# include # include # include # include # include "brent.h" /******************************************************************************/ double glomin ( double a, double b, double c, double m, double machep, double e, double t, double f ( double x ), double *x ) /******************************************************************************/ /* Purpose: GLOMIN seeks a global minimum of a function F(X) in an interval [A,B]. Discussion: This function assumes that F(X) is twice continuously differentiable over [A,B] and that F''(X) <= M for all X in [A,B]. Licensing: This code is distributed under the GNU LGPL license. Modified: 17 April 2008 Author: Original FORTRAN77 version by Richard Brent. C version by John Burkardt. Reference: Richard Brent, Algorithms for Minimization Without Derivatives, Dover, 2002, ISBN: 0-486-41998-3, LC: QA402.5.B74. Parameters: Input, double A, B, the endpoints of the interval. It must be the case that A < B. Input, double C, an initial guess for the global minimizer. If no good guess is known, C = A or B is acceptable. Input, double M, the bound on the second derivative. Input, double MACHEP, an estimate for the relative machine precision. Input, double E, a positive tolerance, a bound for the absolute error in the evaluation of F(X) for any X in [A,B]. Input, double T, a positive error tolerance. Input, double F ( double x ), a user-supplied function whose global minimum is being sought. Output, double *X, the estimated value of the abscissa for which F attains its global minimum value in [A,B]. Output, double GLOMIN, the value F(X). */ { double a0; double a2; double a3; double d0; double d1; double d2; double h; int k; double m2; double p; double q; double qs; double r; double s; double sc; double y; double y0; double y1; double y2; double y3; double yb; double z0; double z1; double z2; a0 = b; *x = a0; a2 = a; y0 = f ( b ); yb = y0; y2 = f ( a ); y = y2; if ( y0 < y ) { y = y0; } else { *x = a; } if ( m <= 0.0 || b <= a ) { return y; } m2 = 0.5 * ( 1.0 + 16.0 * machep ) * m; if ( c <= a || b <= c ) { sc = 0.5 * ( a + b ); } else { sc = c; } y1 = f ( sc ); k = 3; d0 = a2 - sc; h = 9.0 / 11.0; if ( y1 < y ) { *x = sc; y = y1; } for ( ; ; ) { d1 = a2 - a0; d2 = sc - a0; z2 = b - a2; z0 = y2 - y1; z1 = y2 - y0; r = d1 * d1 * z0 - d0 * d0 * z1; p = r; qs = 2.0 * ( d0 * z1 - d1 * z0 ); q = qs; if ( k < 1000000 || y2 <= y ) { for ( ; ; ) { if ( q * ( r * ( yb - y2 ) + z2 * q * ( ( y2 - y ) + t ) ) < z2 * m2 * r * ( z2 * q - r ) ) { a3 = a2 + r / q; y3 = f ( a3 ); if ( y3 < y ) { *x = a3; y = y3; } } k = ( ( 1611 * k ) % 1048576 ); q = 1.0; r = ( b - a ) * 0.00001 * ( double ) ( k ); if ( z2 <= r ) { break; } } } else { k = ( ( 1611 * k ) % 1048576 ); q = 1.0; r = ( b - a ) * 0.00001 * ( double ) ( k ); while ( r < z2 ) { if ( q * ( r * ( yb - y2 ) + z2 * q * ( ( y2 - y ) + t ) ) < z2 * m2 * r * ( z2 * q - r ) ) { a3 = a2 + r / q; y3 = f ( a3 ); if ( y3 < y ) { *x = a3; y = y3; } } k = ( ( 1611 * k ) % 1048576 ); q = 1.0; r = ( b - a ) * 0.00001 * ( double ) ( k ); } } r = m2 * d0 * d1 * d2; s = sqrt ( ( ( y2 - y ) + t ) / m2 ); h = 0.5 * ( 1.0 + h ); p = h * ( p + 2.0 * r * s ); q = q + 0.5 * qs; r = - 0.5 * ( d0 + ( z0 + 2.01 * e ) / ( d0 * m2 ) ); if ( r < s || d0 < 0.0 ) { r = a2 + s; } else { r = a2 + r; } if ( 0.0 < p * q ) { a3 = a2 + p / q; } else { a3 = r; } for ( ; ; ) { a3 = r8_max ( a3, r ); if ( b <= a3 ) { a3 = b; y3 = yb; } else { y3 = f ( a3 ); } if ( y3 < y ) { *x = a3; y = y3; } d0 = a3 - a2; if ( a3 <= r ) { break; } p = 2.0 * ( y2 - y3 ) / ( m * d0 ); if ( ( 1.0 + 9.0 * machep ) * d0 <= fabs ( p ) ) { break; } if ( 0.5 * m2 * ( d0 * d0 + p * p ) <= ( y2 - y ) + ( y3 - y ) + 2.0 * t ) { break; } a3 = 0.5 * ( a2 + a3 ); h = 0.9 * h; } if ( b <= a3 ) { break; } a0 = sc; sc = a2; a2 = a3; y0 = y1; y1 = y2; y2 = y3; } return y; } /******************************************************************************/ double local_min ( double a, double b, double eps, double t, double f ( double x ), double *x ) /******************************************************************************/ /* Purpose: LOCAL_MIN seeks a local minimum of a function F(X) in an interval [A,B]. Discussion: The method used is a combination of golden section search and successive parabolic interpolation. Convergence is never much slower than that for a Fibonacci search. If F has a continuous second derivative which is positive at the minimum (which is not at A or B), then convergence is superlinear, and usually of the order of about 1.324.... The values EPS and T define a tolerance TOL = EPS * abs ( X ) + T. F is never evaluated at two points closer than TOL. If F is a unimodal function and the computed values of F are always unimodal when separated by at least SQEPS * abs ( X ) + (T/3), then LOCAL_MIN approximates the abscissa of the global minimum of F on the interval [A,B] with an error less than 3*SQEPS*abs(LOCAL_MIN)+T. If F is not unimodal, then LOCAL_MIN may approximate a local, but perhaps non-global, minimum to the same accuracy. Thanks to Jonathan Eggleston for pointing out a correction to the golden section step, 01 July 2013. Licensing: This code is distributed under the GNU LGPL license. Modified: 01 July 2013 Author: Orignal FORTRAN77 version by Richard Brent. C version by John Burkardt. Reference: Richard Brent, Algorithms for Minimization Without Derivatives, Dover, 2002, ISBN: 0-486-41998-3, LC: QA402.5.B74. Parameters: Input, double A, B, the endpoints of the interval. Input, double EPS, a positive relative error tolerance. EPS should be no smaller than twice the relative machine precision, and preferably not much less than the square root of the relative machine precision. Input, double T, a positive absolute error tolerance. Input, double F ( double x ), a user-supplied function whose local minimum is being sought. Output, double *X, the estimated value of an abscissa for which F attains a local minimum value in [A,B]. Output, double LOCAL_MIN, the value F(X). */ { double c; double d; double e; double fu; double fv; double fw; double fx; double m; double p; double q; double r; double sa; double sb; double t2; double tol; double u; double v; double w; /* C is the square of the inverse of the golden ratio. */ c = 0.5 * ( 3.0 - sqrt ( 5.0 ) ); sa = a; sb = b; *x = sa + c * ( b - a ); w = *x; v = w; e = 0.0; fx = f ( *x ); fw = fx; fv = fw; for ( ; ; ) { m = 0.5 * ( sa + sb ) ; tol = eps * fabs ( *x ) + t; t2 = 2.0 * tol; /* Check the stopping criterion. */ if ( fabs ( *x - m ) <= t2 - 0.5 * ( sb - sa ) ) { break; } /* Fit a parabola. */ r = 0.0; q = r; p = q; if ( tol < fabs ( e ) ) { r = ( *x - w ) * ( fx - fv ); q = ( *x - v ) * ( fx - fw ); p = ( *x - v ) * q - ( *x - w ) * r; q = 2.0 * ( q - r ); if ( 0.0 < q ) { p = - p; } q = fabs ( q ); r = e; e = d; } if ( fabs ( p ) < fabs ( 0.5 * q * r ) && q * ( sa - *x ) < p && p < q * ( sb - *x ) ) { /* Take the parabolic interpolation step. */ d = p / q; u = *x + d; /* F must not be evaluated too close to A or B. */ if ( ( u - sa ) < t2 || ( sb - u ) < t2 ) { if ( *x < m ) { d = tol; } else { d = - tol; } } } /* A golden-section step. */ else { if ( *x < m ) { e = sb - *x; } else { e = sa - *x; } d = c * e; } /* F must not