
mensional subspace of Sh

0 (Ω) ⊂ H1
0 (Ω) in which to seek the approximate solution.

For the discrete problem we have

{

seek uh ∈ Sh
0 (Ω) satisfying

A(uh, vh) =
∫

Ω

(

∇uh · ∇vh
)

dV =
(

f, vh
)

∀ vh ∈ Sh
0 .

(5.4)

Existence and uniqueness of the solution to this problem is guaranteed by the Lax-
Milgram theorem.

To approximate our finite element solution we consider the concrete case where
Ω is the unit square or unit cube. We choose the space Sh

0 (Ω) to be continuous,
piecewise bilinear functions defined on Ω ⊂ R

2 or continuous, piecewise trilinear
functions1 for Ω ⊂ R

3. We formally construct the bilinear basis functions; the
trilinear basis functions are defined analogously. Let N,M be positive integers and
let hx = 1/(N+1), hy = 1/(M+1) and consider the subdivision of Ω into rectangles
of size hx × hy where

xi = ihx, 0 ≤ i ≤ N + 1, yj = jhy, 0 ≤ j ≤M + 1 .

See Figure 6.1 for a sample grid on a unit square with hy = 2hx. Let φi(x),
1 ≤ i ≤ N represent the standard “hat” piecewise linear basis functions in x and
let φj(y), 1 ≤ j ≤M , be similarly defined, i.e.,

φi(x) =



















x− xi−1

hx

for xi−1 ≤ x ≤ xi

xi+1 − x

hx

for xi ≤ x ≤ xi+1

0 elsewhere

φj(y) =



















y − yj−1

hy

for yj−1 ≤ y ≤ yj

yj+1 − y

hy

for yj ≤ y ≤ yj+1

0 elsewhere.

On Ω = (0, 1) × (0, 1) we now define the NM bilinear functions

φij(x, y) = φi(x)φj(y) for 1 ≤ i ≤ N , 1 ≤ j ≤M . (5.5)

We easily see that φij(xi, yj) = 1 and φij(xk, yl) = 0 for k 6= i or l 6= j . Also
φij(x, y) is zero outside of [(i− 1)hx, (i+1)hx]× [(j− 1)hy, (j+1)hy]. The support
of φj(x, y) is illustrated in Figure 6.1 and the shape of a specific bilinear function
φ2,3 which is one at node (x2, y3) is given in Figure 6.2.

For Ω the unit square, we choose Sh
0 (Ω) ≡ Sh

0 (0, 1)⊗Sh
0 (0, 1) to be the tensor

product of the subspaces Sh
0 (0, 1) (one each in the x− and y− directions) of one-

dimensional piecewise linear, continuous functions which vanish at zero and one.

1A bilinear or trilinear function is a function which is linear with respect to its variables because
if we hold one variable fixed, it is linear in the other; for example f(x, y) = xy is a bilinear function
but f(x, y) = x2y is not.
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x0 x1 x2 xi xN+1hx

y1

y2

yj−1

yj

yM+1

hy

(xi, yj)

φij
b

Figure 5.1. Grid on a unit square with support of basis function φij(x, y)
indicated.
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Figure 5.2. Support of bilinear basis function φ2,3.

Sh
0 (Ω) consists of all functions v(x, y) on (0, 1) × (0, 1) of the form

v(x, y) =

N
∑

i=1

M
∑

j=1

cijφi(x)φj(y) =

N
∑

i=1

M
∑

j=1

cijφij(x, y) . (5.6)
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Note that the general form of a bilinear function in R
2 is a0 + a1x + a2y + a3xy

compared with a linear function in two variables which has the general form a0 +
a1x+ a2y. Clearly Sh

0 (Ω) is the space of all continuous, piecewise bilinear functions
(with respect to the given subdivision) which vanish on the sides of the unit square.
Also, every piecewise bilinear function w(x, y) can be written in the form (6.6) with
cij = f(xi, yj); i.e., it is a linear combination of the P = NM linearly independent
functions φij(x, y). Sh

0 (Ω) is an P -dimensional subspace of H1
0 (Ω); note that for

M = N , Sh
0 is an N2 dimensional subspace whereas in one dimension, it was an

N dimensional subspace. Of course this affects the size of our resulting matrix
problem.

