Definition: If A is a set and x is an element of A, one writes “$x \in A$.”

Definition: By a complex number is meant an ordered pair (a, b) of real numbers. Furthermore, the complex number (a, b) is identified with, and sometimes referred to as, the point in the plane, $\mathbb{R} \times \mathbb{R}$, whose cartesian coordinates are (a, b).

Definition: By the field \mathbb{C} of complex numbers is meant the system $(\mathbb{R} \times \mathbb{R}, +, \cdot)$ where addition $+$ and multiplication \cdot are defined by the following formulas. For all $(a, b), (c, d) \in \mathbb{C}$, $(a, b) + (c, d) = (a + c, b + d)$, and $(a, b) \cdot (c, d) = (ac - bd, ad + bc)$.

For simplicity, it is customary to modify the notation for a complex number $(a, b) \in \mathbb{R} \times \mathbb{R}$ and the binary operations $+$ and \cdot in the following way: since (a, b) can be uniquely represented in the form $a(1, 0) + b(0, 1)$, where $r(u, v)$ is defined to mean (ru, rv), we reserve the letter “i” to denote the complex number $(0, 1)$, and we abbreviate the notation for $(1, 0)$ to simply the number “1” (since $(a, b) \cdot (1, 0) = (a, b) = (1, 0) \cdot (a, b)$ for all $(a, b) \in \mathbb{R} \times \mathbb{R}$). This permits the following notationally simplified definition of \mathbb{C}, which is the one we shall use from now on.

Definition: By the field \mathbb{C} of complex numbers is meant the set of all expressions having the form $a + bi$, where $a, b \in \mathbb{R}$, endowed with the following operations of addition and multiplication (which are denoted with the same symbols used for addition and multiplication of real numbers): for all $a, b, c, d \in \mathbb{R}$,

$$(a + bi) + (c + di) = (a + c) + (b + d)i,$$

and

$$(a + bi) \cdot (c + di) = (ac - bd) + (ad + bc)i.$$

With these operations on \mathbb{C}, $0 + 0i$, denoted 0, is its additive identity, and the additive inverse of $a + bi$ is $-a + (-b)i$, denoted $-a - bi$.

Its multiplicative identity is $1 + 0i$, denoted 1, and for $0 \neq a + bi \in \mathbb{C}$, the multiplicative inverse of $a + bi$, denoted $\frac{1}{a + bi}$, is easily shown to be $\frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2} \cdot i$.

Notice that using the above formula for multiplication, one obtains $(0 + i) \cdot (0 + i) = (0 - 1) + (0 + 0)i$, and hence $i^2 = -1$, $i^3 = -i$, $i^4 = 1$, $i^5 = i$, and so on. Some authors write the suggestive notation $i = \sqrt{-1}$, although the symbol “$\sqrt{-1}$” is considered meaningless or undefined when one is talking solely about \mathbb{R}.

Definition: For a complex number $z = a + bi$, where $a, b \in \mathbb{R}$, a is called the real part of z, b is called the imaginary part of z, and the number $\sqrt{a^2 + b^2}$ is called the modulus of z (or absolute value of z) and is denoted $|z|$.

Geometrically, we can think of the complex number $z = a + bi$, where $a, b \in \mathbb{R}$, as being represented by the point (a, b) in the xy-plane. Then the modulus of z provides the distance between the point z and the origin. In this context, the x-axis is called the real axis, the y-axis is the imaginary axis, and the xy-plane is the complex plane.
Definition: If \(a, b \in \mathbb{R} \) and \(0 \neq z = a + bi \) is a nonzero complex number, then we can also write \(z = |z| \left(\frac{a}{\sqrt{a^2 + b^2}} + \frac{b}{\sqrt{a^2 + b^2}} \cdot i \right) \), and since the point \(\left(\frac{a}{\sqrt{a^2 + b^2}}, \frac{b}{\sqrt{a^2 + b^2}} \right) \) is obviously on the unit circle in the plane, then there exists a real number \(\theta \) such that \(\cos \theta = \frac{a}{\sqrt{a^2 + b^2}} \) and \(\sin \theta = \frac{b}{\sqrt{a^2 + b^2}} \). Thus we may write \(z = r(\cos \theta + i \sin \theta) \), where \(r = |z| \). The latter is called the polar form of \(z \), and \(\theta \) is called an argument of \(z \). Hence, the rectangular coordinates of the point \(z \) in the plane are \((a, b)\), and a set of polar coordinates for \(z \) are \((r, \theta)\). As is the case for polar coordinates of any point, note that the argument \(\theta \) of \(z \) is not uniquely determined, since in the preceding representation for \(z \), \(\theta \) may be replaced by any real number having the form \(\theta + 2n\pi \), where \(n \) is an integer. So, \(\theta \) denotes the signed radian measure of any angle whose initial side is the positive \(x \)-axis and whose terminal side is the line segment from 0 to \(z \).

