Math 575
Problem Set 11

1. What is the connectivity of the complete bipartite graph $K_{r,s}$ (in terms of r and s)?

 Solution: $\kappa(K_{r,s}) = \min\{r,s\}$.

2. Prove that if v and u are any two vertices in a 2-connected graph G, then there exist two internally disjoint v-u paths in G.

 Solution: Since v and u must lie on a common cycle C, we get one path by following v to u along C in a clockwise direction and then a second path by following C from v to u in a counter-clockwise direction.

3. Prove that for any three vertices v, u and w in a 2-connected graph, there is
 (i). a v-u path P that does not contain w.
 (ii). there is also a v-u path Q that does contain w.

 Solution:
 (i). Since G is 2-connected, w cannot be a cut-vertex of G. Thus $G - w$ is connected. Let P be any path in $G - w$. This path P is a path in G that does not contain w.

 (ii). Form a new graph G^* by adding a new vertex x that is adjacent to both v and u.
 Then by the Asterisk Lemma, G^* is also 2-connected. But then the vertices x and w must belong to a common cycle C in G^*. But now vx and vu must be edges of C. Thus $C - x$ is a path in G that contains w.

 Lemma (the Fan Lemma). If G is k-connected, A is a set of k or more vertices in G, and v is a vertex that is not in A, then there exists k paths $P_1, P_2, ..., P_k$ with initial vertex v and terminating respectively at some $a_j \in A$, and such that
 (i). No path P_j contains a vertex of A other than its terminal vertex a_j
 (ii). For all $i \neq j$, $V(P_i) \cap V(P_j) = \{v\}$.

4. Prove the Fan Lemma for the case $k = 2$.

 Solution: Let G be a 2-connected graph and let A be a set of two or more vertices of G. As in the previous problem, form a new graph G^* by adding a new vertex x adjacent to all the vertices of A.

 Then G^* is 2-connected and there must be internally disjoint paths P and Q from v to x in G^*. Assume that we have chosen these so that they are as short as possible. Then each of P and Q must terminate in an edges ax, bx where a and b are in A. And no other vertices of P, Q can be in A or else we could obtain shorter paths. This, $P' = P - x, Q' = Q - x$ are internally disjoint paths from v to A that satisfy the conditions of the Fan Lemma.
5. Show that if \(v, u \) and \(w \) are vertices in a 3-connected graph, then they lie on a common cycle.
[You may assume that every two vertices of a 2-connected graph lie on a common cycle, but you may not use Menger’s Theorem. However, you may use the Fan Lemma for \(k = 3 \).]

Hint: Since \(G \) is 2-connected, you may assume that there is a cycle \(C \) that contains \(v \) and \(u \). Now suppose that \(w \) does not lie on \(C \).