From previous discussions we know that once a basis is chosen for the ap-
proximating subspace, the discrete problem can be written as a linear system of
equations. To investigate the structure of the coefficient matrix for our choice of
bilinear basis functions, we let the basis functions φij(x, y) for Sh

0 (Ω) be rewritten
in single index notation; for simplicity of exposition we choose M = N . We have

{ψk(x, y)}N2

k=1 = {φij(x, y)}
N

i,j=1 .

For example, ψk = φk1 for 1 ≤ k ≤ N , ψN+k = φk2 for 1 ≤ k ≤ N , etc. Our
discrete weak formulation (6.4) is equivalent to seeking uh ∈ Sh

0 satisfying

A(uh, ψi) = (f, ψi) for 1 ≤ i ≤ N2 .

We now let uh =
∑N2

j=1 cjψj and substitute into the above expression. The result is

a linear system of N2 equations in the N2 unknowns {cj}
N2

j=1; i.e., A~c = ~F where

~c = (c1, . . . , cN2)T , Fi = (f, ψi) and Aij = A(ψi, ψj). Note that with the numbering
scheme we are using for the basis functions, we are numbering our unknowns which
correspond to the coefficients cj across rows. Because we have assumed the same
number of points in the x and y directions we could have easily numbered them
along columns of the grid.

To determine the structure of the resulting matrix we consider the ith row of
the matrix and decide how many nonzero entries are in the row. Because we know
the matrix is symmetric, we only consider terms above the diagonal. Clearly there
can be nonzero entries in columns i and i+ 1. The next nonzero entries occur for
unknowns corresponding to basis functions in the next row of the grid. Specifically
we can have nonzero entries in columns i+N − 1, i+N and i+N + 1 where N is
the number of unknowns across the row. The coefficient matrix A is an N2 × N2

symmetric, positive definite matrix which has a block tridiagonal structure of the
form

A =















A0 A1 0 · · · 0
A1 A0 A1 0 · · · 0

. . .
. . .

. . .

0 · · · 0 A1 A0 A1

0 · · · 0 A1 A0















, (5.7)

where A0 and A1 are N ×N tridiagonal matrices. (See exercises.) A matrix of this



5.1. The Poisson equation with homogeneous Dirichlet boundary data 91

form can be solved efficiently by a banded Cholesky algorithm, a block tridiagonal
solver or an iterative solver.

Error estimates

Galerkin’s theorem provides us with the estimate

∥

∥u− uh
∥

∥

1
≤ inf

χh∈Sh

0

∥

∥u− χh
∥

∥

1
. (5.8)

As before, we turn to the interpolant of u in our finite dimensional space Sh
0 (Ω)

to obtain an estimate in terms of powers of h. Specifically for R
2, we denote

Ihv as the unique function in Sh
0 (Ω) which satisifes (Ihv)(xi, yj) = v(xi, yj) for

0 ≤ i, j ≤ N + 1. We can write Ihv as a linear combination of our basis functions;
i.e., (Ihv)(x, y) =

∑N

i,j=1 v(xi, yj)φij(x, y). For v defined on Ω ⊂ R
2, we let Ih

x v

and Ih
y v denote the interpolation operators in the x- and y-directions; i.e.,

(Ih
x v)(x, y) =

N
∑

i=1

v(xi, y)φi(x) and (Ih
y v)(x, y) =

N
∑

j=1

v(x, yj)φj(y) .

Then we have that

(Ih
y I

h
x v)(x, y) = Ih

y

(

N
∑

i=1

v(xi, y)φi(x)

)

=
N
∑

j=1

(

N
∑

i=1

v(xi, yj)φi(x)

)

φj(y)

= (Ihv)(x, y) .

Similarly, Ihv = Ih
x I

h
y v. For Ω ⊂ R

3 clearly Ihv = Ih
x I

h
y vI

h
z . This result can be used

to prove the following theorem which gives us an estimate of the error in v − Ihv
when v is sufficiently smooth.