We shall use the following straightforward consequence of the formula for multiplication in \(\mathbb{C} \) and the formulas \(\cos(A + B) = \cos A \cos B - \sin A \sin B \) and \(\sin(A + B) = \sin A \cos B + \cos A \sin B \).

Lemma: If \(z_1 = r_1(\cos \theta_1 + i \sin \theta_1) \) and \(z_2 = r_2(\cos \theta_2 + i \sin \theta_2) \) are complex numbers, then \(z_1z_2 = r_1r_2(\cos(\theta_1 + \theta_2) + i(\sin(\theta_1 + \theta_2))) \).

Thus, to multiply two complex numbers together, we multiply their absolute values and add their angles. To add two complex numbers \(z_1, z_2 \), we view each complex number as being the tip of a position vector emanating from the origin, and then, geometrically, \(z_1 + z_2 \) is the tip of the vector sum \(z_1 + z_2 \).

In particular, one obtains the next result.

DeMoivre’s Theorem: If \(z = r(\cos \theta + i \sin \theta) \) is a complex number and \(n \) is a positive integer, then \(z^n = r^n(\cos(n\theta) + i \sin(n\theta)) \).

We shall use a corollary of DeMoivre’s Theorem to find roots of nonzero complex numbers.

Definition: If \(n \) is a positive integer and \(z, t \) are complex numbers such that \(t^n = z \), then \(t \) is said to be an \(n^{th} \) root of \(z \).

Corollary: If \(z = r(\cos \theta + i \sin \theta) \), where \(z \neq 0 \) and \(n \) is a positive integer, then for each nonnegative integer \(k \), \(z_k = r^{1/n} \left(\cos \left(\frac{\theta + 2k\pi}{n} \right) + i \sin \left(\frac{\theta + 2k\pi}{n} \right) \right) \) is an \(n^{th} \) root of \(z \). Furthermore, \(z \) has exactly \(n \) distinct roots in \(\mathbb{C} \), namely, \(\{z_0, z_1, z_2, \ldots, z_{n-1}\} \).

Exercise: Let \(n \) be a positive integer. Let \(k \) be a nonnegative integer and define \(z_k \) by \(z_k = \cos \left(\frac{2\pi k}{n} \right) + i \sin \left(\frac{2\pi k}{n} \right) \). Show that \(z_k \) is an \(n^{th} \) root of 1.

Examples we have already seen: \(-1 \) and \(1 \) are the square roots of 1, \(-i \) and \(i \) are the square roots of \(-1 \), and \(-1, i, -1 \) and \(1 \) are the fourth roots of 1.

Exercise: Use the Corollary and the two equations \(1 = 1 \cdot (\cos(0) + i \sin(0)) \) and \(-1 = 1 \cdot (\cos(\pi) + i \sin(\pi)) \) to generate the above square roots of \(-1 \) and 1, and the fourth roots of 1.
Exercise: Find formulas for all 3rd roots of 1 and all 6th roots of 1. Hint: use the above appropriate definitions of z_k, as well as trigonometry formulas such as $\cos(\pi/3) = 1/2 = \sin(\pi/6)$ and $\sin(\pi/3) = \sqrt{3}/2 = \cos(\pi/6)$, and similar formulas for $\cos \theta$ and $\sin \theta$, where θ denotes various integer multiples of $\pi/6$.

