Proposition 7. Given AB, and straight lines AC and BC, we cannot also have straight lines AD and BD with BC and D on the same side of AB, and $AD = AC$ and $BD = BC$.

Proof. Suppose we have such straight lines. Then $AC = AD$ and $BC = BD$. Connect CD.

We have

$\angle ACD > \angle BCD$ (whole greater than part)

$= \angle BDC$ (pons asinorum — Prop. 5)

$> \angle ADC$ (whole $> \angle$ part)

$= \angle ACD$ (pons asinorum)

So $\angle ACD > \angle ACD$ which is absurd.

So such lines cannot exist.

Note. We assumed D was outside $\triangle ABC$ and to the right of C, as Euclid did.
Given a triangle ABC with D as shown.
Bisect AC at E, and extend BE to BF with BE = EF.
(Uses Props 10 and 3)

Then \(\angle AEB = \angle CEF \) by vertical angles (Prop. 15).
and \(AE = CE, BE = EF \),
so \(\triangle ABE \cong \triangle CFE \) by SAS (Prop 4).
So \(\angle BAE = \angle ECF \).

But \(\angle ECD > \angle ECF \), so \(\angle ECD > \angle BAE \).

Similarly we can show \(\angle ECD > \angle ABC \) by bisecting BC instead.
17. Extend BC to D.

By Prop. 16,
\[\angle ACD \text{ is bigger than } \angle ABC \text{ or } \angle BAC. \]
Adding \(\angle BCA \) we see
\[\angle ACD + \angle BCA > \angle ABC + \angle BCA \]
\[\angle ACD + \angle BCA > \angle BAC + \angle BCA \]
The left side is \(180^\circ \).
So the sum of \(\angle BCA \) and either of the other two angles is less than \(180^\circ \). We can extend one of the other two sides to prove that the sum of \(\angle B \) and \(\angle A \) is also \(< 180^\circ \).

19. This uses Prop. 16.

Suppose \(\angle ABC > \angle BCA \).
We claim \(AC > AB \).
If not, \(AC = AB \) or \(AC < AB \). The former contradicts the pons asinorum (Prop. 5). If \(AC < AB \), then by Prop. 18 \(\angle B < \angle C \) which is contrary to what we supposed.
So \(\square \) \(AC > AB \).
26. Given \(\triangle ABC \) and \(\triangle DEF \) with \(\angle ABC = \angle DEF \), \(\angle BCA = \angle EFD \), and \(BC = EF \). (we're proving ASA)

Claim, \(\triangle ABC \cong \triangle DEF \).

If \(AB = DE \) then we're done by SAS (Prop. 4).

Otherwise, without loss of generality \(AB > DE \).

Find \(G \) on \(AB \) so \(BG = DE \).

By SAS (Prop 4) \(\triangle GBC \cong \triangle DEF \) so

\(\angle GCB \preceq \angle DFE \).

But \(\angle GCB < \angle ACB \) (part is less than the whole)

which was assumed equal to \(\angle DFE \)

which is a contradiction.

So \(AB = DE \) and \(\triangle ABC \cong \triangle DEF \).
1. Draw an equilateral triangle ABC on AB as in Euclid's Prop 1.
 Let CD be the 1 bisector.
 Now let CE be the angle bisector of $\angle ACD$.
 $\angle ACE = 15^\circ$.

2. Given $AB = 1$. Draw another ray from A and mark off three equal segments AC, CD, DE.
 Draw a circle around D of radius EB
 and around B of radius DE.
 These intersect in a point F.
 \overline{AF} intersects AB in a point G.
 Then $BG = \frac{1}{3} AB = \frac{1}{3}$.
Let O be the center.
Draw any diameter AB.
Draw the line to AB at O.
This is a diameter CD.
$ACBD$ is an inscribed square.

Draw any segment AB.
Draw a half circle around A and a full circle around B, both of length AB.
The circles intersect at C and D.
Duplicate the length AC around the circle. Connect the dots to get a regular hexagon.