Lemma 5.1. Let v ∈ H2(Ω). Then if Ihv is the interpolant of v in Sh(Ω), the space
of continuous, piecewise bilinear functions, then there exist constants Ci, i = 1, 2
independent of v and h such that

∥

∥v − Ihv
∥

∥

0
≤ C1h

2 ‖v‖2 (5.9)

and
∥

∥v − Ihv
∥

∥

1
≤ C2h ‖v‖2 . (5.10)

As in the case in one-dimension, we can now make use of the interpolation result
to prove an optimal error estimate in the H1-norm. To obtain a result for the L2-
norm we again use “Nitsche’s trick” in a manner completely analogous to that in
the one-dimensional case where now we make use of elliptic regularity. The details
of the proof are left to the exercises.
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Theorem 5.2. Let u ∈ H2(Ω) ∩H1
0 (Ω) be the solution of (6.3) where Ω = (0, 1)×

(0, 1). Let Sh
0 (Ω) be the space of piecewise bilinear functions which vanish on ∂Ω

and let uh be the Galerkin approximation to u in Sh
0 (Ω) defined by (6.4). Then

∥

∥u− uh
∥

∥

1
≤ Ch ‖u‖2 (5.11)

and
∥

∥u− uh
∥

∥

0
≤ Ch2 ‖u‖2 (5.12)

for some constants C independent of h and u.

5.1.3 Higher order elements

Our discussion of approximating the problem (6.1) posed on Ω = (0, 1) × (0, 1)
has so far included only piecewise bilinear function spaces. Of course, we can also
use tensor products of higher order spaces such as the quadratic or cubic functions
in one space dimension. Note that a general biquadratic function has the form
a0 + a1x + a2y + a3xy + a4x

2 + a5y
2 + a6x

2y + a7xy
2 + a8x

2y2 compared with a
general quadratic function in two dimensions which has the form a0 + a1x+ a2y +
a3xy+ a4x

2 + a5y
2. As in the one-dimensional case, for a smooth enough solution,

these spaces yield higher rates of convergence then that achieved with piecewise
bilinear approximations. The construction of the basis functions in two or three
dimensions is done analogous to the piecewise bilinear case; the details are left to
the exercises.

5.1.4 Numerical quadrature

Once again, the entries in the matrix and right-hand side of our linear system are
calculated using a numerical quadrature rule which has the form

∫

Ω

f(~x) dΩ ≈
∑

i

f(~qi)ωi ,

where the points ~qi are the quadrature points and ωi are the quadrature weights.
Because we are using rectangular elements with basis functions obtained by taking
the tensor product of one-dimensional basis functions, the most straightforward
approach is to use tensor products of the quadrature rules in one spatial dimension.
Typically, we use the same quadrature rule in each spatial dimension. For example,
if we have the rule

∫ b

a

f(x) dx =
∑

i

f(qi)wi

then we can write
∫ b

a

∫ d

c

f(x, y) dydx ≈

∫ b

a

(

∑

j

f(x, qj)wj

)

≈
∑

i

∑

j

f(qi, qj)wjwi .

In one dimension we employed the Gauss-Legendre quadrature rules on [−1, 1]. If
we take the tensor products of a p-point Gauss rule in each direction then we would
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Table 5.1. Tensor product of Gauss quadrature rules in two dimensions

1-D rule # points in R
2 points qi & weights wi

r
1 point Gauss 1 q1 = (0, 0) w1 = 4

r

r

r

r

2 point Gauss 4 qi = 1√
3

{

(−1,−1), (1,−1), (−1, 1), (1, 1)

wi = 1

r r r

r r r

r r r

3 point Gauss 9 qi =
√

3
5

{

(−1,−1), (0,−1), (1,−1), (−1, 0),

((0, 0), (1, 0), (−1, 1), (0, 1), (1, 1)
}

wi = 1
81

{

25, 40, 25, 40, 64, 40, 25, 40, 25
}

have one point for the tensor product of the one-point rule, four points for the
tensor product of the two-point rule, etc. The quadrature points in two dimensions
formed by the tensor product of one-point through three-point Gauss quadrature
rules are described in Table 6.1. Note that in three dimensions we have 1, 8, and
27 quadrature points for tensor products of these three quadrature rules. To apply
these rules to an integral over an arbitrary rectangular domain, we must perform a
change of variables in both the x and y directions analogous to the one-dimensional
case. For our example, if we are using bilinear or trilinear elements, then the tensor
product of the one-point Gauss rule is adequate; for biquadratics or triquadratics
we need to use the tensor product of the two-point Gauss rule.

