Connecting the Dots

- or -

Using Plotly for Straight Line and Broken Line Plots

ISC1057
Janet Peterson and John Burkardt
Computational Thinking

Fall Semester 2016

Example 1: Stretching a Spring

A rubber band is useful because it has a property known as elasticity.
We know a few things about a rubber band:

- it has a natural length of one or two inches;
- as we pull on it harder and harder, it stretches to six or seven inches;
- if we let go, it snaps back;
- if we pull too hard, it breaks.

Robert Hooke searched for a pattern to describe the stretching of a spring.

Here is sample data stored in the file hooke.csv, in which two springs were stretched by adding one more mass at a time to the end of the spring and measuring the position of the end of the spring.

"Index", "Mass (kg)", "Spring $1(\mathrm{~m}) "$,	"Spring $2(\mathrm{~m}) "$		
1,	0.00,	0.050,	0.050
2,	0.49,	0.066,	0.066
3,	0.98,	0.087,	0.080
-	more data	-	-
8,	3.43,	0.204,	0.192
9,	3.92,	0.226,	0.205
10,	4.41,	0.238,	0.232

To examine this data, we can log into Plotly, then use the "import" menu to browse for the file hooke.csv and bring it into the Plotly grid, so that we see something like this:

We need to change "Choose as x " and "Choose as y " so that we plot Mass versus Spring 1 Length,

Now we have a "broken line" plot of the data for spring 1.

We can go back to the data grid and add the Spring 2 data using "choose as y"

The blue and orange lines are for springs 1 and 2 .

Our data doesn't lie on straight lines. Let's redraw the points as scatterplots.

Here is just the data.

Spring Lengths Given Mass

By using the Fit data menu, we can request a line like the (blue) data.

Plotly finds a formula $y=0.0452 x+0.0492$ that best fits the blue data.

We can also get a fitting line for the orange data.

Spring Lengths Given Mass

Example 2: Housing Data from Zillow

A realtor considers many factors when suggesting a listing price for a house:

- the square footage;
- number of bedrooms and bathrooms;
- the zip code;
- the year the house was built.

Experience suggests that the square footage is one of the most important.

Here is sample data stored in the file zillow.csv

"Index", "(Sq Ft)",	"Beds", "Baths", "Zip", "Year", "List Price (\$)"				
1,	2222,	3,	$3.5,32312$,	1981,	250000
2,	1628,	3,	2,32308,	2009,	185000
3,	3824,	5,	4,32312,	1954,	399000
-	-	more data	-	-	-
18,	1158,	3,	2,	32303,	1993,

To examine this data, we can log into Plotly, then use the "import" menu to browse for the file zillow.csv and bring it into the Plotly grid, so that we see something like this:

We can choose as x square footage, and choose as y the price and hit Line Plot, but here's what we get:

Line Plot of Zillow Data (BAD IDEA!)

Our data is not suitable for line plots; we can make a scatter plot.

The Traces menu changes the size and color of dots. The Axes menu shifts the graph so we see the zero values for Footage and Price.

Scatter Plot of Zillow Data

Now it seems like there is a general trend of the data, that the list price increases with the square footage.

If we think about it carefully, we can even find a formula that exact predicts the relationship between footage and price, if we just consider the first two pairs of data:

$$
\begin{aligned}
& \text { footage } x=2,222, \text { price } y=\$ 250,000 \\
& \text { footage } x=1,628, \text { price } y=\$ 185,000
\end{aligned}
$$

The formula is $y=6851.85+109.428 x$. We'd like to compare this formula to all 20 of our data points.

If we select the Data Tools item, and then formula $f(x)$, we see a box to enter our formula:

Using square footage as x, Plotly creates a new column of formula values.

Γ	Index	SqFt	Beds	Baths	Zip	Year	List Price (\$)	$6851.85+109.42^{*} \times$
x	choose as x							
y	choose as y							
1	1	2222	3	3.5	32312	1981	250000	249983.09
2	2	1628	3	2	32308	2009	185000	184987.61000000002
3	3	3824	5	4	32312	1954	399000	425273.93
4	4	1137	3	2	32309	1993	150000	131262.39
5	5	3560	6	4	32309	1973	315000	396387.05
6	6	2893	4	3	32312	1994	699000	323403.91
7	7	3631	4	3	32309	1996	649000	404155.87
8	8	2483	4	3	32312	2016	399000	278541.70999999996
${ }^{9}$	9	2400	4	4	32312	2002	613000	269459.85
10 11	10	1997	3	3	32311	2006	295000	225363.59
12	11	2097	4	3	32311	2016	290000	236305.59
12	12	3200	5	4	32312	1964	465000	356995.85
14	13	4892	5	6	32311	2005	799900	542134.49
15	14	1128	2	1	32303	1955	89000	130277.61
16	15	1381	3	2	32301	2006	143000	157960.87
17	16	4242	4	5	32303	2007	569000	471011.49

Now we can plan to plot square footage against our data and our formula values.

Choosing Line Plot, Plotly will make a mess of our data, but the line shows up just fine.

We can clean things up.

- Use Traces/Mode/Lines/Markers to change tha marker for the list price data from a line to a dot;
- Use Traces/Style to change the size of dots from 6 to 16 ;
- Use Axes to shift the x-axis and y-axis to start at 0 ;
? Price $=6851.85+109.42$ Square Footage ?

