Problem 4. Prove that every algebraically closed field of prime characteristic is infinite.

Problem 5. Let R be a commutative ring and let I be a finitely generated nontrivial ideal of R. Prove that R has an ideal M such that each of the following properties holds:

i. I is not a subset of M, and

ii. for all ideals J of R, if $M \subseteq J$ and $M \neq J$, then $I \subseteq J$.

Problem 6. Prove that there is a polynomial $f(x) \in \mathbb{R}[x]$ such that

(a) $f(x) - 1$ belongs to the ideal $(x^2 - 2x + 1)$;
(b) $f(x) - 2$ belongs to the ideal $(x + 1)$, and
(c) $f(x) - 3$ belongs to the ideal $(x^2 - 9)$.

Problem 7. Let the field E be an extension of the field F so that $[E : F]$ is finite. Let $f(x) \in F[x]$ be irreducible and of degree p where p is a prime number. Prove that if $f(x)$ is not irreducible in $E[x]$, then p divides $[E : F]$.