Exercise: Find formulas for all 4th roots of -1. Hint: use $-1 = \cos \pi = 1 \cdot (\cos \pi + i \sin \pi)$ and the above appropriate definitions of z_k, as well as trigonometry formulas such as $\cos(\pi/4) = \sqrt{2}/2 = \sin(\pi/4)$ and similar formulas for $\cos \theta$ and $\sin \theta$, where θ denotes various integer multiples of $\pi/4$.

Exercise: Find formulas for all 4th roots of -16. Hint: $-16 = 2^4(-1)$.

Using the above results about C to help find solutions to homogeneous linear differential equations with constant coefficients:

Definition: The complex valued exponential function, denoted e^z, is defined in a way that its value at any real number agrees with the value given in courses on calculus and real numbers, and so that it has nice algebraic properties such as $e^{r+s} = e^r \cdot e^s$. As a result, one can derive, or take as a definition, the Euler formula, $e^{i\theta} = \cos \theta + i \sin \theta$, so that every nonzero complex number $z = r(\cos \theta + i \sin \theta)$ can be expressed as $z = re^{i\theta}$ or as $z = e^{\ln r + i\theta}$, where $r > 0$ and θ are real numbers.

Previously, we have shown that for a real number r, e^{rx} is a solution to a second order homogeneous differential equation with real constant coefficients (\star) $ay'' + by' + cy = 0$ iff r is a root to the characteristic equation ($\star\star$) $ar^2 + br + c = 0$ of (\star), and we have shown that if $b^2 - 4ac > 0$, then two linearly independent solutions to (\star) are e^{r_1x} and e^{r_2x}, where r_1 and r_2 are the two distinct (real) roots to ($\star\star$). We also learned that if $b^2 - 4ac < 0$ (referred to as Case III), then two linearly independent solutions to (\star) are the functions $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$, where $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2}/2a$. Using the previous definition, one can obtain the following.

Theorem: Let (\star) and ($\star\star$) be as above, where $b^2 - 4ac < 0$. Then, in \mathbb{C}, for any real numbers α and β, $r_1 = \alpha + i\beta$ and $r_2 = \alpha - i\beta$ are roots of ($\star\star$) if and only if $e^{r_1x} = e^{(\alpha + i\beta)x}$ and $e^{r_2x} = e^{(\alpha - i\beta)x}$ are solutions to (\star).

Since $\cos(-B) = \cos B$ and $\sin(-B) = -\sin B$, and hence $e^{(\alpha \pm i\beta)x}$ are the functions $e^{\alpha x}(\cos \beta x + i \sin \beta x)$ and $e^{\alpha x}(\cos \beta x - i \sin \beta x)$, then the above theorem also leads us to the (real) linearly independent solutions to (\star) that we obtained in our class, namely, $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$, where $\alpha = -b/2a$ and $\beta = \sqrt{4ac - b^2}/2a$. One can see this by noting that linear combinations of the functions in the preceding theorem produce the real valued solutions given in class, since $1/2(e^{(\alpha + i\beta)x} + e^{(\alpha - i\beta)x})$ produces $e^{\alpha x} \cos \beta x$, and $1/2i$ times $e^{(\alpha + i\beta)x} - e^{(\alpha - i\beta)x}$ produces $e^{\alpha x} \sin \beta x$.

Exercise: Find four linearly independent, real valued solutions to the homogeneous linear differential equation (\star) $y^{(4)} + 16y = 0$. Hint: The characteristic equation of (\star) is ($\star\star$) $r^4 + 16 = 0$. For two of the 4th roots $\alpha + i\beta$ and $-\alpha + i\beta$ of ($\star\star$), i.e., of the number -16, form the functions $e^{\alpha x} \cos \beta x$, $e^{\alpha x} \sin \beta x$, $e^{-\alpha x} \cos \beta x$, and $e^{-\alpha x} \sin \beta x$. (There is no need to use the other roots of ($\star\star$) since $\cos(-\beta x) = \cos \beta x$ and $\sin(-\beta x) = -\sin \beta x$.)