5.2 The Poisson equation with Neumann boundary
data

In this section we consider solving Poisson’s equation on an open, bounded domain
in R

2 or R
3 where we specify Neumann data on a portion of the boundary and

Dirichlet data on the remainder of the boundary. In particular, we seek a function
u satisfying

−∆u(~x) = f(~x) for ~x ∈ Ω

u(~x) = 0 for ~x ∈ Γ1 (5.13)

∂u

∂~n
(~x) = g(~x) for ~x ∈ Γ2 ,
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where Γ1 ∪Γ2 = ∂Ω, Γ1 ∩Γ2 is a set of measure zero, and ∂u/∂~n denotes the direc-
tional derivative of u in the direction of the unit outward normal to the boundary
of the domain. We note that if Γ1 = ∂Ω then we have the purely Dirichlet problem
discussed in Section 6.1; in the case Γ2 = ∂Ω we have a purely Neumann problem.
As expected, in the latter case the problem does not have a unique solution. It is
well known that for sufficiently smooth ∂Ω there exists a unique classical solution
of (6.13) provided, of course, that Γ1 is measurable.

5.2.1 Weak Formulation

For this problem we define H1
B(Ω) as

H1
B(Ω) = {u ∈ H1(Ω) : u = 0 on Γ1} . (5.14)

Our weak formulation is

{
seek u ∈ H1

B(Ω) satisfying

A(u, v) ≡

∫

Ω

∇u · ∇v dΩ = (f, v) +

∫

Γ2

gv ∀ v ∈ H1
B(Ω) .

(5.15)

If u is a solution of the classical problem (6.13) then by Green’s theorem u satisfies

(f, v) = −

∫

Ω

∆uv dΩ =

∫

Ω

∇u · ∇v dΩ −

∫

Γ

∂u

∂~n
v ds

= A(u, v) −

∫

Γ1

∂u

∂~n
v ds−

∫

Γ2

∂u

∂~n
v ds

= A(u, v) −

∫

Γ2

g(~x)v ds ∀ v ∈ H1
B(Ω) ,

where we have used the fact that the boundary integral over Γ1 is zero since
v ∈ H1

B(Ω) and for the boundary integral over Γ2 we have used ∂u/∂~n = g(~x).
In this problem the Dirichlet boundary condition on Γ1 is essential whereas the
Neumann boundary condition on Γ2 is natural. It’s interesting to compare the
weak formulation (6.15) with the analogous weak formulation (??) for the two-
point boundary value problem. In the one-dimensional case, we simply have the
value of the derivative at a point times the test function at the same point. In two
spatial dimensions with inhomogeneous Neumann boundary conditions we have a
line integral on the right-hand side of the weak form and in three spatial dimen-
sions we have a surface integral. This complicates the implementation of the method
but it is straightforward; for example, for Ω ⊂ R

2 we have a line integral on the
boundary which can be approximated using a Gauss quadrature rule. The existence
and uniqueness of a solution to (6.15) is demonstrated in an analogous manner to
the purely Dirichlet problem discussed in Section 6.1. The only complication is
demonstrating that the right-hand side, which now contains a boundary integral, is
a bounded linear functional on H1(Ω).

When the classical problem is a purely Neumann problem, i.e., when Γ2 =
∂Ω, it is clear that there is not a unique solution. Thus, we can not expect the
hypotheses of the Lax-Milgram theorem to be satisfied. In particular, we are unable
to demonstrate coercivity of the bilinear form.
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5.2.2 Approximation using bilinear functions

As a concrete example we once again take Ω = (0, 1) × (0, 1); we choose Γ1 to be
the top and bottom portions of the boundary, i.e., when y = 0 and y = 1; Γ2 is the
remainder of the boundary. We subdivide our domain into rectangles of size h× h
where h = 1/(N + 1), xi = ih, yj = jh, i, j = 0, . . . , N + 1. If we approximate
using continuous, piecewise bilinear functions as in Section 6.1, then we seek our
solution in the space Ŝh(Ω which is the space of all continuous, piecewise bilinear
functions on Ω which are zero at y = 0 and y = 1. In the x-direction we have
the N + 2 basis functions φi(x), i = 0, 1, . . . , N + 1 and N basis functions in the
y-direction φj(y), j = 1, . . . , N . In this case we have the N(N + 2) basis functions
φij(x, y) which are the tensor products of the one-dimensional basis functions. The
basic structure of the matrix is the same as in the previous example. Optimal error
estimates are derived in a completely analogous manner to the previous section
when u ∈ H2(Ω) ∩H1