be evaluated too close to X. */ if ( tol <= fabs ( d ) ) { u = *x + d; } else if ( 0.0 < d ) { u = *x + tol; } else { u = *x - tol; } fu = f ( u ); /* Update A, B, V, W, and X. */ if ( fu <= fx ) { if ( u < *x ) { sb = *x; } else { sa = *x; } v = w; fv = fw; w = *x; fw = fx; *x = u; fx = fu; } else { if ( u < *x ) { sa = u; } else { sb = u; } if ( fu <= fw || w == *x ) { v = w; fv = fw; w = u; fw = fu; } else if ( fu <= fv || v == *x || v == w ) { v = u; fv = fu; } } } return fx; } /******************************************************************************/ double local_min_rc ( double *a, double *b, int *status, double value ) /******************************************************************************/ /* Purpose: LOCAL_MIN_RC seeks a minimizer of a scalar function of a scalar variable. Discussion: This routine seeks an approximation to the point where a function F attains a minimum on the interval (A,B). The method used is a combination of golden section search and successive parabolic interpolation. Convergence is never much slower than that for a Fibonacci search. If F has a continuous second derivative which is positive at the minimum (which is not at A or B), then convergence is superlinear, and usually of the order of about 1.324... The routine is a revised version of the Brent local minimization algorithm, using reverse communication. It is worth stating explicitly that this routine will NOT be able to detect a minimizer that occurs at either initial endpoint A or B. If this is a concern to the user, then the user must either ensure that the initial interval is larger, or to check the function value at the returned minimizer against the values at either endpoint. Licensing: This code is distributed under the GNU LGPL license. Modified: 16 April 2008 Author: John Burkardt Reference: Richard Brent, Algorithms for Minimization Without Derivatives, Dover, 2002, ISBN: 0-486-41998-3, LC: QA402.5.B74. David Kahaner, Cleve Moler, Steven Nash, Numerical Methods and Software, Prentice Hall, 1989, ISBN: 0-13-627258-4, LC: TA345.K34. Parameters Input/output, double *A, *B. On input, the left and right endpoints of the initial interval. On output, the lower and upper bounds for an interval containing the minimizer. It is required that A < B. Input/output, int *STATUS, used to communicate between the user and the routine. The user only sets STATUS to zero on the first call, to indicate that this is a startup call. The routine returns STATUS positive to request that the function be evaluated at ARG, or returns STATUS as 0, to indicate that the iteration is complete and that ARG is the estimated minimizer. Input, double VALUE, the function value at ARG, as requested by the routine on the previous call. Output, double LOCAL_MIN_RC, the currently considered point. On return with STATUS positive, the user is requested to evaluate the function at this point, and return the value in VALUE. On return with STATUS zero, this is the routine's estimate for the function minimizer. Local parameters: C is the squared inverse of the golden ratio. EPS is the square root of the relative machine precision. */ { static double arg; static double c; static double d; static double e; static double eps; static double fu; static double fv; static double fw; static double fx; static double midpoint; static double p; static double q; static double r; static double tol; static double tol1; static double tol2; static double u; static double v; static double w; static double x; /* STATUS (INPUT) = 0, startup. */ if ( *status == 0 ) { if ( *b <= *a ) { printf ( "\n" ); printf ( "LOCAL_MIN_RC - Fatal error!