# include # include # include # include # include int main ( int argc, char *argv[] ); char ch_cap ( char ch ); int ch_eqi ( char ch1, char ch2 ); int ch_to_digit ( char ch ); double diaphony_compute ( int dim_num, int point_num, double x[] ); int file_column_count ( char *filename ); int file_row_count ( char *input_filename ); int i4_power ( int i, int j ); double r8_abs ( double x ); double r8_modp ( double x, double y ); double *r8mat_data_read ( char *input_filename, int m, int n ); void r8mat_header_read ( char *input_filename, int *m, int *n ); double r8mat_max ( int m, int n, double a[] ); double r8mat_min ( int m, int n, double a[] ); int s_len_trim ( char *s ); double s_to_r8 ( char *s, int *lchar, int *error ); int s_to_r8vec ( char *s, int n, double rvec[] ); int s_word_count ( char *s ); void timestamp ( ); /******************************************************************************/ int main ( int argc, char *argv[] ) /******************************************************************************/ /* Purpose: MAIN is the main program for DIAPHONY. Discussion: DIAPHONY reads a table dataset and applies the diaphony test. Usage: diaphony table_file Licensing: This code is distributed under the GNU LGPL license. Modified: 25 January 2012 Author: John Burkardt */ { double d; double de; int dim_num; double e; char input_filename[255]; int point_num; double *points; int verbose = 0; if ( verbose ) { timestamp ( ); printf ( "\n" ); printf ( "DIAPHONY:\n" ); printf ( " C version\n" ); printf ( " Compute the diaphony of a point set.\n" ); } /* Get the input filename */ if ( 1 < argc ) { strcpy ( input_filename, argv[1] ); } else { printf ( "\n" ); printf ( " Enter the input filename:\n" ); scanf ( "%s", input_filename ); } /* Get the data size. */ r8mat_header_read ( input_filename, &dim_num, &point_num ); if ( verbose ) { printf ( "\n" ); printf ( " The spatial dimension is %d\n", dim_num ); printf ( " The number of points is %d\n", point_num ); } /* Read the data. */ points = r8mat_data_read ( input_filename, dim_num, point_num ); if ( r8mat_min ( dim_num, point_num, points ) < 0.0 ) { printf ( "\n" ); printf ( "DIAPHONY - Fatal error!\n" ); printf ( " At least one coordinate of a point is less than 0.\n" ); exit ( 1 ); } else if ( 1.0 < r8mat_max ( dim_num, point_num, points ) ) { printf ( "\n" ); printf ( "DIAPHONY - Fatal error!\n" ); printf ( " At least one coordinate of a point is greater than 1.\n" ); exit ( 1 ); } /* Analyze the data. */ d = diaphony_compute ( dim_num, point_num, points ); e = 1.0 / sqrt ( ( double ) point_num ); de = d / e; printf ( "\n" ); printf ( " File M N Diaphony 1/sqrt(N) D/sqrt(N)\n" ); printf ( " %s %2d %5d %14.6g %14.6g %14.6g\n", input_filename, dim_num, point_num, d, e, de ); free ( points ); /* Terminate. */ if ( verbose ) { printf ( "\n" ); printf ( "DIAPHONY:\n" ); printf ( " Normal end of execution.\n" ); printf ( "\n" ); timestamp ( ); } return 0; } /******************************************************************************/ char ch_cap ( char ch ) /******************************************************************************/ /* Purpose: CH_CAP capitalizes a single character. Discussion: This routine should be equivalent to the library "toupper" function. Licensing: This code is distributed under the GNU LGPL license. Modified: 19 July 1998 Author: John Burkardt Parameters: Input, char CH, the character to capitalize. Output, char CH_CAP, the capitalized character. */ { if ( 97 <= ch && ch <= 122 ) { ch = ch - 32; } return ch; } /******************************************************************************/ int ch_eqi ( char ch1, char ch2 ) /******************************************************************************/ /* Purpose: CH_EQI is TRUE (1) if two characters are equal, disregarding case. Licensing: This code is distributed under the GNU LGPL license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char CH1, CH2, the characters to compare. Output, int CH_EQI, is TRUE (1) if the two characters are equal, disregarding case and FALSE (0) otherwise. */ { int value; if ( 97 <= ch1 && ch1 <= 122 ) { ch1 = ch1 - 32; } if ( 97 <= ch2 && ch2 <= 122 ) { ch2 = ch2 - 32; } if ( ch1 == ch2 ) { value = 1; } else { value = 0; } return value; } /******************************************************************************/ int ch_to_digit ( char ch ) /******************************************************************************/ /* Purpose: CH_TO_DIGIT returns the integer value of a base 10 digit. Example: CH DIGIT --- ----- '0' 0 '1' 1 ... ... '9' 9 ' ' 0 'X' -1 Licensing: This code is distributed under the GNU LGPL license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char CH, the decimal digit, '0' through '9' or blank are legal. Output, int CH_TO_DIGIT, the corresponding integer value. If the character was 'illegal', then DIGIT is -1. */ { int digit; if ( '0' <= ch && ch <= '9' ) { digit = ch - '0'; } else if ( ch == ' ' ) { digit = 0; } else { digit = -1; } return digit; } /******************************************************************************/ double diaphony_compute ( int dim_num, int point_num, double x[] ) /******************************************************************************/ /* Purpose: DIAPHONY_COMPUTE evaluates the diaphony of a N-dimensional point set. Discussion: The diaphony is analogous to, and related to, the discrepancy, and is a measure of how well spread a set of point is. Licensing: This code is distributed under the GNU LGPL license. Modified: 25 January 2012 Author: John Burkardt Reference: Peter Heelekalek, Harald Niederreiter, The Weighted Spectral Test: Diaphony, ACM Transactions on Modeling and Computer Simulation, Volume 8, Number 1, January 1998, pages 43-60. Parameters: Input, int DIM_NUM, the spatial dimension. Input, int POINT_NUM, the number of points. Input, double X[DIM_NUM*POINT_NUM], the point set, which is presumed to lie in the DIM_NUM dimensional unit hypercube. Output, double DIAPHONY_COMPUTE, the value of the diaphony. */ { double bot; double d; int i; int j; int k; double pi = 3.141592653589793; double prod; double z; d = 0.0; for ( i = 0; i < point_num; i++ ) { for ( j = 0; j < point_num; j++ ) { prod = 1.0; for ( k = 0; k < dim_num; k++ ) { z = r8_modp ( x[k+i*dim_num] - x[k+j*dim_num], 1.0 ); prod = prod * ( 1.0 + 2.0 * pi * pi * ( z * z - z + 1.0 / 6.0 ) ); } d = d + prod - 1.0; } } bot = ( double ) i4_power ( point_num, 2 ) * ( pow ( 1.0 + pi * pi / 3.0, dim_num ) - 1.0 ); d = d / bot; d = sqrt ( d ); return d; } /******************************************************************************/ int file_column_count ( char *input_filename ) /******************************************************************************/ /* Purpose: FILE_COLUMN_COUNT counts the number of columns in the first line of a file. Discussion: The file is assumed to be a simple text file. Most lines of the file is presumed to consist of COLUMN_NUM words, separated by spaces. There may also be some blank lines, and some comment lines, which have a "#" in column 1. The routine tries to find the first non-comment non-blank line and counts the number of words in that line. If all lines are blanks or comments, it goes back and tries to analyze a comment line. Licensing: This code is distributed under the GNU LGPL license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the file. Output, int FILE_COLUMN_COUNT, the number of columns assumed to be in the file. */ { # define LINE_MAX 255 int column_num; char *error; FILE *input; int got_one; char line[LINE_MAX]; /* Open the file. */ input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_COLUMN_COUNT - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } /* Read one line, but skip blank lines and comment lines. */ got_one = 0; for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } if ( line[0] == '#' ) { continue; } got_one = 1; break; } if ( got_one == 0 ) { fclose ( input ); input = fopen ( input_filename, "r" ); for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } if ( s_len_trim ( line ) == 0 ) { continue; } got_one = 1; break; } } fclose ( input ); if ( got_one == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_COLUMN_COUNT - Warning!