B(Ω).
We note that if we attempt to discretize the purely Neumann problem, i.e.,

when Γ2 = ∂Ω, then the resulting (N + 2)2 matrix would be singular. This is to
be expected because we could not prove uniqueness of the solution to the weak
problem. A unique solution to the system can be found by imposing an additional
condition on uh such as specifying uh at one point or requiring the solution to have
zero mean, i.e.,

∫

Ω u dV = 0.

5.3 Other examples

In this section we make a few brief remarks concerning some additional examples. In
particular, we consider Poisson’s equation with inhomogeneous Dirichlet boundary
data and with a mixed boundary condition, a purely Neumann problem for the
Helmholtz equation and a fourth order equation.

5.3.1 Other boundary conditions

As in the one-dimensional case, we can consider problems with inhomogeneous
Dirichlet boundary conditions such as

−∆u = f ~x ∈ Ω
u(~x) = q(~x) on Γ .

(5.16)

To treat the inhomogeneous Dirichlet condition we proceed formally as before and
define a function g(~x) ∈ H1(Ω) such that g(~x) = q(~x) on Γ. Then we convert the
problem into one which has homogeneous Dirichlet boundary conditions. Then our
solution is u(~x) = w(~x) + g(~x) where w is the unique solution in H1

0 (0, 1) of

A(w, v) = (f, v) −A(q, v) ∀ v ∈ H1
0 (0, 1) ,

where, as before,

A(w, v) =

∫

Ω

∇w · ∇v dV .
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The most serious difficulty arises when we try to approximate. In the one-dimensional
case, it was easy to determine a function gh in our approximating subspace; how-
ever, for higher dimensions this is not the case. When we choose a finite dimensional
approximating subspace, in general, we are not able to find a function gh in this
subspace to use for the function g above. If gh is not in the approximating subspace
then uh = wh + gh is not in the approximating space. We postpone discussion of
this problem until a later chapter.

A problem with a mixed boundary condition such as

−∆u = f ~x ∈ Ω
∂u

∂~n
+ α(~x)u(~x) = q(~x) on Γ

(5.17)

can be handled analogous to the one-dimensional case; i.e., we merely include a
term

∫

Γ
αuv ds in the bilinear form and add the boundary integral

∫

Γ
qv ds to the

right-hand side. Recall that in the one-dimensional case, we had to add point values
of the solution and/or test function to the bilinear form or right-hand side whereas
in the two-dimensional case we are modifying the bilinear form and the right-hand
side by a boundary integral.

5.3.2 A Neumann problem for the Helmholtz equation

We have seen that the purely Neumann problem for Poisson’s equation; i.e., when
Γ2 = ∂Ω, does not have a unique solution and if we attempt to discretize then we
are lead to a singular matrix. If, however, we consider the Neumann problem for
the Helmholtz equation

−∆u+ σ2u = f in Ω

∂u

∂~n
= 0 on ∂Ω

then the problem possesses a unique solution for u ∈ C2 and sufficiently smooth
∂Ω. In this case the weak formulation is to find u ∈ H1(Ω) such that

A(u, v) ≡

∫

Ω

(

∇u · ∇v + uv
)

dV = (f, v) ∀ v ∈ H1(Ω) .

This bilinear form is coercive on H1(Ω) as well as bounded. In fact for k2 = 1

A(u, u) =

∫

Ω

∇u · ∇u+ u2 dV = ‖u‖
2
1

and in general

A(u, u) =

∫

Ω

∇u · ∇u+ u2 dV A(u, u) =

∫

Ω

∇u · ∇u+ u2 dV = ‖u‖
2
1 gemin1, k2 ‖u‖

2
1 .
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5.3.3 A fourth order problem

The biharmonic equation is the fourth order partial differential equation

∆∆u = ∆2u = f in Ω .

We may impose boundary conditions such as

u =
∂u

∂~n
= 0 on ∂Ω .

We define H2
0 (Ω) to be the space

H2
0 (Ω) = {v ∈ H2(Ω) | v =

∂v

∂n
= 0 on ∂Ω}.