\n" ); printf ( " A < B is required, but\n" ); printf ( " A = %f\n", *a ); printf ( " B = %f\n", *b ); *status = -1; exit ( 1 ); } c = 0.5 * ( 3.0 - sqrt ( 5.0 ) ); eps = sqrt ( r8_epsilon ( ) ); tol = r8_epsilon ( ); v = *a + c * ( *b - *a ); w = v; x = v; e = 0.0; *status = 1; arg = x; return arg; } /* STATUS (INPUT) = 1, return with initial function value of FX. */ else if ( *status == 1 ) { fx = value; fv = fx; fw = fx; } /* STATUS (INPUT) = 2 or more, update the data. */ else if ( 2 <= *status ) { fu = value; if ( fu <= fx ) { if ( x <= u ) { *a = x; } else { *b = x; } v = w; fv = fw; w = x; fw = fx; x = u; fx = fu; } else { if ( u < x ) { *a = u; } else { *b = u; } if ( fu <= fw || w == x ) { v = w; fv = fw; w = u; fw = fu; } else if ( fu <= fv || v == x || v == w ) { v = u; fv = fu; } } } /* Take the next step. */ midpoint = 0.5 * ( *a + *b ); tol1 = eps * fabs ( x ) + tol / 3.0; tol2 = 2.0 * tol1; /* If the stopping criterion is satisfied, we can exit. */ if ( fabs ( x - midpoint ) <= ( tol2 - 0.5 * ( *b - *a ) ) ) { *status = 0; return arg; } /* Is golden-section necessary? */ if ( fabs ( e ) <= tol1 ) { if ( midpoint <= x ) { e = *a - x; } else { e = *b - x; } d = c * e; } /* Consider fitting a parabola. */ else { r = ( x - w ) * ( fx - fv ); q = ( x - v ) * ( fx - fw ); p = ( x - v ) * q - ( x - w ) * r; q = 2.0 * ( q - r ); if ( 0.0 < q ) { p = - p; } q = fabs ( q ); r = e; e = d; /* Choose a golden-section step if the parabola is not advised. */ if ( ( fabs ( 0.5 * q * r ) <= fabs ( p ) ) || ( p <= q * ( *a - x ) ) || ( q * ( *b - x ) <= p ) ) { if ( midpoint <= x ) { e = *a - x; } else { e = *b - x; } d = c * e; } /* Choose a parabolic interpolation step. */ else { d = p / q; u = x + d; if ( ( u - *a ) < tol2 ) { d = tol1 * r8_sign ( midpoint - x ); } if ( ( *b - u ) < tol2 ) { d = tol1 * r8_sign ( midpoint - x ); } } } /* F must not be evaluated too close to X. */ if ( tol1 <= fabs ( d ) ) { u = x + d; } if ( fabs ( d ) < tol1 ) { u = x + tol1 * r8_sign ( d ); } /* Request value of F(U). */ arg = u; *status = *status + 1; return arg; } /******************************************************************************/ double r8_epsilon ( ) /******************************************************************************/ /* Purpose: R8_EPSILON returns the R8 round off unit. Discussion: R8_EPSILON is a number R which is a power of 2 with the property that, to the precision of the computer's arithmetic, 1 < 1 + R but 1 = ( 1 + R / 2 ) Licensing: This code is distributed under the GNU LGPL license. Modified: 01 September 2012 Author: John Burkardt Parameters: Output, double R8_EPSILON, the R8 round-off unit. */ { const double value = 2.220446049250313E-016; return value; } /******************************************************************************/ double r8_max ( double x, double y ) /******************************************************************************/ /* Purpose: R8_MAX returns the maximum of two R8's. Licensing: This code is distributed under the GNU LGPL license. Modified: 18 August 2004 Author: John Burkardt Parameters: Input, double X, Y, the quantities to compare. Output, double R8_MAX, the maximum of X and Y. */ { double value; if ( y < x ) { value = x; } else { value = y; } return value; } /******************************************************************************/ double r8_sign ( double x ) /******************************************************************************/ /* Purpose: R8_SIGN returns the sign of an R8. Licensing: This code is distributed under the GNU LGPL license. Modified: 