\n" ); fprintf ( stderr, " The file does not seem to contain any data.\n" ); exit ( 1 ); } column_num = s_word_count ( line ); return column_num; # undef LINE_MAX } /******************************************************************************/ int file_row_count ( char *input_filename ) /******************************************************************************/ /* Purpose: FILE_ROW_COUNT counts the number of row records in a file. Discussion: It does not count lines that are blank, or that begin with a comment symbol '#'. Licensing: This code is distributed under the GNU LGPL license. Modified: 13 June 2003 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Output, int FILE_ROW_COUNT, the number of rows found. */ { # define LINE_MAX 255 int comment_num; char *error; FILE *input; char line[LINE_MAX]; int record_num; int row_num; row_num = 0; comment_num = 0; record_num = 0; input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "FILE_ROW_COUNT - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } for ( ; ; ) { error = fgets ( line, LINE_MAX, input ); if ( !error ) { break; } record_num = record_num + 1; if ( line[0] == '#' ) { comment_num = comment_num + 1; continue; } if ( s_len_trim ( line ) == 0 ) { comment_num = comment_num + 1; continue; } row_num = row_num + 1; } fclose ( input ); return row_num; # undef LINE_MAX } /******************************************************************************/ int i4_power ( int i, int j ) /******************************************************************************/ /* Purpose: I4_POWER returns the value of I^J. Licensing: This code is distributed under the GNU LGPL license. Modified: 23 October 2007 Author: John Burkardt Parameters: Input, int I, J, the base and the power. J should be nonnegative. Output, int I4_POWER, the value of I^J. */ { int k; int value; if ( j < 0 ) { if ( i == 1 ) { value = 1; } else if ( i == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4_POWER - Fatal error!\n" ); fprintf ( stderr, " I^J requested, with I = 0 and J negative.\n" ); exit ( 1 ); } else { value = 0; } } else if ( j == 0 ) { if ( i == 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "I4_POWER - Fatal error!\n" ); fprintf ( stderr, " I^J requested, with I = 0 and J = 0.\n" ); exit ( 1 ); } else { value = 1; } } else if ( j == 1 ) { value = i; } else { value = 1; for ( k = 1; k <= j; k++ ) { value = value * i; } } return value; } /******************************************************************************/ double r8_abs ( double x ) /******************************************************************************/ /* Purpose: R8_ABS returns the absolute value of an R8. Licensing: This code is distributed under the GNU LGPL license. Modified: 07 May 2006 Author: John Burkardt Parameters: Input, double X, the quantity whose absolute value is desired. Output, double R8_ABS, the absolute value of X. */ { double value; if ( 0.0 <= x ) { value = + x; } else { value = - x; } return value; } /******************************************************************************/ double r8_modp ( double x, double y ) /******************************************************************************/ /* Purpose: R8_MODP returns the nonnegative remainder of R8 division. Formula: If REM = R8_MODP ( X, Y ) RMULT = ( X - REM ) / Y then X = Y * RMULT + REM where REM is always nonnegative. Discussion: The MOD function computes a result with the same sign as the quantity being divided. Thus, suppose you had an angle A, and you wanted to ensure that it was between 0 and 360. Then mod(A,360.0) would do, if A was positive, but if A was negative, your result would be between -360 and 0. On the other hand, R8_MODP(A,360.0) is between 0 and 360, always. Example: I J MOD R8_MODP R8_MODP Factorization 107 50 7 7 107 = 2 * 50 + 7 107 -50 7 7 107 = -2 * -50 + 7 -107 50 -7 43 -107 = -3 * 50 + 43 -107 -50 -7 43 -107 = 3 * -50 + 43 Licensing: This code is distributed under the GNU LGPL license. Modified: 05 May 2006 Author: John Burkardt Parameters: Input, double X, the number to be divided. Input, double Y, the number that divides X. Output, double R8_MODP, the nonnegative remainder when X is divided by Y. */ { double value; if ( y == 0.0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8_MODP - Fatal error!