A weak formulation is to seek u ∈ H2
0 (Ω) such that

A(u, v) = F (v) ∀ v ∈ H2
0 (Ω)

where

A(u, v) =

∫

Ω

∆u∆v dΩ ∀ u, v ∈ H2
0 (Ω)

and

F (v) =

∫

Ω

fv dΩ ∀ v ∈ H2
0 (Ω)

It can be shown that if u is the classical solution of the biharmonic problem then
u satisfies this weak problem; moreover, the weak problem has a unique solution u
in H2

0 (Ω). (See exercises.) To discretize this problem we must use a subspace of
H2

0 (Ω) such as bicubic splines or bicubic Hermites in Ω ⊂ R
2. However, in the next

chapter we see that when we use a triangular element, it is not so easy to obtain a
subspace of H2.

5.4 Computational examples

Before looking at a specific example, we first compare the number of nodes, the
number of unknowns, and the number of quadrature points required to approximate
the solution of the problem −∆u+ u = f with homogeneous, Neumann boundary
conditions in one, two and three dimensions. Note that in this purely Neumann
problem the number of unknowns is the same as the number of nodes. Specifically
we compare the number of unknowns for various values of h for linear, bilinear and
trilinear elements as well as for tensor products of quadratic and cubic spaces. We
also provide the minimum number of quadrature points that are used in each case.
Recall that the number of unknowns corresponds to the size of the matrix and the
number of quadrature points influences the amount of work required to compute
the entries in the matrix and right-hand sides. In all cases we assume a uniform
grid with spacing h in each dimension. The “curse of dimensionality” can clearly
be seen from Table 6.2.
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Table 5.2. Comparison of number of unknowns for solving a problem on
a domain (0, 1)n, n = 1, 2, 3 using tensor products of one-dimensional elements.

Number of unknowns Number of
h = 0.1 h = 0.01 h = 0.001 quadrature pts.

linear 11 101 1001 1
bilinear 121 10,201 1.030×106 1
trilinear 1331 1.030×106 1.003×109 1
quadratic 21 201 2001 2

biquadratic 441 40,401 4.004×106 4
triquadratic 9261 8.121×106 8.012×109 8

cubic 31 301 3001 3
bicubic 961 90,601 9.006×106 9
tricubic 29,791 2.727×107 2.703×1010 27

We now turn to providing some numerical results for the specific problem

−u′′(x) = (x2 + y2) sin(x, y) ∀ (x, y) ∈ Ω
u = sin(xy) on ∂Ω

(5.18)

where Ω = {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 3}. The exact solution to this problem
is u(x, y) = sin(xy) whose solution is plotted in Figure 6.3 along with a contour
plot of the solution. Note that we are imposing inhomogeneous Dirichlet boundary
conditions in this example. The results presented here use bilinear and biquadratic
elements on a uniform grid of size h in each dimension; for the quadrature rule
we use the tensor product of the one point Gauss rule for bilinears and the tensor
product of the two point Gauss rule for biquadratics. As usual, a higher order
quadrature rule is used to calculate the error. The numerical rates of convergence
are obtained using (??). The results are presented in Table 6.3 and some results
are plotted for the bilinear case in Figure ??. Note that as expected, the optimal
rates of convergence are obtained.
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Table 5.3. Numerical results for (6.18) using bilinear and biquadratic elements.

element h No. of
∥

∥u− uh
∥

∥

1
rate

∥

∥u− uh
∥

∥

0
rate

unknowns
bilinear 1/4 144 0.87717 0.76184× 10−1

bilinear 1/8 529 0.0.43836 1.0007 0.19185× 10−1 1.9895
bilinear 1/16 2209 0.21916 1.0001 0.48051× 10−2 1.9973
bilinear 1/32 9216 0.0.10958 1.0000 0.12018× 10−3 1.9994

biquadratic 1/4 529 0.70737×10−1 0.22488× 10−2

biquadratic 1/8 2209 0.17673×10−1 1.9758 0.28399× 10−3 2.9853
biquadratic 1/16 9025 0.44175×10−2 1.9940 0.35604× 10−4 2.9957
biquadratic 1/32 36,491 0.11043×10−2 1.9986 0.44539× 10−5 2.9990