18 October 2004 Author: John Burkardt Parameters: Input, double X, the number whose sign is desired. Output, double R8_SIGN, the sign of X. */ { double value; if ( x < 0.0 ) { value = -1.0; } else { value = 1.0; } return value; } /******************************************************************************/ void timestamp ( ) /******************************************************************************/ /* Purpose: TIMESTAMP prints the current YMDHMS date as a time stamp. Example: 31 May 2001 09:45:54 AM Licensing: This code is distributed under the GNU LGPL license. Modified: 24 September 2003 Author: John Burkardt Parameters: None */ { # define TIME_SIZE 40 static char time_buffer[TIME_SIZE]; const struct tm *tm; time_t now; now = time ( NULL ); tm = localtime ( &now ); strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm ); printf ( "%s\n", time_buffer ); return; # undef TIME_SIZE } /******************************************************************************/ double zero ( double a, double b, double machep, double t, double f ( double x ) ) /******************************************************************************/ /* Purpose: ZERO seeks the root of a function F(X) in an interval [A,B]. Discussion: The interval [A,B] must be a change of sign interval for F. That is, F(A) and F(B) must be of opposite signs. Then assuming that F is continuous implies the existence of at least one value C between A and B for which F(C) = 0. The location of the zero is determined to within an accuracy of 6 * MACHEPS * abs ( C ) + 2 * T. Thanks to Thomas Secretin for pointing out a transcription error in the setting of the value of P, 11 February 2013. Licensing: This code is distributed under the GNU LGPL license. Modified: 11 February 2013 Author: Original FORTRAN77 version by Richard Brent. C version by John Burkardt. Reference: Richard Brent, Algorithms for Minimization Without Derivatives, Dover, 2002, ISBN: 0-486-41998-3, LC: QA402.5.B74. Parameters: Input, double A, B, the endpoints of the change of sign interval. Input, double MACHEP, an estimate for the relative machine precision. Input, double T, a positive error tolerance. Input, double F ( double x ), a user-supplied function whose zero is being sought. Output, double ZERO, the estimated value of a zero of the function F. */ { double c; double d; double e; double fa; double fb; double fc; double m; double p; double q; double r; double s; double sa; double sb; double tol; /* Make local copies of A and B. */ sa = a; sb = b; fa = f ( sa ); fb = f ( sb ); c = sa; fc = fa; e = sb - sa; d = e; for ( ; ; ) { if ( fabs ( fc ) < fabs ( fb ) ) { sa = sb; sb = c; c = sa; fa = fb; fb = fc; fc = fa; } tol = 2.0 * machep * fabs ( sb ) + t; m = 0.5 * ( c - sb ); if ( fabs ( m ) <= tol || fb == 0.0 ) { break; } if ( fabs ( e ) < tol || fabs ( fa ) <= fabs ( fb ) ) { e = m; d = e; } else { s = fb / fa; if ( sa == c ) { p = 2.0 * m * s; q = 1.0 - s; } else { q = fa / fc; r = fb / fc; p = s * ( 2.0 * m * q * ( q - r ) - ( sb - sa ) * ( r - 1.0 ) ); q = ( q - 1.0 ) * ( r - 1.0 ) * ( s - 1.0 ); } if ( 0.0 < p ) { q = - q; } else { p = - p; } s = e; e = d; if ( 2.0 * p < 3.0 * m * q - fabs ( tol * q ) && p < fabs ( 0.5 * s * q ) ) { d = p / q; } else { e = m; d = e; } } sa = sb; fa = fb; if ( tol < fabs ( d ) ) { sb = sb + d; } else if ( 0.0 < m ) { sb = sb + tol; } else { sb = sb - tol; } fb = f ( sb ); if ( ( 0.0 < fb && 0.0 < fc ) || ( fb <= 0.0 && fc <= 0.0 ) ) { c = sa; fc = fa; e = sb - sa; d = e; } } return sb; } /******************************************************************************/ void zero_rc ( double a, double b, double t, double *arg, int *status, double value ) /******************************************************************************/ /* Purpose: ZERO_RC seeks the root of a function F(X) using reverse communication. Discussion: The interval [A,B] must be a change of sign interval for F. That is, F(A) and F(B) must be of opposite signs. Then assuming that F is continuous implies the existence of at least one value C between A and B for which F(C) = 0. The location of the zero is determined to within an accuracy of 6 * MACHEPS * abs ( C ) + 2 * T. The routine is a revised version of the Brent zero finder algorithm, using reverse communication. Thanks to Thomas Secretin for pointing out a transcription error in the setting of the value of P, 11 February 2013. Licensing: This code is distributed under the GNU LGPL license. Modified: 11 February 2013 Author: John Burkardt Reference: Richard Brent, Algorithms for Minimization Without Derivatives, Dover, 2002, ISBN: 0-486-41998-3, LC: QA402.5.B74. Parameters: Input, double A, B, the endpoints of the change of sign interval. Input, double T, a positive error tolerance. Output, double *ARG, the currently considered point. The user does not need to initialize this value. On return with STATUS positive, the user is requested to evaluate the function at ARG, and return the value in VALUE. On return with STATUS zero, ARG is the routine's estimate for the function's zero. Input/output, int *STATUS, used to communicate between the user and the routine. The user only sets STATUS to zero on the first call, to indicate that this is a startup call. The routine returns STATUS positive to request that the function be evaluated at ARG, or returns STATUS as 0, to indicate that the iteration is complete and that ARG is the estimated zero Input, double VALUE, the function value at ARG, as requested by the routine on the previous call. */ { static double c; static double d; static double e; static double fa; static double fb; static double fc; double m; static double machep; double p; double q; double r; double s; static double sa; static double sb; double tol; /* Input STATUS = 0. Initialize, request F(A). */ if ( *status == 0 ) { machep = r8_epsilon ( ); sa = a; sb = b; e = sb - sa; d = e; *status = 1; *arg = a; return; } /* Input STATUS = 1. Receive F(A), request F(B). */ else if ( *status == 1 ) { fa = value; *status = 2; *arg = sb; return; } /* Input STATUS = 2 Receive F(B). */ else if ( *status == 2 ) { fb = value; if ( 0.0 < fa * fb ) { *status = -1; return; } c = sa; fc = fa; } else { fb = value; if ( ( 0.0 < fb && 0.0 < fc ) || ( fb <= 0.0 && fc <= 0.0 ) ) { c = sa; fc = fa; e = sb - sa; d = e; } } /* Compute the next point at which a function value is requested. */ if ( fabs ( fc ) < fabs ( fb ) ) { sa = sb; sb = c; c = sa; fa = fb; fb = fc; fc = fa; } tol = 2.0 * machep * fabs ( sb ) + t; m = 0.5 * ( c - sb ); if ( fabs ( m ) <= tol || fb == 0.0 ) { *status = 0; *arg = sb; return; } if ( fabs ( e ) < tol || fabs ( fa ) <= fabs ( fb ) ) { e = m; d = e; } else { s = fb / fa; if ( sa == c ) { p = 2.0 * m * s; q = 1.0 - s; } else { q = fa / fc; r = fb / fc; p = s * ( 2.0 * m * q * ( q - r ) - ( sb - sa ) * ( r - 1.0 ) ); q = ( q - 1.0 ) * ( r - 1.0 ) * ( s - 1.0 ); } if ( 0.0 < p ) { q = - q; } else { p = - p; } s = e; e = d; if ( 2.0 * p < 3.0 * m * q - fabs ( tol * q ) && p < fabs ( 0.5 * s * q ) ) { d = p / q; } else { e = m; d = e; } } sa = sb; fa = fb; if ( tol < fabs ( d ) ) { sb = sb + d; } else if ( 0.0 < m ) { sb = sb + tol; } else { sb = sb - tol; } *arg = sb; *status = *status + 1; return; }