\n" ); fprintf ( stderr, " R8_MODP ( X, Y ) called with Y = %f\n", y ); exit ( 1 ); } value = x - ( ( double ) ( ( int ) ( x / y ) ) ) * y; if ( value < 0.0 ) { value = value + fabs ( y ); } return value; } /******************************************************************************/ double *r8mat_data_read ( char *input_filename, int m, int n ) /******************************************************************************/ /* Purpose: R8MAT_DATA_READ reads the data from an R8MAT file. Discussion: An R8MAT is an array of R8's. The file is assumed to contain one record per line. Records beginning with the '#' character are comments, and are ignored. Blank lines are also ignored. Each line that is not ignored is assumed to contain exactly (or at least) M real numbers, representing the coordinates of a point. There are assumed to be exactly (or at least) N such records. Licensing: This code is distributed under the GNU LGPL license. Modified: 27 January 2005 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Input, int M, the number of spatial dimensions. Input, int N, the number of points. The program will stop reading data once N values have been read. Output, double R8MAT_DATA_READ[M*N], the data. */ { # define LINE_MAX 255 int error; char *got_string; FILE *input; int i; int j; char line[255]; double *table; double *x; input = fopen ( input_filename, "r" ); if ( !input ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_DATA_READ - Fatal error!\n" ); fprintf ( stderr, " Could not open the input file: \"%s\"\n", input_filename ); exit ( 1 ); } table = ( double * ) malloc ( m * n * sizeof ( double ) ); x = ( double * ) malloc ( m * sizeof ( double ) ); j = 0; while ( j < n ) { got_string = fgets ( line, LINE_MAX, input ); if ( !got_string ) { break; } if ( line[0] == '#' || s_len_trim ( line ) == 0 ) { continue; } error = s_to_r8vec ( line, m, x ); if ( error == 1 ) { continue; } for ( i = 0; i < m; i++ ) { table[i+j*m] = x[i]; } j = j + 1; } fclose ( input ); free ( x ); return table; # undef LINE_MAX } /******************************************************************************/ void r8mat_header_read ( char *input_filename, int *m, int *n ) /******************************************************************************/ /* Purpose: R8MAT_HEADER_READ reads the header from an R8MAT file. Discussion: An R8MAT is an array of R8's. Licensing: This code is distributed under the GNU LGPL license. Modified: 04 June 2004 Author: John Burkardt Parameters: Input, char *INPUT_FILENAME, the name of the input file. Output, int *M, the number of spatial dimensions. Output, int *N, the number of points. */ { *m = file_column_count ( input_filename ); if ( *m <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_HEADER_READ - Fatal error!\n" ); fprintf ( stderr, " FILE_COLUMN_COUNT failed.\n" ); exit ( 1 ); } *n = file_row_count ( input_filename ); if ( *n <= 0 ) { fprintf ( stderr, "\n" ); fprintf ( stderr, "R8MAT_HEADER_READ - Fatal error!\n" ); fprintf ( stderr, " FILE_ROW_COUNT failed.\n" ); exit ( 1 ); } return; } /******************************************************************************/ double r8mat_max ( int m, int n, double a[] ) /******************************************************************************/ /* Purpose: R8MAT_MAX returns the maximum entry of an R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the GNU LGPL license. Modified: 21 May 2011 Author: John Burkardt Parameters: Input, int M, the number of rows in A. Input, int N, the number of columns in A. Input, double A[M*N], the M by N matrix. Output, double R8MAT_MAX, the maximum entry of A. */ { int i; int j; double value; value = a[0+0*m]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( value < a[i+j*m] ) { value = a[i+j*m]; } } } return value; } /******************************************************************************/ double r8mat_min ( int m, int n, double a[] ) /******************************************************************************/ /* Purpose: R8MAT_MIN returns the minimum entry of an R8MAT. Discussion: An R8MAT is a doubly dimensioned array of R8 values, stored as a vector in column-major order. Licensing: This code is distributed under the GNU LGPL license. Modified: 21 May 2011 Author: John Burkardt Parameters: Input, int M, the number of rows in A. Input, int N, the number of columns in A. Input, double A[M*N], the M by N matrix. Output, double R8MAT_MIN, the minimum entry of A. */ { int i; int j; double value; value = a[0+0*m]; for ( j = 0; j < n; j++ ) { for ( i = 0; i < m; i++ ) { if ( a[i+j*m] < value ) { value = a[i+j*m]; } } } return value; } /******************************************************************************/ int s_len_trim ( char *s ) /******************************************************************************/ /* Purpose: S_LEN_TRIM returns the length of a string to the last nonblank. Licensing: This code is distributed under the GNU LGPL license. Modified: 26 April 2003 Author: John Burkardt Parameters: Input, char *S, a pointer to a string. Output, int S_LEN_TRIM, the length of the string to the last nonblank. If S_LEN_TRIM is 0, then the string is entirely blank. */ { int n; char *t; n = strlen ( s ); t = s + strlen ( s ) - 1; while ( 0 < n ) { if ( *t != ' ' ) { return n; } t--; n--; } return n; } /******************************************************************************/ double s_to_r8 ( char *s, int *lchar, int *error ) /******************************************************************************/ /* Purpose: S_TO_R8 reads an R8 value from a string. Discussion: We have had some trouble with input of the form 1.0E-312. For now, let's assume anything less than 1.0E-20 is zero. This routine will read as many characters as possible until it reaches the end of the string, or encounters a character which cannot be part of the real number. Legal input is: 1 blanks, 2 '+' or '-' sign, 2.5 spaces 3 integer part, 4 decimal point, 5 fraction part, 6 'E' or 'e' or 'D' or 'd', exponent marker, 7 exponent sign, 8 exponent integer part, 9 exponent decimal point, 10 exponent fraction part, 11 blanks, 12 final comma or semicolon. with most quantities optional. Example: S R '1' 1.0 ' 1 ' 1.0 '1A' 1.0 '12,34,56' 12.0 ' 34 7' 34.0 '-1E2ABCD' -100.0 '-1X2ABCD' -1.0 ' 2E-1' 0.2 '23.45' 23.45 '-4.2E+2' -420.0 '17d2' 1700.0 '-14e-2' -0.14 'e2' 100.0 '-12.73e-9.23' -12.73 * 10.0**(-9.23) Licensing: This code is distributed under the GNU LGPL license. Modified: 24 June 2005 Author: John Burkardt Parameters: Input, char *S, the string containing the data to be read. Reading will begin at position 1 and terminate at the end of the string, or when no more characters can be read to form a legal real. Blanks, commas, or other nonnumeric data will, in particular, cause the conversion to halt. Output, int *LCHAR, the number of characters read from the string to form the number, including any terminating characters such as a trailing comma or blanks. Output, int *ERROR, is TRUE (1) if an error occurred and FALSE (0) otherwise. Output, double S_TO_R8, the value that was read from the string. */ { char c; int ihave; int isgn; int iterm; int jbot; int jsgn; int jtop; int nchar; int ndig; double r; double rbot; double rexp; double rtop; char TAB = 9; nchar = s_len_trim ( s ); *error = 0; r = 0.0; *lchar = -1; isgn = 1; rtop = 0.0; rbot = 1.0; jsgn = 1; jtop = 0; jbot = 1; ihave = 1; iterm = 0; for ( ; ; ) { c = s[*lchar+1]; *lchar = *lchar + 1; /* Blank or TAB character. */ if ( c == ' ' || c == TAB ) { if ( ihave == 2 ) { } else if ( ihave == 6 || ihave == 7 ) { iterm = 1; } else if ( 1 < ihave ) { ihave = 11; } } /* Comma. */ else if ( c == ',' || c == ';' ) { if ( ihave != 1 ) { iterm = 1; ihave = 12; *lchar = *lchar + 1; } } /* Minus sign. */ else if ( c == '-' ) { if ( ihave == 1 ) { ihave = 2; isgn = -1; } else if ( ihave == 6 ) { ihave = 7; jsgn = -1; } else { iterm = 1; } } /* Plus sign. */ else if ( c == '+' ) { if ( ihave == 1 ) { ihave = 2; } else if ( ihave == 6 ) { ihave = 7; } else { iterm = 1; } } /* Decimal point. */ else if ( c == '.' ) { if ( ihave < 4 ) { ihave = 4; } else if ( 6 <= ihave && ihave <= 8 ) { ihave = 9; } else { iterm = 1; } } /* Exponent marker. */ else if ( ch_eqi ( c, 'E' ) || ch_eqi ( c, 'D' ) ) { if ( ihave < 6 ) { ihave = 6; } else { iterm = 1; } } /* Digit. */ else if ( ihave < 11 && '0' <= c && c <= '9' ) { if ( ihave <= 2 ) { ihave = 3; } else if ( ihave == 4 ) { ihave = 5; } else if ( ihave == 6 || ihave == 7 ) { ihave = 8; } else if ( ihave == 9 ) { ihave = 10; } ndig = ch_to_digit ( c ); if ( ihave == 3 ) { rtop = 10.0 * rtop + ( double ) ndig; } else if ( ihave == 5 ) { rtop = 10.0 * rtop + ( double ) ndig; rbot = 10.0 * rbot; } else if ( ihave == 8 ) { jtop = 10 * jtop + ndig; } else if ( ihave == 10 ) { jtop = 10 * jtop + ndig; jbot = 10 * jbot; } } /* Anything else is regarded as a terminator. */ else { iterm = 1; } /* If we haven't seen a terminator, and we haven't examined the entire string, go get the next character. */ if ( iterm == 1 || nchar <= *lchar + 1 ) { break; } } /* If we haven't seen a terminator, and we have examined the entire string, then we're done, and LCHAR is equal to NCHAR. */ if ( iterm != 1 && (*lchar) + 1 == nchar ) { *lchar = nchar; } /* Number seems to have terminated. Have we got a legal number? Not if we terminated in states 1, 2, 6 or 7! */ if ( ihave == 1 || ihave == 2 || ihave == 6 || ihave == 7 ) { *error = 1; return r; } /* Number seems OK. Form it. We have had some trouble with input of the form 1.0E-312. For now, let's assume anything less than 1.0E-20 is zero. */ if ( jtop == 0 ) { rexp = 1.0; } else { if ( jbot == 1 ) { if ( jsgn * jtop < -20 ) { rexp = 0.0; } else { rexp = pow ( ( double ) 10.0, ( double ) ( jsgn * jtop ) ); } } else { if ( jsgn * jtop < -20 * jbot ) { rexp = 0.0; } else { rexp = jsgn * jtop; rexp = rexp / jbot; rexp = pow ( ( double ) 10.0, ( double ) rexp ); } } } r = isgn * rexp * rtop / rbot; return r; } /******************************************************************************/ int s_to_r8vec ( char *s, int n, double rvec[] ) /******************************************************************************/ /* Purpose: S_TO_R8VEC reads an R8VEC from a string. Licensing: This code is distributed under the GNU LGPL license. Modified: 19 February 2001 Author: John Burkardt Parameters: Input, char *S, the string to be read. Input, int N, the number of values expected. Output, double RVEC[N], the values read from the string. Output, int S_TO_R8VEC, is TRUE (1) if an error occurred and FALSE (0) otherwise. */ { int error; int i; int lchar; error = 0; for ( i = 0; i < n; i++ ) { rvec[i] = s_to_r8 ( s, &lchar, &error ); if ( error ) { return error; } s = s + lchar; } return error; } /******************************************************************************/ int s_word_count ( char *s ) /******************************************************************************/ /* Purpose: S_WORD_COUNT counts the number of "words" in a string. Licensing: This code is distributed under the GNU LGPL license. Modified: 30 January 2006 Author: John Burkardt Parameters: Input, char *S, the string to be examined. Output, int S_WORD_COUNT, the number of "words" in the string. Words are presumed to be separated by one or more blanks. */ { int blank; int word_num; word_num = 0; blank = 1; while ( *s ) { if ( *s == ' ' || *s == '\n' ) { blank = 1; } else if ( blank ) { word_num = word_num + 1; blank = 0; } (*s)++; } return word_num; } /******************************************************************************/ void timestamp ( void ) /******************************************************************************/ /* Purpose: TIMESTAMP prints the current YMDHMS date as a time stamp. Example: 31 May 2001 09:45:54 AM Licensing: This code is distributed under the GNU LGPL license. Modified: 24 September 2003 Author: John Burkardt Parameters: None */ { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); printf ( "%s\n", time_buffer ); return; # undef TIME_SIZE }